Advertisement

Thermal Conductivity of Solids at Low Temperatures

  • P. G. Klemens
Part of the Encyclopedia of Physics / Handbuch der Physik book series (HDBPHYS, volume 3 / 14)

Abstract

The most important mechanisms of heat transfer in solids are transfer by the lattice waves and transfer by the conduction electrons, and consequently the materials to be studied are broadly divided into three groups: (i) non-metals, where transfer is only by lattice waves, (ii) metals, where transfer is mainly by the conduction electrons and lattice conduction, though present, is unimportant, and (iii) alloys and other badly conducting metallic solids, where the electronic conductivity is so small that both processes are important.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Review Papers and Books

  1. [1]
    Sommerfeld, A., u. H. Bethe: Electron Theory of Metals. In Handbuch der Physik, Vol. 24/2. 1933.Google Scholar
  2. [2]
    Born, M., u. M. Goeppert-Mayer: Dynamical Theory of Crystal Lattices. In Handbuch der Physik, Vol. 24/2. 1933.Google Scholar
  3. [3]
    Mott, N. F., and H. Jones: Theory of the Properties of Metals and Alloys. Oxford: University Press 1936.Google Scholar
  4. [4]
    Wilson, A. H.: Theory of Metals, 2nd ed. Cambridge: University Press 1953.Google Scholar
  5. [5]
    Berman, R.: Adv. Physics 2, 103 (1953); thermal conductivity of dielectric solids at low temperatures.ADSGoogle Scholar
  6. [6]
    Olsen, J. L., and H. M. Rosenberg: Adv. Physics 2, 28 (1953); thermal conductivity of metals at low temperatures.ADSGoogle Scholar
  7. [7]
    Powell, R. L., and W. A. Blanpied: Thermal Conductivity of Metals and Alloys at Low Temperatures —A Review of the Literature. United States National Bureau of Standards, Circular No. 556 (1954).Google Scholar

Thermal Conductivity of Non-metals, Theory

  1. [8]
    Debye, P.: Equation of State and the Quantum Hypothesis with an Appendix on Thermal Conduction, in: Vorträge über die kinetische Theorie der Materie und Elektrizität. Berlin: Teubner 1914.Google Scholar
  2. [9]
    Peierls, R.: Ann. Phys., Lpz. 3, 1055 (1929); kinetic theory of thermal conduction in dielectric crystals.ADSzbMATHGoogle Scholar
  3. [10]
    Peierls, R.: Ann. Inst. Poincaré 5, 177 (1935); lattice periodicity and properties of solidszbMATHMathSciNetGoogle Scholar
  4. [11]
    Casimir, H. B. G.: Physica, Haag 5, 495 (1938); thermal resistance at low temperatures due to external boundaries.ADSGoogle Scholar
  5. [12]
    Landau, L., and G. Rumer: Phys. Z. Sowjet. 11, 18 (1937); scattering of transverse waves due to cubic anharmonicities.zbMATHGoogle Scholar
  6. [13]
    Pomeranchuk, I.: J. Phys. USSR. 4, 259 (1941); insufficiency of three-phonon interactions, acting alone, to maintain equilibrium of low-frequency longitudinal waves at high temperatures.Google Scholar
  7. [14]
    Pomeranchuk, I.: J. Phys. USSR. 6, 237 (1942); thermal conduction at low temperatures, role of longitudinal waves, effects of boundary and imperfections.Google Scholar
  8. [15]
    Pomeranchuk, I.: J. Phys. USSR. 7, 197 (1943); effect of four-phonon interactions.Google Scholar
  9. [16]
    Froehlich, H., and W. Heitler: Proc. Roy. Soc. Lond., Ser. A 155, 640 (1936); thermal conductivity of paramagnetic crystals.ADSzbMATHGoogle Scholar
  10. [17]
    Pomeranchuk, I.: J. Phys. USSR. 4, 357 (1941); thermal conductivity of paramagnetic solids at low temperatures.Google Scholar
  11. [18]
    Akhieser, A., and I. Pomeranchuk: J. Phys. USSR. 8, 216 (1944); thermal conductivity of salts used for magnetic cooling.Google Scholar
  12. [19]
    Kittel, C.: Phys. Rev. 75, 972 (1949); thermal conductivity of glasses.ADSGoogle Scholar
  13. [20]
    Klemens, P. G.: Proc. Roy. Soc. Lond., Ser. A 208, 108 (1951); thermal conductivity of dielectric solids at low temperatures.ADSzbMATHGoogle Scholar
  14. [21]
    Klemens, P. G.: Proc. Phys. Soc. Lond. A 68, 1113 (1955); scattering of low-frequency phonons by static imperfections.ADSzbMATHGoogle Scholar
  15. [22]
    Herpin, A.: Ann. Physique 7, 91 (1952); three-phonon interactions and thermal conduction.zbMATHMathSciNetGoogle Scholar
  16. [23]
    Herring, C.: Phys. Rev. 95, 954 (1954); role of low-energy phonons in thermal conduction.ADSzbMATHGoogle Scholar
  17. [24]
    Leibfried, G., u. E. Schloemann: Nachr. Akad. Wiss. Göttingen IIa, No. 4, 71 (1954); thermal conductivity of dielectric solids by a variational technique.Google Scholar

