Advertisement

The Production of Low Temperatures Down to Hydrogen Temperature

  • J. G. Daunt
Chapter
Part of the Encyclopedia of Physics / Handbuch der Physik book series (HDBPHYS, volume 3 / 14)

Abstract

The purpose of this article is to give the fundamental physical principles involved in the many techniques for the production of low temperatures down to temperatures attainable with liquid hydrogen. In carrying through this aim, emphasis is laid on the evolution and establishment of new ideas and methods. However, it is not my purpose to detail the technological and mechanical developments attendant on each process of refrigeration, which can be found more suitably in engineering publications. In other words, each process of refrigeration is treated at the stage in which it was or is a problem in physics laboratories; but those aspects of the techniques which are concerned with their engineering or commercial development are omitted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Ewing: The Mechanical Production of Cold. Cambridge Univ. Press 1908. A classic giving detailed references to 19th century work.Google Scholar
  2. [2]
    M. and B. Ruhemann: Low Temperature Physics. Cambridge Univ. Press 1937. Chap. I, Part I, gives an historical picture of the development of low temperature physics.Google Scholar
  3. [3]
    H. Lenz: Handbuch der Experimentalphysik, vol. IX/I, p. 47. 1929. Liquefaction of gases and its thermodynamical foundation. Good account of early work on Joule-Thomson expansion.Google Scholar
  4. [4]
    W. Meissner: Handbuch der Physik, vol. XI, p. 272. 1926. Production of low temperatures and the liquefaction of gases. Excellent survey of the field to 1926.Google Scholar
  5. [5]
    M. Ruhemann: The separation of gases. Oxford Press 1940. Chap. V gives good outline of refrigeration to low temperatures.Google Scholar
  6. [6]
    J. A. van Lammeren: Technique of Low Temperatures. Springer 1941. Besides detailing methods of production of low temperatures, this gives a useful chapter on cryostats and a full bibliography.Google Scholar
  7. [7]
    M. Davies: The physical principles of gas liquefaction and low temperature rectification. Longmans Green & Co. 1949. A short but authoritative book from a modern standpoint.Google Scholar
  8. [8]
    H. Hausen: Wärmeübertragung in Gegenstrom, Gleichstrom and Kreuzstrom. A detailed account of interchangers, regenerators, etc.Google Scholar
  9. [9]
    R. Plank: Handbuch der Kältetechnik, vol. I. Springer 1954. Excellent historical article.Google Scholar
  10. [10]
    H. J. Macintire and F. W. Hutchinson: Refrigeration Engineering. Wiley & Sons Inc. 1937. Good text from engineering point of view of refrigeration to — 50° C.Google Scholar
  11. 1.
    See R. Plank: Handbuch der Kältetechnik, vol. I., Berlin: Springer 1954.Google Scholar
  12. 1.
    See J. A. Ewing: The Mechanical Production of Cold. Cambridge Univ. Press 1908.Google Scholar
  13. 1.
    J. W. L. Köhler and C. O. Jonkers: Philips Techn. Rev. 16, 69, 105 (1954).Google Scholar
  14. 2.
    G. J. Ranque: Bull, bi-mensuel Soc. Française de Phys. June 2, 1933, p. 112. Publication bound with J. Phys. Radium (7) 4 (1933). See also, for example, U.S. Patent No. 1952281. Dec. 6, 1932.Google Scholar
  15. 3.
    R. Hilsch: Z. Naturforsch. 1, 203 (1946). English translation in Rev. Sci. Inst. 18, 108 (1947).ADSGoogle Scholar
  16. 1.
    A. F. Johnson: Canad. J. Res. F 25, 299 (1947).Google Scholar
  17. 2.
    K. Elser and M. Hoch: Z. Naturforsch. 6a, 25 (1951).ADSGoogle Scholar
  18. 3.
    R. MacGee jr.: Refrig. Engng. 58, 975 (1950).Google Scholar
  19. 4.
    For a full bibliography see W. Curley and R. MacGee Jr.: Refrig. Engng. 59, 166 (1951).Google Scholar
  20. 5.
