Advertisement

Superconductivity. Experimental Part

  • B. Serin
Chapter
Part of the Encyclopedia of Physics / Handbuch der Physik book series (HDBPHYS, volume 3 / 14)

Abstract

The growth of our knowledge of superconductivity has reached the point where it is possible to arrange almost all the experimental facts into a fairly simple logical pattern. Our purpose in this treatise is to describe in detail each element of this pattern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Shoenberg, D.: Superconductivity, 2nd ed. Cambridge: University Press 1952.zbMATHGoogle Scholar
  2. [2]
    Laue, M. von: Theory of Superconductivity. New York: Academic Press 1952.Google Scholar
  3. [3]
    Gorter, C. J.: Progress in Low Temperature Physics. Amsterdam: North-Holland Publishing Company 1955.zbMATHGoogle Scholar
  4. [4]
    London, F.: Superfluids, vol. 1. New York: John Wiley and Sons 1950.Google Scholar

References Appended in Proof, March 1956 Chap. II Sect. 24 γ

  1. (1).
    Bedard, F., and H. Meissner: Measurements of contact resistance between normal and superconducting metals. Phys. Rev. 101, 31 (1956).ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. III Sect. 14 γ

  1. (2).
    Worley, R. D., M. W. Zemansky and H. A. Boorse: Heat capacities of V and Ta in the normal and superconducting phases. Phys. Rev. 99, 447 (1955).ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. III Sect. 15

  1. (3).
    Grenier, C.: The anisotropy of the effect of the elastic deformation on the superconductivity of tin. C. R. Acad. Sci., Paris 238, 2300 (1954); 240, 2302 (1955).Google Scholar
  2. (4).
    Garber, M., and D. E. Mapother: Effect of hydrostatic pressure on the superconducting transition of tin. Phys. Rev. 94, 1065 (1954).ADSCrossRefGoogle Scholar
  3. (5).
    Muench, N. H.: Effects of stress on superconducting Sn, In, Tl and Al. Phys. Rev. 99, 1814 (1955).ADSCrossRefGoogle Scholar
  4. (6).
    Hatton, J.: Effect of pressure on the superconducting transition of thallium. Phys. Rev. 100, 1784 (1955).ADSCrossRefGoogle Scholar
  5. (7).
    MacKinnon, L.: Relative absorption of 10 Mc/sec. longitudinal sound waves in a superconducting polycrystalline tin rod. Phys. Rev. 100, 655 (1955).ADSCrossRefGoogle Scholar
  6. (8).
    Bömmel, H. E.: Ultrasonic attenuation in superconducting and normal-conducting tin. Phys. Rev. 100, 758 (1955).ADSCrossRefGoogle Scholar
  7. (9).
    Pippard, A. B.: Ultrasonic attenuation in metals, Phil. Mag. 46, 1104 (1955).Google Scholar
  8. (10).
    Pippard, A.B.: Thermodynamics of a sheared superconductor. Phil. Mag. 46, 1115 (1955).Google Scholar

References Appended in Proof, March 1956 Chap. IV Sect. 16 ε (2)

  1. (11).
    Faber, T. E., and A. B. Pippard: The penetration depth and hf resistance of superconducting Al. Proc. Roy. Soc. Lond., Ser. A 231, 336 (1955).ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. IV Sect. 21

  1. (12).
    Grebenkamper, C. J., and J. P. Hagen: High frequency resistance of metals in the normal and superconducting state. Phys. Rev. 86, 673 (1952).ADSCrossRefGoogle Scholar
  2. (13).
    Grebenkamper, C. J.: Superconductivity of V at 24,000 Mc/sec. Phys. Rev. 96, 316 (1954).ADSCrossRefGoogle Scholar
  3. (14).
    Grebenkamper, C. J.: H-f resistance of Sn and In in the normal and superconducting state. Phys. Rev. 96, 1197 (1954).ADSCrossRefGoogle Scholar
  4. (15).
    Fawcett, E.: The surface resistance of normal and superconducting tin at 36 kMc/sec. Proc. Roy. Soc. Lond., Ser. A. 232, 519 (1955).ADSCrossRefGoogle Scholar
  5. (16).
    Blevins, G. S., W. Gordy and W. H. Fairbank: Superconductivity at millimeter wave frequencies. Phys. Rev. 100, 1215 (1955).ADSCrossRefGoogle Scholar
  6. (17).
    Biondi, M. A., M. P. Garfunkel and A. O. McCoubrey: Millimeter wave absorption in superconducting aluminum. Phys. Rev. 101, 1427 (1956). N.B. The foregoing two references [(16), (17)] report a new observation. For frequencies, such that hv > kT c (i.e. frequencies > 77 kMc/sec. in the case of Sn, and > 22 kMc/sec. in the case of Al) the metal seems to have the same residual resistance as in the normal state, at temperatures at which there is already complete dc superconductivity. For a given frequency, the temperature has to be reduced below the usual transition point before the surface resistance begins to decrease. The higher the frequency, the lower the temperature to start the decrease in surface resistance.ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. IV Sect. 22