Thermal Conductivity of Non-metals, Experimental

  1. [25]
    Eucken, A.: Ann. Phys., Lpz. 34, 185 (1911). — Verh. dtsch. phys. Ges. 13, 829 (1911). — Z. Physik 12, 1005 (1911); thermal conductivity of various crystals below room temperature.ADSGoogle Scholar
  2. [26]
    Eucken, A., u. G. Kuhn: Z. phys. Chem. 134, 193 (1928); thermal conductivity of mixed crystals.Google Scholar
  3. [27]
    Eucken, A., u. E. Schroeder: Ann. Phys., Lpz. 36, 609 (1939); thermal conductivity of solidified benzene, hydrogen bromide and nitrous oxide.ADSGoogle Scholar
  4. [28]
    Haas, W. J. de, and T. Biermasz: Physica, Haag 2, 673 (1935); low temperature thermal conductivity of quartz.ADSGoogle Scholar
  5. [29]
    Haas, W. J. de, and T. Biermasz: Physica, Haag 4, 752 (1937); low temperature thermal conductivity of quartz, potassium chloride and potassium bromide.ADSGoogle Scholar
  6. [30]
    Haas, W. J. de, and T. Biermasz: Physica, Haag 5, 47, 320, 619 (1938); boundary resistance observed for quartz, diamond, potassium chloride.ADSGoogle Scholar
  7. [31]
    Kurti, N., B. V. Rollin and F. Simon: Physica, Haag 3, 266 (1936); thermal conductivity of single crystals of potassium chrome alum and iron ammonium alum below 0.2° K.ADSGoogle Scholar
  8. [32]
    Dijk, H. van, and W. H. Keesom: Physica, Haag 7, 970 (1940); thermal conductivity or iron ammonium alum (compressed).ADSGoogle Scholar
  9. [33]
    Gerritsen, A. N., and P. van der Star: Physica, Haag 9, 503 (1942); thermal conductivity of solid methane.ADSGoogle Scholar
  10. [34]
    Bijl, D.: Physica, Haag 14, 684 (1949); thermal conductivity of potassium chrome alum and some glasses.ADSGoogle Scholar
  11. [35]
    Hudson, R. P.: Thesis, Oxford (1949); thermal conductivity of iron ammonium alum (compressed) below 0.2° K.Google Scholar
  12. [36]
    Wilkinson K. R., and J. Wilks: J. Sci. Instrum. 26, 19 (1949); thermal conductivity of glass and some technical alloys.ADSGoogle Scholar
  13. [37]
    Garrett, C. B. G.: Phil. Mag. 41, 621 (1950); thermal conductivity of potassium chrome alum below 0.3° K.Google Scholar
  14. [38]
    Berman, R.: Phys. Rev. 76, 315 (1949); thermal conductivity of quartz glass at low temperature.ADSGoogle Scholar
  15. [39]
    Berman, R.: Proc. Roy. Soc. Lond., Ser. A 208, 90 (1951); thermal conductivity of glass, quartz, neutron-irradiated quartz and synthetic sapphire.ADSGoogle Scholar
  16. [40]
    Berman, R., F. E. Simon, P. G. Klemens and T. M. Fry: Nature, Lond. 166, 277 (1950); thermal conductivity of neutron-irradiated quartz.Google Scholar
