Tolerance To The Combined Effects Of Cold And Of Abnormal Atmosphere

  • Radoslav K. Andjus


The following types of relationship between the effects of cold (external and internal) and different forms of anoxia will be discussed on the basis of data from animal experiments, especially from the point of view of tolerance limits and with some reference to the underlying mechanisms.

1. Resistance to external (environmental) cold is impaired by hypoxia (and hypercapnia) which interferes with thermoregulation and renders difficult the maintenance of thermal homeostasis.

The critical tension of oxygen (below which oxygen consumption starts to decrease) can be taken as a measure of the resistance of the body thermostat to the hypoxic load. It is shown that this parameter is not necessarily related, as often assumed, to the overall rate of O consumption (thermogenesis), but only to complementary heat production, i. e. that facultative part of total thermogenesis which is under the control of thermoregulatory centres.

Hypoxia may act as a hypothermia-inducing agent in a cold environment which by itself can be tolerated without change of body temperature. On the other hand, even such changes of ambient atmosphere, which at higher environmental temperatures can be compensated by physiological regulatory mechanisms, may induce in the cold serious disturbances of thermal homeostasis. From the point of view of homeostatic resistance, therefore, a mutual potentiation of the effects of cold and anoxia may be described.

2. From the survival point of view, however, internal cold (hypothermia), induced by anoxia in a cold environment, may have a protective value; the fall of body temperature renders the homeotherm capable of surviving under anoxic conditions which would be lethal at normal body temperature. In other words, failure of the body thermostat to resist anoxia may be of survival value under severe anoxic conditions. This will be illustrated by quantitative data on the relationship between critical and lethal oxygen tensions in different thermal environments; and conditions will be described under which a decreased resistance to anoxia, as far as maintenance of thermal homeostasis is concerned, causes an increased tolerance to anoxia evaluated by survival criteria. The relationship between body temperature and tolerance to hypoxia will be analysed with special emphasis on the relative independence of the protective effects of hypothermia from its effects on the rate of oxygen uptake.

3. Finally, although it can protect against anoxia, internal cold (hypothermia), below a given level of body temperature, causes anoxia at the tissue level in spite of a normal or even increased oxygen tension in the ambient air. In the extreme, hypothermia through its basic inhibitory effect on life processes, causes the cessation of oxygen supply and transport (respiratory and circulatory arrest). At the same time, however, through its protective effect, it renders the organism capable of tolerating relatively long periods of such “suspended animation” (or “clinical death”).