    See M. P. Blaher: J. Sci. Instrum. 27, 168 (1950) for a neat construction using plastics.ADSGoogle Scholar
  21. 1.
    R. Hilsch: Z. Naturforsch. 1, 203 (1946).ADSGoogle Scholar
  22. 2.
    A. F. Johnson: Canad. J. Res. F 25, 299 (1947).Google Scholar
  23. 3.
    K. Elser and M. Hoch: Z. Naturforsch. 6a, 25 (1951).ADSGoogle Scholar
  24. 4.
    D. ter Haar and H. Wergeland: Forh. Kong. Norske. Vid. Selskat. 20, 55 (1947).Google Scholar
  25. 5.
    G. Burkhardt: Z. Naturforsch. 3a, 46 (1948).ADSzbMATHGoogle Scholar
  26. 6.
    J. A. Prins: Nederl. Tijdschr. Natuurk. 14, 241 (1948).Google Scholar
  27. 7.
    D. S. Webster: Refrig. Engng. 58, 163 (1950).Google Scholar
  28. 8.
    C. D. Fulton: Refrig. Engng. 58, 473 (1950).Google Scholar
  29. 9.
    G. W. Sheper: Refrig. Engng. 59, 985 (1951).Google Scholar
  30. 10.
    J. J. van Deemter: Appl. Sci. Res. A 3, 174 (1952).Google Scholar
  31. 11.
    See W. Curley and R. MacGee Jr.: Refrig. Engng. 59, 166 (1951) for a fuller bibliography.Google Scholar
  32. 1.
    J. Gorrie: US Patent 8080. May 1851. See alsoGoogle Scholar
  33. 1a.
    W. Siemens: Min. Proc. Instn. Civ. Engrs. 68, 179 (1882).Google Scholar
  34. 2.
    A. Kirk: Min. Proc. Instn. Civ. Engrs. 37, 244 (1873/74).Google Scholar
  35. 3.
    See J. A. Ewing: Mechanical Production of Cold. Cambridge Univ. Press 1908 andGoogle Scholar
  36. 3a.
    R. Plank: Handbuch der Kältetechnik, vol. I. Berlin: Springer 1954.Google Scholar
  37. 1.
    J. W. L. Köhler and C. O. Jonkers: Philips Techn. Rev. 16, 69, 105 (1954).Google Scholar
  38. 2.
    G. Claude: Liquid Air, Oxygen and Nitrogen. Paris 1913. See also section G.Google Scholar
  39. 1.
    See Rinia, du Pré, de Brey and van Weenen: Philips Techn. Rev. 8, 2, 129 (1946),Google Scholar
  40. 1a.
    See Rinia, du Pré, de Brey and van Weenen: Philips Techn. Rev. 9, 97, 125 (1947).Google Scholar
  41. 1.
    J. W. H. Köhler and C. O. Jonkers: Philips Techn. Rev. 16, 69 (1954).Google Scholar
  42. 1.
    J. Perkins: English Patent No. 6662, 1834. See also “Mechanical production of cold” by J. A. Ewing. Cambridge Univ. Press 1908.Google Scholar
  43. 2.
    See, for example, R. Plank: Handbuch der Kältetechnik, vol I. Berlin: Springer 1954.Google Scholar
  44. 3.
    See, for example, K. v. Linde: English Patent No. 1458 (1876) and see alsoGoogle Scholar
  45. 3a.
    R. Plank: Handbuch der Kältetechnik, vol. I. Berlin: Springer 1954.Google Scholar
  46. 4.
    R. Pictet: C. R. Acad. Sci. Paris 85, 1214, 1220 (1877) and see alsoGoogle Scholar
  47. 4a.
    R. Plank: Handbuch der Kältetechnik, vol. I. Berlin: Springer 1954.Google Scholar
  48. 1.
    R. Mollier: Z. ges. Kälteind. 3 (1896), which paper gives the T-S diagram for CO2.Google Scholar
  49. 1.