  17. [41]
    Berman, R.: Proc. Phys. Soc. Lond. A 65, 1029 (1952); thermal conductivity of polycrystalline alumina, beryllia and graphite.ADSGoogle Scholar
  18. [42]
    Wilkinson, K. R., and J. Wilks: Proc. Phys. Soc. Lond., A 64, 89 (1951); thermal conductivity of solid helium.ADSGoogle Scholar
  19. [43]
    Berman, R., F. E. Simon and J. Wilks: Nature, Lond. 168, 277 (1951); Umklappresistance in various dielectric solids.ADSGoogle Scholar
  20. [44]
    Webb, F. J., K. R. Wilkinson and J. Wilks: Proc. Roy. Soc. Lond., Ser. A 214, 546 (1953); thermal conductivity of solid helium.ADSGoogle Scholar
  21. [45]
    Webb, F. J., and J. Wilks: Phil. Mag. 44, 664 (1953); thermal conductivity of solid helium.Google Scholar
  22. [46]
    Berman, R., F. E. Simon and J. M. Ziman: Proç. Roy. Soc. Lond., Ser. A 220, 171 (1953); thermal conductivity and size effect of diamond.ADSGoogle Scholar
  23. [47]
    Devyatkova, D., and L. S. Stilbans: Zh. Tekh. Fiz. 22, 968 (1952); influence of F-centres on thermal conductivity of potassium chloride.Google Scholar
  24. [48]
    Smith, A. W.: Phys. Rev. 95, 1095 (1954); thermal conductivity of graphite.ADSGoogle Scholar
  25. [49]
    Estermann, T., and J. E. Zimmerman: Technical Report 6, O.N.R. Carnegie Institute of Technology, USA. (1951).Google Scholar
  26. [50]
    Rosenberg, H. M.: Proc. Phys. Soc. Lond. A 67, 837 (1954); thermal conductivity of silicon and germanium.ADSGoogle Scholar
  27. [51]
    Berman, R.: To be published; thermal conductivity of some alkali halides.Google Scholar
  28. [52]
    Berman, R., E. L. Foster and J. M. Ziman: Proc. Roy. Soc. Lond.. Ser. A 231, 130 (1955); thermal conductivity and size effect of artificial sapphires.ADSGoogle Scholar
  29. [53]
    Simson, C. v.: Naturwiss. 38, 559 (1951); thermal conductivity of ammonium chloride.ADSGoogle Scholar
  30. [54]
    Uhlir, A.: J. Chem. Phys. 20, 463 (1953); thermal conductivity of fluid argon and nitrogen.ADSGoogle Scholar
  31. [55]
    Prosad, S.: Brit. J. Appl. Phys. 3, 58 (1952); thermal conductivity of liquid oxygen.ADSGoogle Scholar
  32. [56]
    Grenier, C.: Phys. Rev. 83, 598 (1951); thermal conductivity of liquid helium I.ADSGoogle Scholar
  33. [57]
    Bowers, R.: Proc. Phys. Soc. Lond., A 65, 511 (1952); thermal conductivity of liquid helium I.ADSGoogle Scholar
  34. [58]
    Fairbank, H. A., and J. Wilks: Phys. Rev. 95, 277 (1954); Proc. Roy. Soc. Lond., Ser. A 231, 545 (1955); thermal conductivity of liquid helium below 1° K.ADSGoogle Scholar