  1. (18).
    Lewis, H. W.: Search for a Hall effect in a superconductor II. Phys. Rev. 100, 641 (1955).ADSCrossRefzbMATHGoogle Scholar

References Appended in Proof, March 1956 Chap. V Sect. 24 α

  1. (19).
    Schawlow, A. L.: Structure of the intermediate state of superconductors. Phys.Rev. 101, 573 (1956).ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. V Sect. 24 γ

  1. (20).
    Grassmann, P., and L. Rinderer: Critical values of the current in superconducting Pb-Bi alloy in external magnetic field. Helv. phys. Acta 27, 309 (1954).Google Scholar
  2. (21).
    Rinderer, L.: Destruction of superconductivity by the current carried and an applied transverse magnetic field. Z. Naturforsch. 10 a, 174 (1955).ADSGoogle Scholar
  3. (22).
    Meissner, H.: Paramagnetic effect in superconductors II. Phys. Rev. 101, 31 (1956).ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. V Sect. 26

  1. (23).
    Faber, T. E.: The phase transition in superconductors IV, Al. Proc. Roy. Soc. Lond., Ser. A 231, 353 (1955).ADSCrossRefGoogle Scholar
  2. (24).
    Galkin, A. A., and P. A. Bezuglyi: The kinetics of the destruction of superconductivity by a magnetic field. Zh. eksp. teor. Fiz. 28, 463 (1955).Google Scholar

References Appended in Proof, March 1956 Chap. VI Sect. 28β

  1. (25).
    Phillips, N. E.: Thermal conductivity of In-Tl alloys. Phys. Rev. 100, 1719 (1955).ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. VI Sect. 28γ

  1. (26).
    Renton, C. A.: Effect of a magnetic field on the heat conductivity of a superconductor. Phil. Mag. 46, 47 (1955).Google Scholar

References Appended in Proof, March 1956 Chap. VII Sect. 30

  1. (27).
    Matthias, B. T., and E. Corenzwit: Superconductivity of Zr Alloys. Phys. Rev. 100, 626 (1955).ADSCrossRefGoogle Scholar
  2. (28).
    Zhuravlev, N. N., and G. S. Zhdanov: Superconducting Bi-Rh compounds. Zh. eksp. teor. Fiz. 28, 228 (1955)Google Scholar
  3. (28a).
    also Alekseevski, N. E., G. S. Zhdanov and N.N. Zhuravlev: Zh. eksp. teor. Fiz. 28, 237 (1955).Google Scholar
  4. (29).
    Glover III, R.: An empirical rule for the position of superconductors in the periodic table. Z. Physik 140,494 (1955).ADSCrossRefGoogle Scholar
  5. (30).
    Teasdale, T. S.: Permanent magnetic moments of a superconductive sphere. Phys. Rev. 99, 1248 (1955).ADSCrossRefGoogle Scholar
  6. (31).
    Doidge, R. P.: The transition to superconductivity. Phil. Trans. Roy. Soc. Lond. 248, 553 (1956).ADSCrossRefGoogle Scholar

References Appended in Proof, March 1956 Chap. VIII Sect. 32

  1. (32).
    Albers-Schönberg, H., and E. Heer: Directional correlation measurements in superconducting metals. Helv. phys. Acta 28, 389 (1955).Google Scholar

References Appended in Proof, March 1956 Chap. VIII Sect. 33

  1. (33).
    McCrum, N. G., and C. A. Shiffman: The optical constants of tin below the superconducting transition temperature. Proc. Phys. Soc. Lond. A 67, 368 (1954).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1956

Authors and Affiliations

  • B. Serin

There are no affiliations available

Personalised recommendations