    The pioneer thermodynamic analysis was carried out by K. v. Linde (Z. ges. Kälteind. 28. Jan. 1895 and Z. VDI 2. Febr. 1895) and may be studied in detail in many textbooks on Refrigeration Engineering as for example: J. A. Ewing: „The Mechanical Production of Cold“, Cambridge Univ. Press 1908;Google Scholar
  50. 1a.
    M. Davies: “The Physical Principles of Gas Liquefaction and Low Temperature Rectification”, Longmans, Green & Co. 1949;Google Scholar
  51. 1b.
    R. G. Owens and F. Ophuls: ASRE Refrigerating Data Book, 7th Ed. 1951, Part I, p. 3 and p. 11.Google Scholar
  52. 1.
    ASRE Refrigerating Data Book, 7th Ed., Part II, p. 105 and ff. 1951.Google Scholar
  53. 2.
    Publications of Kinetic Chemicals Inc. Wilmington Delaware. (Colored Charts may be obtained from this company.)Google Scholar
  54. 3.
    R. and H. Chemicals Dept. E. I. du Pont de Nemours Co. Wilmington. Delaware. (Charts may be obtained from this company.)Google Scholar
  55. 4.
    ASRE Circular No. 12. Publ. Amer. Soc. Refrig. Engng. 40 W. 40 St. New York, N. Y.Google Scholar
  56. 5.
    D. F. Rynning and C. O. Hurd: Trans. Amer. Inst. Chem. Engr. 41, 465 (1945).Google Scholar
  57. 6.
    Nat. Bur. Stand., Circular 1923, No. 142.Google Scholar
  58. 7.
    W. H. Keesom and D. J. Houthoff: Leiden Comm. Suppl. 65a, b (1928).Google Scholar
  59. 8.
    Dana, Jenkins, Burdick and Timm: Refrig. Engng. 12, 403 (1926).Google Scholar
  60. 9.
    R. York and E. F. White: Trans. Amer. Inst. Chem. Engr. 40, 227 (1944).Google Scholar
  61. 10.
    R. W. Waterfill: Industr. Engng. Chem. 24, 616 (1932).Google Scholar
  62. 11.
    H. J. MacIntire and F. W. Hutchinson: Refrigerating Engineering. New York: J. Wiley & Sons 1950.Google Scholar
  63. 12.
    W. H. Keesom, A. Bijl and L. A. J. Monte: Leiden Comm. Suppl. 108b (1954) and Appl. Sci. Res. 4, 25 (1954).Google Scholar
  64. 13.
    Barkelew, Valentine and Hurd: Trans. Amer. Inst. Chem. Engr. 43, 25 (1947).Google Scholar
  65. 14.
    C. S. Matthews and C. O. Hurd: Trans. Amer. Inst. Chem. Engr. 42, 55 (1946).Google Scholar
  66. 15.
    Such diagrams were first introduced by R. Mollier: Z. VDI 48, 271 (1904). Diagrams of p - H, which are also of value in determining the characteristics of refrigerators, etc., and which were also introduced by Mollier, are referred to also as Mollier diagrams.Google Scholar
  67. 1.
    R. Mollier: Z. VDI 48, 271 (1904). For references to such diagrams for common refrigerating substances see Table 3.Google Scholar
  68. 1.
    F. Ophuls: ASRE Refrigerating Data Book, 7th Ed., Part. I, p. 11. 1951.Google Scholar
  69. 1.
    Some of this data is taken from L. S. Morse. 7th Int. Cong. Refrig. 3, 718 (1937).Google Scholar
  70. 2.
    Enthalpy measured from -40° C.Google Scholar
  71. 3.
    For ideal Carnot cycle operating between these temperatures, ξ max = 5.75. A value of ξ = 1 corresponds to an efficiency of 0.212 “tons” per h.p.Google Scholar
  72. 4.
    See E. Griffiths and J. H. Asbery: Proc. Brit. Assoc. Refrig. Mar. 1925 for references to early literature.Google Scholar
  73. 1.
    W. H. Keesom: Leiden Comm. Suppl. 76 a (1933).Google Scholar
  74. 2.
    R. Plank: Z. ges. Kälteind. 47, 81 (1940).Google Scholar
  75. 3.