Thermal Conductivity of Metals, Theory

  1. [59]
    Bloch, F.: Z. Physik 52, 555 (1928); interaction between electrons and lattice, electronic conduction in metals.ADSzbMATHGoogle Scholar
  2. [60]
    Wilson, A. H.: Proc. Camb. Phil. Soc. 33, 371 (1937); first order approximation to solution of transport equation for electrical and thermal conduction.ADSzbMATHGoogle Scholar
  3. [61]
    Makinson, R. E. B.: Proc. Camb. Phil. Soc. 34, 474 (1938); numerical evaluation of electronic thermal conductivity, treatment of lattice component, influence of anisotropy of phonon distribution on the electronic component.ADSGoogle Scholar
  4. [62]
    Kohler, M.: Z. Physik 124, 772 (1948); 125, 679 (1949); solution of transport equation by variational method and application to electronic conduction properties.ADSzbMATHMathSciNetGoogle Scholar
  5. [63]
    Kroll, W.: Sci. Papers Inst. Phys. Chem. Res. Tokyo 34, 194 (1938); solution of transport equation by successive approximations.Google Scholar
  6. [64]
    Sondheimer, E. H.: Proc. Roy. Soc. Lond., Ser. A 203, 75 (1950); solution of transport equation to third order by the variational method.ADSzbMATHMathSciNetGoogle Scholar
  7. [65]
    Sondheimer, E. H.: Proc. Phys. Soc. Lond., Ser. A 65, 561, 562 (1952); modification of theory for small number of conduction electrons.ADSzbMATHGoogle Scholar
  8. [66]
    Toda, M.: J. Phys. Soc. Japan 8, 339 (1953); diffusion on the Fermi surface and conductivity.ADSGoogle Scholar
  9. [67]
    Blatt, F. J.: J. Phys. Soc. Japan 9, 444 (1954); diffusion on the Fermi surface, evaluation of thermal conductivity by numerical solution.ADSGoogle Scholar
  10. [68]
    Makinson, R. E. B.: Proc. Phys. Soc. Lond., Ser. A 67, 290 (1954); comment on stationarity in Sondheimer’s variational treatment.ADSzbMATHGoogle Scholar
  11. [69]
    Klemens, P. G.: Proc. Phys. Soc. Lond., Ser. A 67, 194 (1954); Austral. J. Phys. 7, 64 (1954); numerical solution of transport equation for pure metals at low temperatures.ADSzbMATHGoogle Scholar
  12. [70]
    Klemens, P. G.: Proc. Phys. Soc. Lond., Ser. A 67, 194 (1954); Austral. J. Phys. 7, 70 (1954); modification of electronic band structure of monovalent metals to account for low temperature conduction properties.ADSzbMATHGoogle Scholar
  13. [71]
    Ziman, J. M.: Proc. Roy. Soc. Lond., Ser. A 226, 436 (1954); modification of electron-phonon interaction parameter to account for conduction properties.ADSzbMATHGoogle Scholar
  14. [72]
    Klemens, P. G.: Austral. J. Phys. 7, 57 (1954); lattice component of thermal conductivity and electron-phonon interaction.ADSGoogle Scholar
  15. [73]
    Rezanov, A. J., and V. J. Cherepanov: Proc. Acad. Sci. USSR. 93, 641 (1953); low temperature thermal conductivity of ferromagnetic metals.zbMATHGoogle Scholar
  16. [74]
    Sondheimer, E. H., and A. H. Wilson: Proc. Roy. Soc. Lond., Ser. A 190, 435 (1947); magneto-resistance effects in metals assuming relaxation times.ADSzbMATHGoogle Scholar
  17. [75]
    Kohler, M.: Naturwiss. 36, 186 (1949); similarity rule for thermal resistance in magnetic fields.ADSGoogle Scholar
  18. [76]
    Kohler, M.: Ann. Phys., Lpz. 5, 181 (1949); thermal conduction in strong magnetic fields, extrapolation for the lattice component.ADSzbMATHGoogle Scholar
  19. [77]
    Kohler, M.: Ann. Phys., Lpz. 6, 18 (1949); magneto-resistance effects, first order variational treatment.zbMATHGoogle Scholar
  20. [78]
    Akhieser, A, and I. Pomeranchuk: J. Phys. USSR. 9, 93 (1945); thermal conductivity of bismuth.Google Scholar