Time and temperature limits of suspended animation will be defined and correlated with data on brain metabolism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.F. Adolph, Oxygen Consumption of Hypothermic Rats and Acclimatization to Cold. Amer.J.Physiol. 161, 359–373 (1950).Google Scholar
  2. 2.
    E. F. Adolph, S. Klem, and L. B. Morrow, Reversible Cessation of Blood Circulation in Deep Hypothermia. J. Appl. Physiol. 13, 397–406 (1958).Google Scholar
  3. 3.
    R. K. Andjus, L’ application de 1’ anesthésie hypoxique en hypophysectomie. Arch. Biol. Sci., Belgrade, 2, 19–31 (1950).Google Scholar
  4. 4.
    R. K. Andjus, Sur la possibilit?e ranimer le Rat adulte refroidi jusqu’?roximit?u point de cong?tion. C. R. Acad. Sci., Paris, 232, 1591–1593 (1951).Google Scholar
  5. 5.
    R. K. Andjus, Prilozi fiziologiji eksperimentalne hipotermije. D. Sc. Thesis, University of Belgrade, 1953.Google Scholar
  6. 6.
    R.K. Andjus, Suspended Animation in Cooled, Supercooled and Frozen Rats. J.Physiol. 128, 547–556 (1955).Google Scholar
  7. 7.
    R. K. Andjus, see Fig. 101, p. 246, in: Cold Injury, Transactions of the Fourth Conference, Josiah Macy, Jr., Found. New York, N.Y., 1955.Google Scholar
  8. 8.
    R. K. Andjus, Closed Container Cooling, and Observations on the Physiology of Cooling and Resuscitation. National Research Council, U.S. National Academy of Sciences, Publ.451, 129–143 (1956).Google Scholar
  9. 9.
    R. K. Andjus, Internal Cold: Protective Effects, Cold Death and Reanimation. Proceedings of the 10th Inter national Congress of Refrigeration - Progress in Refrigeration, Vol. 1, pp. 477 - 501. Oxford: Pergamon Press, 1960. Full text in Arch. Biol. Sci., Belgrade, 13 (l-2), 85-132 (1961).Google Scholar
  10. 10.
    R.K. Andjus, and veta Batinic, Eksperimentalni hipertireoidizam i smrtonosna depresija kiseonika. Glas, Serbian Acad. Sci., Belgrade, 200, 189–197 (1951).Google Scholar
  11. 11.
    R. K. Andjus, T. Cirkovic, Nadežda Cuperlovic, J. Davidovic, Vukosava Markovic-Uskovic, and T. Velimirovic, Brain Metabolism and Resistance of a Hibernator (Citellus citellus) and the Rat to Different Anoxic Conditions, Including Cardiac Arrest in Deep Hypothermia. International Symposium on Natural Hibernation in Mammals, Helsinki, 1962 (to be published by the Finnish Academy of Science).Google Scholar
  12. 12.
    R.K. Andjus and J.Davidovic, Deep Body Cooling of Unanaesthetized Dogs by Hypoxia: Electrocardiographic Changes (a Summary). Symposium on Hypothermia, XV International Congress of Military Medicine and Pharmacy (Belgrade, 1957) Publ., p. 231, 1959.Google Scholar
  13. 13.
    R.K, Andjus and J. E. Lovelock, Reanimation of Rats from Body Temperatures between 0 and 1°C by Microwave Diathermy. J. Physiol. 128, 541–546 (1955).Google Scholar
  14. 14.
    J. Giaja, Sur le rôle de défence de l’hypothermie asphyxique. C.R. Acad.Sci., Paris, 225, 436–437 (1947).Google Scholar
  15. 15.
    J. Giaja, Hypothermie, hibernation et poikilothermie expérimentale. Biol.méd., Paris, 42, 545–580 (1953).Google Scholar
  16. 16.
    J. Giaja, and R.K. Andjus, Sur l’emploi de 1’anesthésie hypoxique en physiologie opératoire. C. R. Acad. Sci., Paris, 229, 1170–1172 (1949).Google Scholar
  17. 17.
    J. Giaja, and S. Gelineo, Physiologie comparée. Sur la résistance de quelques homéothermes aux basses températures. C.R. Acad. Sci., Paris, 200, 2115–2116 (1935).Google Scholar
  18. 18.
    J. Giaja, and L. Markovic, Sur le rapport entre la tension et la consommation de 1’oxygène chez les homéothermies. Le baroquotient. Glas, Serbian Acad.Sci., Belgrade, 189 (95-3), 1–34 (1946).Google Scholar
  19. 19.
    J. Giaja and L. Markovic, Odnosi izmedju napona kiseonika, intenziteta oksidovanja i telesne temperature. Glas, Serbian Acad. Sci., Belgrade, 192, 211–218 (1949).Google Scholar
  20. 20.
    J. Giaja and L. Markovic, L’hypothermie et la toxicité du gaz carbonique. C.R. Acad.Sci., Paris, 236, 2437 (1953).Google Scholar
  21. 21.
    H. Hirsch, A. Boite, A. Schading and D. Tönnis, Über die Wiederbelebung des Gehirns bei Hypothermie. Pflügers Arch. 256, 328–336 (1957).CrossRefGoogle Scholar
  22. 22.
    H. Hirsch, K.H. Euler, and M. Schneider, Über die Erholung des Gehirns nach kompletter Ischämie bei Hypothermie. Pflügers Arch. 265, 314–327 (1957).CrossRefGoogle Scholar
  23. 23.
    C. Kayser, L’hibernation des mammifères. Année biol. 29, 109–150 (1953).Google Scholar
  24. 24.
    P. Martinovic and J. Giaja, Hypophysectomie et thermorégulation. Bull. Acad. Serbe Sci., Belgrade, 1, 125–128 (1950).Google Scholar
  25. 25.
    S.A. Niazi and F.J. Lewis, Profound Hypothermia in Man. Report of a Case. Ann.Surg. 147, 264–266 (1958).CrossRefGoogle Scholar
  26. 26.
    L.L. Shik and K. A. Sergeeva, Analiz vlijanija gipotermii na vinoslivost dihatelnogo centra k kislorodnomu golodaniju. Akad. Med. nauk, III vsesojuzn. konf. patofiziol. (tezisi dokladov), Moscow 1960, p. 182 (and personal communication).Google Scholar
  27. 27.
    Audrey U. Smith, Problems in the Resuscitation of Mammals from Body Temperatures below 0°C. Proc. Roy. Soc. 147, 533–544 (1957).CrossRefGoogle Scholar
  28. 28.
    I. M. Taylor, The Effect of Low Temperatures upon intracellular Potassium in Isolated Tissues. National Research Council U. S., National Academy of Science, Publ. 149, 449–464 (1956).Google Scholar
  29. 29.
    R. Werz, Sauerstoffmangel als Ursache des Kältetodes. Arch, exper. Pathol.u.Pharmakol. 202, 561–593 (1943).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1965

Authors and Affiliations

  • Radoslav K. Andjus
    • 1
  1. 1.Institute of Physiology, Faculty of ScienceBelgrade University BelgradeYugoslavia

Personalised recommendations