    In refrigerating engineering the common unit of refrigerating capacity is the “ton”, derived from the average rate of heat absorption required to freeze 2000 lbs. (1 ton) of ice from water at the melting point every twenty four hours. The “ton” therefore is equivalent to 840 cals/sec. or 200 b.t.u./min. It is common also to express the coefficient of performance, in “tons” per horse-power. A value of ξ = 1 corresponds to 0.212 “tons”/h.p.Google Scholar
  76. 1.
    M. Davies: The physical principles of gas liquefaction and low temperature rectification. London: Longmans, Green & Co. 1949.Google Scholar
  77. 1.
    T. Midgley and A. L. Henne: Industr. Engng. Chem. 22, 542 (1930). See alsoGoogle Scholar
  78. 1a.
    R. J. Thompson: Industr. Engng. Chem. 24, 620 (1932) for further early description.Google Scholar
  79. 2.
    See for example T. Midgley: J. Industr. Engng. Chem., Feb. 1937, and publications of Kinetic Chemicals (E. I. duPont de Nemours and Company).Google Scholar
  80. 3.
    See also publications of R. and H. Chemical Dept. E. I. du Pont de Nemours and Company.Google Scholar
  81. 1.
    See for example N. R. Sparks: Theory of Mechanical Refrigeration. New York: McGraw Hill (1938) for a discussion of the relative efficiencies of multi-stage compression, single expansion, systems.Google Scholar
  82. 1.
    See for example H. E. Rex: Refrig. Engng. 58, 566 (1950).Google Scholar
  83. 2.
    W. H. Keesom: Leiden Comm. Suppl. 76a (1933).Google Scholar
  84. 1.
    H. Kamerlingh-Onnes: Leiden Comm. 14 (1894); 87 (1903). H. Kamerlingh-Onnes: Leiden Comm. Suppl. 35 (1913). See also C. A. Crommelin: Leiden Comm. Suppl. 45 (1922).Google Scholar
  85. 1.
    W. H. Keesom: Leiden Comm. Suppl. 76a (1933).Google Scholar
  86. 2.
    A. Huguenin: Festschrift zum 70. Geburtstag von Prof. A. Stodola, p. 272, Zürich 1929.Google Scholar
  87. 3.
    See also R. Plank: Handbuch der Kältetechnik, Vol. I. 1954.Google Scholar
  88. 4.
    R. Pictet: C. R. Acad. Sci. Paris 85, 1214, 1220 (1877).Google Scholar
  89. 5.
    R. Pictet: C. R. Acad. Sci. Paris 85, 1214, 1220 (1877).Google Scholar
  90. 6.
    K. Olszewski: Ann. Phys. u. Chem. 31, 58 (1887). See also Phil. Mag. 39, 188 (1895).ADSGoogle Scholar
  91. 7.
    J. Dewar: Proc. Roy. Inst., June 1886. — Phil. Mag. 39, 298 (1895).Google Scholar
  92. 8.
    H. Kamerlingh-Onnes: Leiden Comm. 14 (1894); 87 (1903). — Leiden Comm. Suppl. 35 (1913). See also C. A. Crommelin: Leiden Comm. Suppl. 45 (1922).Google Scholar
  93. 9.
    W. H. Keeson: Leiden Comm. Suppl. 76a (1933). + Bath of CO2 “snow” and ether was employed. * An attempt to liquefy the 02 by expansion at a valve after cooling to about 143° K was made. Only a “mist” emerged.Google Scholar
  94. 1.
    K. Olszewski: Ann. Phys. u. Chem. 31, 58 (1887). See also Phil. Mag. 39, 188 (1895) for a review of their work.ADSGoogle Scholar
  95. 2.
    J. Dewar: Proc. Roy. Inst., June 1886. — Phil. Mag. 39, 298 (1895).Google Scholar
  96. 3.
    H. Kamerlingh-Onnes: Leiden Comm. 14 (1894); 87 (1903). — Leiden Comm. Suppl. 35 (1913). See also C. A. Crommelin: Leiden Comm. Suppl. 45 (1922).Google Scholar
  97. 4.