Thermal Conductivity of Metals, Experimental

  1. [79]
    Meissner, W.: Ann. Phys., Lpz. 47, 1001 (1915). — Z. Physik 2, 373 (1915); thermal conductivity of Li, Au and Pt down to liquid hydrogen temperatures.ADSGoogle Scholar
  2. [80]
    Bidwell, C. C.: Phys. Rev. 27, 819 (1926); 28, 584 (1926); thermal conductivity of lithium and sodium.Google Scholar
  3. [81]
    Grüneisen, E., u. E. Goens: Z. Physik 44, 615 (1927); thermal conductivity down to liquid hydrogen temperatures of a wide range of metals. of high purity.ADSGoogle Scholar
  4. [82]
    Grüneisen, E., u. H. Reddemann: Ann. Phys., Lpz. 20, 843 (1934); thermal conductivity of alloys, role of lattice conduction.ADSGoogle Scholar
  5. [83]
    Berman, R., and D. K. C. MacDonald: Proc. Roy. Soc. Lond., Ser. A 209, 368 (1951); low temperature thermal conductivity of sodium.ADSGoogle Scholar
  6. [84]
    Berman, R., and D. K. C. MacDonald: Proc. Roy. Soc. Lond., Ser. A 211, 122 (1952); low temperature thermal conductivity of copper.ADSGoogle Scholar
  7. [85]
    Mendelssohn, K., and H. M. Rosenberg: Proc. Phys. Soc. Lond., Ser. A 65, 385 (1952); low temperature thermal conductivity of Cu, Ag, Au, Mg, Zn, Cd, Al and In.ADSGoogle Scholar
  8. [86]
    Mendelssohn, K., and H. M. Rosenberg: Proc. Phys. Soc. Lond., Ser. A 65, 388 (1952); low temperature thermal conductivity of Ti, Mn, Fe, Ni, Zr, Cb, Mo, Rh, Pd, Ta, W, Ir, Pt, U and Pb.ADSGoogle Scholar
  9. [87]
    Rosenberg, H. M.: Phil. Trans. Roy. Soc. Lond., Ser. A 247, 441 (1955); low temperature thermal conductivity of Cu, Ag, Au, Be, Mg, Zn, Cd, Al, Ga, In,Tl, Ti, Zr, Sn, Pb, V, Cb, Ta, Sb, Mo, W, Mn, Fe, Co, Ni, Rh, Pd, Ir, Pt, Ce, La and U.ADSGoogle Scholar
  10. [88]
    White, G. K.: Proc. Phys. Soc. Lond. Ser. A 66, 559 (1953); low temperature thermal conductivity of gold.ADSGoogle Scholar
  11. [89]
    White, G. K.: Proc. Phys. Soc. Lond., Ser. A 66, 844 (1953); low temperature thermal conductivity of silver.ADSGoogle Scholar
  12. [90]
    White, G. K.: Austral. J. Phys. 6, 397 (1953); low temperature thermal conductivity of copper.ADSGoogle Scholar
  13. [91]
    MacDonald, D. K. C., G. K. White and S. B. Woods: Proc. Roy. Soc. Lond., to be published; thermal conductivity of K, Rb and Cs at low temperatures.Google Scholar
  14. [92]
    Hulm, J. K.: Proc. Roy. Soc. Lond., Ser. A 204, 98 (1950); thermal conductivity of superconductors (Sn, Hg, In and Ta and dilute alloys) at liquid helium temperatures in normal and superconducting state.ADSGoogle Scholar
