Advertisement

Helium Liquefiers and Carriers

  • S. C. Collins
Part of the Encyclopedia of Physics / Handbuch der Physik book series (HDBPHYS, volume 3 / 14)

Abstract

The initial interest in very low temperatures was created chiefly by the desire to liquefy the so-called permanent gases. Hydrogen was first liquefied in 1898 but ten years passed before Kamerlingh-Onnes and his coworkers at the University of Leiden were able to reduce helium to the liquid state. Fifteen more years went by before liquid helium was produced anywhere elese. After 1930, however, with the appearance of new techniques, more and more institutions acquired helium liquefying apparatus. At the present time liquid helium is being produced regularly in almost a hundred scientific laboratories and in quantities which would have seemed fantastic a few years ago.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zelmanov: J. Phys. USSR. 8, 135 (1944).Google Scholar
  2. 1.
    F. Simon: Phys. Z. 34, 232 (1933).Google Scholar
  3. 1.
    W. H. McAdams: Heat Transmission, pp. 128 and 174. New York: McGraw-Hill Company 1942.Google Scholar
  4. 1.
    J. Gorrie: U.S. Patent 8080. 1851.Google Scholar
  5. 2.
    E. Solvay: C. R. Acad. Sci. Paris 121, 1141 (1895).Google Scholar
  6. 3.
    Kamerlingh-Onnes: Leiden Comm. 23 (1896).Google Scholar
  7. 4.
    G. Claude: Compt. R. Acad. Sci. Paris 134, 1568 (1902).Google Scholar
  8. 5.
    P. Kapitza: Proc. Roy. Soc. Lond., Ser. A 147, 189 (1934).ADSCrossRefGoogle Scholar
  9. 1.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947).ADSCrossRefGoogle Scholar
  10. 2.
    S. C. Collins: Science, Lancaster, Pa. 116, 289 (1952).ADSGoogle Scholar
  11. 3.
    H. M. Long and F. E. Simon: Proc. Internat. Inst. Refrig., Sept. 1953.Google Scholar
  12. 1.
    The modernization of the Kamerlingh Onnes Laboratory at Leiden. N. V. De Bataafsche Petroleum Maatschappij.Google Scholar
  13. 1.
    J. G. Daunt and H. L. Johnston: Rev. Sci. Instrum. 20, 122 (1949).ADSCrossRefGoogle Scholar
  14. 1.
    Private communication of M. D. Fiske.Google Scholar
  15. 2.
    J. Ashmead: Proc. Phys. Soc. Lond. B 63, 504 (1950).ADSCrossRefGoogle Scholar
  16. 3.
    R. Spoendlin: J. Rech. CNRS. 28, 1 (1954).Google Scholar
  17. 4.
    M. Ruhemann: Z. Physik 65, 67 (1930).ADSCrossRefGoogle Scholar
  18. 5.
    P. F. Chester and G. O. Jones: Proc. Phys. Soc. B 66, 296 (1953).ADSCrossRefGoogle Scholar
  19. 6.
    P. Kapitza: Proc. Roy. Soc., Lond., Ser. A 147, 189 (1934).ADSCrossRefGoogle Scholar
  20. 1.
    W. Meissner: Phys. Z. 43, 261 (1942).Google Scholar
  21. 1.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947).ADSCrossRefGoogle Scholar
  22. 2.
    S. C. Collins: Science, Lancaster, Pa. 116, 289 (1952).ADSGoogle Scholar
  23. 1.
    F. G. Brickwedde: Int. Con. Low. Temp. MIT. 1949.Google Scholar
  24. 2.
    H. M. Long and F. E. Simon: Proc. Internat. Inst. Refrig., Sept. 1953.Google Scholar
  25. 1.
    A. H. Cook, B. V. Rollin and F. Simon: Rev. Sci. Instrum. 10, 251 (1939).ADSCrossRefGoogle Scholar
  26. 2.
    R. B. Scott and J. W. Cook: Rev. Sci. Instrum. 19, 889 (1948).ADSCrossRefGoogle Scholar
  27. 3.
    A. J. Croft: J. Sci. Instrum. 29, 388 (1952).ADSCrossRefGoogle Scholar
  28. 4.
    W. F. Giauque: Rev. Sci. Instrum. 18, 852 (1947).ADSCrossRefGoogle Scholar
  29. 5.
    S. G. Sydoriak and H. S. Sommers jr.: Rev. Sci. Instrum. 22, 915 (1951).ADSCrossRefGoogle Scholar
  30. 6.
    A. Wexler and H. S. Jacket: Rev. Sci. Instrum. 22, 282 (1951).ADSCrossRefGoogle Scholar
  31. 7.
    A. Wexler: J. Appl. Phys. 22, 1463 (1951).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1956

Authors and Affiliations

  • S. C. Collins

There are no affiliations available

Personalised recommendations