  15. [93]
    Hulm, J. K.: Proc. Phys. Soc. Lond., Ser. A 65, 227 (1952); discussion of discrepancy between theory and experiments of ideal thermal resistivity.ADSGoogle Scholar
  16. [94]
    Nobel, J. de: Physica, Haag 17, 551 (1951); low temperature thermal conductivity of Al, Fe, Ni, various steels and monel.ADSGoogle Scholar
  17. [95]
    Andrews, F. A., R. T. Webber and D. A. Spohr: Phys. Rev. 84, 994 (1951); low temperature thermal conductivity of aluminium.ADSGoogle Scholar
  18. [96]
    Kemp, W. R. G., A. K. Sreedhar and G. K. White: Proc. Phys. Soc. Lond., Ser. A 66, 1077 (1953); low temperature thermal conductivity of magnesium.ADSGoogle Scholar
  19. [97]
    Rosenberg, H. M.: Phil. Mag. 45, 73 (1954); thermal and electrical conductivity of magnesium.Google Scholar
  20. [98]
    Spohr, D. A., and R. T. Webber: Phys. Rev. 95, 602 (1954) and private communication; thermal and electrical conductivity of magnesium.Google Scholar
  21. [99]
    Rosenberg, H. M.: Phil. Mag. 45, 767 (1954); anisotropy of thermal resistivity of gallium single crystals.Google Scholar
  22. [100]
    Kemp, W. R. G., P. G. Klemens, A. K. Sreedhar and G. K. White: Phil. Mag. 46, 811 (1955); low temperature thermal conductivity of palladium.Google Scholar
  23. [101]
    Nicol, J., and T. P. Tseng: Phys. Rev. 92, 1062 (1953); thermal conductivity of copper between 0.25 and 4.2° K.ADSGoogle Scholar
  24. [102]
    Reddemann, H.: Ann. Phys., Lpz. 20, 441 (1934); thermal conductivity of a Bi single crystal in magnetic fields.ADSGoogle Scholar
  25. [103]
    Grüneisen, E., and H. Adenstedt: Ann. Phys., Lpz. 29, 597 (1937); 31, 714 (1938); effect of transverse magnetic fields on thermal conductivity of some pure metals at liquid hydrogen temperatures.ADSGoogle Scholar
  26. [104]
    Grüneisen, E., and H. D. Erfling: Ann. Phys., Lpz. 38, 399 (1940); electrical and thermal resistance of Be single crystals in transverse magnetic fields.ADSGoogle Scholar
  27. [105]
    Rausch, K.: Ann. Phys., Lpz. 1, 190 (1947); thermal conductivity of Sb single crystal in magnetic fields.ADSGoogle Scholar
  28. [106]
    Grüneisen, E., K. Rausch and K. Weiss: Ann. Phys., Lpz. 7, 1 (1950); electrical and thermal resistance of Bi single crystals in magnetic fields.ADSGoogle Scholar
  29. [107]
    Haas, W. J. de, A. N. Gerritsen and W. H. Capel: Physica, Haag 3, 1143 (1936); thermal resistance of Bi single crystals in magnetic fields.Google Scholar
  30. [108]
    Haas, W. J. de, and J. de Nobel: Physica, Haag 5, 449 (1938); electrical and thermal resistance of W single crystal in magnetic fields.ADSGoogle Scholar
  31. [109]
    Nobel, J. de: Physica, Haag 15, 532 (1949); thermal and electrical resistance of W single crystal in high magnetic fields.ADSGoogle Scholar
  32. [110]
    Shalyt, S.: J. Phys. USSR. 8, 315 (1944); thermal conductivity of bismuth and effect of magnetic fields down to liquid helium temperatures.Google Scholar
  33. [111]
    Mendelssohn, K., and H. M. Rosenberg: Proc. Phys. Soc. Lond., Ser. A 64, 1057 (1951); thermal conductivity of cadmium in magnetic fields at liquid helium temperatures.ADSGoogle Scholar
  34. [112]
    Mendelssohn, K., and H. M. Rosenberg: Proc. Roy. Soc. Lond., Ser. A 218, 190 (1953); thermal conductivity of various metals in magnetic fields at liquid helium temperatures, in particular Zn, Cd, Sn, Pb and Ga.ADSGoogle Scholar
  35. [113]
    Karweil, J., u. K. Schäfer: Ann. Phys., Lpz. 36, 567 (1939); thermal conductivity of various alloys between 3 and 30° K.Google Scholar
  36. [114]
    Allen, J. F., and E. Mendoza: Proc. Camb. Phil. Soc. 44, 280 (1948); thermal conductivity of copper and German silver at liquid helium temperatures.ADSGoogle Scholar
  37. [115]
    Hulm, J. K.: Proc. Phys. Soc. Lond., Ser. A 64, 207 (1951); thermal conductivity and lattice component of alloy Cu 90 – Ni 10.ADSGoogle Scholar
  38. [116]
    Berman, R.: Phil. Mag. 42, 642 (1951); low temperature thermal conductivity and lattice component of German silver, stainless steel and Cu 60 –Ni 40.Google Scholar
  39. [117]
    Estermann, I., and J. E. Zimmerman: J. Appl. Phys. 23, 578 (1952); low temperature thermal conductivity and lattice component of monel, inconel, stainless steel and Cu 90 – Ni 10 and effect of cold work.ADSGoogle Scholar
  40. [118]
    Kemp, W. R. G., P. G. Klemens, A. K. Sreedhar and G.K. White: Proc. Phys. Soc. Lond., Ser. A 67, 728 (1954); lattice component of thermal conductivity of Ag-Pd alloys.ADSGoogle Scholar
  41. [119]
    Kemp, W. R. G., P. G. Klemens, A. K. Sreedhar and G. K. White: Proc. Roy. Soc. Lond., Ser. A 233, 41 (1956); thermal and electrical conductivities of Ag-Pd and Ag-Cd alloys.Google Scholar
  42. [120]
    White, G. K., and S.B. Woods: Phil. Mag. 45, 1343 (1954); lattice component of thermal conductivity of a dilute copper alloy.Google Scholar
  43. [121]
    White, G. K., and S.B. Woods: Canad. J. Phys. 33, 58 (1955); low temperature thermal conductivity and lattice component of copper alloys, Bi, Ge and Be.ADSGoogle Scholar

Thermal Conductivity of Superconductors

  1. [122]
    Gorter, C. J., u. H. B. G. Casimir: Phys. Z. 35, 963 (1934). — Z. techn. Phys. 15, 539 (1934); two-fluid model of superconductivity.Google Scholar
  2. [123]
    Heisenberg, W.: Z. Naturforsch. 3a, 65 (1948); two-fluid model, including application to thermal conductivity of superconductors.ADSzbMATHGoogle Scholar
  3. [124]
    Klemens, P. G.: Proc. Phys. Soc. Lond., Ser. A 66, 576 (1953); electronic thermal conduction in superconductors and two-fluid circulation.ADSzbMATHGoogle Scholar
  4. [125]
    Cornish, F. H. J., and J.L. Olsen: Helv. Phys. Acta 26, 369 (1953); calculation of thermal conductivity of intermediate state, assuming loose coupling between electron and lattice temperatures.zbMATHGoogle Scholar
  5. [126]
    Bremmer, H., and W. J. de Haas: Physica, Haag 3, 672 (1936); thermal conductivity of Pb and Cu.Google Scholar
  6. [127]
    Haas, W. J. de, and H. Bremmer: Physica, Haag 3, 687 (1936); thermal conductivity of mercury.Google Scholar
  7. [128]
    Bremmer, H., and W. J. de Haas: Physica, Haag 3, 692 (1936); thermal conductivity of some superconducting alloys.Google Scholar
  8. [129]
    Haas, W. J. de, and A. Rademakers: Physica, Haag 7, 992 (1940); thermal conductivity of lead in superconducting and normal states.ADSGoogle Scholar
  9. [130]
    Rademakers, A.: Physica, Haag 15, 849 (1949); thermal conductivity of Pb and Sn in superconducting and normal states.ADSGoogle Scholar
  10. [131]
    Mendelssohn, K., and R. B. Pontius: Phil. Mag. 24, 777 (1937); change of thermal conductivity of lead on going from normal to superconducting state.Google Scholar
  11. [132]
    Mendelssohn, K., and J. L. Olsen: Proc. Phys. Soc. Lond., Ser. A 63, 2 and 1182 (1950); Phys. Rev. 80, 859 (1950); thermal conductivity of lead and lead-bismuth alloys and intermediate state anomalies.ADSGoogle Scholar
  12. [133]
    Olsen, J. L.: Proc. Phys. Soc. Lond., Ser. A 65, 518 (1952); thermal conductivity of lead-bismuth alloys and discussion in terms of enhanced lattice conduction.ADSGoogle Scholar
  13. [134]
    Olsen, J. L., and C. A. Renton: Phil. Mag. 43, 946 (1952); thermal conductivity of lead below 1° K.Google Scholar
  14. [135]
    Mendelssohn, K., and C. A. Renton: Phil. Mag. 44, 776 (1953); thermal conductivity of Sn, In, Tl, Ta, Cb and Al below 1° K.Google Scholar
  15. [136]
    Mendelssohn K.: Physica, Haag 19, 775 (1953); review of Oxford work on thermal conductivity of superconductors; discussion.ADSGoogle Scholar
  16. [137]
    Renton, C. A.: Phil. Mag. 46, 47 (1955); effect of magnetic fields and frozen-in flux on the thermal conductivity of superconductors.Google Scholar
  17. [138]
    Goodman, B. B.: Proc. Phys. Soc. Lond., Ser. A 66, 217 (1953); thermal conductivity of tin below 1° K.ADSGoogle Scholar
  18. [139]
    Shoenberg, D.: Physica, Haag 19, 788 (1953); review of Cambridge work on the thermal conductivity of superconductors and size effect below 1° K.ADSGoogle Scholar
  19. [140]
    Heer, C.V., and J. G. Daunt: Phys. Rev. 76, 854 (1949); thermal conductivity of Sn and Ta below 1° K.ADSGoogle Scholar
  20. [141]
    Webber, R. T., and D. A. Spohr: Phys. Rev. 84, 384 (1951); thermal conductivity of lead in the intermediate state.ADSGoogle Scholar
  21. [142]
    Webber, R. T., and D. A. Spohr: Phys. Rev. 91, 414 (1953); thermal conductivity of mercury in the intermediate state.ADSGoogle Scholar
  22. [143]
    Detwiler, D. P., and H. A. Fairbank: Phys. Rev. 86, 574 (1952); 88, 1049 (1952); thermal conductivity of tin and indium in the intermediate state.ADSGoogle Scholar
  23. [144]
    Hulm, J. K.: Phys. Rev. 90, 1116 (1953); thermal conductivity of mercury in the intermediate state.ADSGoogle Scholar
  24. [145]
    Sladek, W. J.: Phys. Rev. 91, 1280 (1953); 97, 902 (1955); thermal conductivity of indium-thallium alloys, study of lattice conduction and of intermediate state.ADSGoogle Scholar
  25. [146]
    Laredo, S. J., and A. B. Pippard: Proc. Camb. Phil. Soc. 51, 368 (1955); extra resi stivity in the intermediate state due to scattering of phonons.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1956

Authors and Affiliations

  • P. G. Klemens

There are no affiliations available

Personalised recommendations