    J. P. Joule and W. Thomson: Phil. Mag. 4, 481 (1852). (William Thomson assumed the name of Lord Kelvin in 1892.)Google Scholar
  98. 5.
    J. P. Joule: Sci. Pap. 2, 216.Google Scholar
  99. 1.
    See for example J. K. Roberts and A. R. Miller: Heat and Thermodynamics, p. 105. London: Blackie & Son 1951.Google Scholar
  100. 2.
    Some representative experimental work has been done by the following authors. K. Olszewski: Ann. Phys. 7, 818 (1902) on H2.Google Scholar
  101. 2a.
    F. E. Rester: Phys. Rev. 21, 260 (1905) on CO2.ADSGoogle Scholar
  102. 2b.
    K. Olszewski: Phil. Mag. 13, 722 (1907) on air and N2.Google Scholar
  103. 2c.
    W. P. Bradley and C. F. Hale: Phys. Rev. 29, 258 (1909) on air.ADSGoogle Scholar
  104. 2d.
    J. Dalton: Leiden Comm. 109c (1909) on air.Google Scholar
  105. 2e.
    F. Noell: Forsch. Ing.-Wes. 184 (1916) on air.Google Scholar
  106. 2f.
    L. C. Hoxton: Phys. Rev. 13, 438 (1919) on air.ADSGoogle Scholar
  107. 2g.
    E. S. Burnett: Phys. Rev. 22, 590 (1923) on CO2.ADSGoogle Scholar
  108. 2h.
    J. R. Roebuck: Proc. Amer. Acad. Arts Sci 60, 537 (1925) on air.Google Scholar
  109. 2i.
    N. Eumorfopoulos and J. Rai: Phil. Mag. 2, 961 (1926) on air.Google Scholar
  110. 2j.
    H. Hausen: Forsch. Ing.-Wes. 274 (1926) on air.Google Scholar
  111. 2k.
    J. R. Roebuck: Proc. Amer. Acad. Arts Sci. 64, 287 (1930) on air.Google Scholar
  112. 2l.
    J. R. Roebuck and H. Osterberg: Phys. Rev. 43, 60 (1933) on He.ADSGoogle Scholar
  113. 2m.
    J. R. Roebuck and H. Osterberg: Phys. Rev. 46, 785 (1934) on A.ADSGoogle Scholar
  114. 2n.
    J. R. Roebuck and H. Osterberg: Phys. Rev. 48, 450 (1935) on N2.ADSGoogle Scholar
  115. 2o.
    J. L. Zelmanov: J. Phys. USSR. 3, 42 (1940) on He.Google Scholar
  116. 2p.
    Roebuck, Murrell and Miller: J. Amer. Chem. Soc. 64, 400 (1942) on CO2.Google Scholar
  117. 2q.
    Johnston, Bezman and Hood: J. Amer. Chem. Soc. 68, 2367 (1946) on H2.Google Scholar
  118. 2u.
    Johnston, Swansen and Wirth: J. Amer. Chem. Soc. 68, 2373 (1946) on D2.Google Scholar
  119. 2v.
    Charnley, Isles and Townley: Proc. Roy. Soc. Lond., Ser. A 218, 133 (1953) on N2, C2H4, CO2, N2O. — For a detailed review of the experimental work up to 1929 seeADSGoogle Scholar
  120. 2r.
    H. Lenz, Handbuch der Experimentalphysik, vol. 9/1, p. 47, 1929 andMathSciNetGoogle Scholar
  121. 2s.
    A. Eucken, Handbuch der Experimentalphysik, vol. 8/1, p. 511, 1929.Google Scholar
  122. 1.
    H. Hausen: Forsch. Ing.-Wes. 274, 1 (1926).Google Scholar
  123. 2.
    J. R. Roebuck and H. Osterberg: Phys. Rev. 48, 450 (1935).ADSGoogle Scholar
  124. 3.
    J. R. Roebuck: Proc. Amer. Acad. Arts Sci. 64, 287 (1930).Google Scholar
  125. * Calculated. See E. F. Hammel: J. Chem. Phys. 18, 228 (1950).ADSGoogle Scholar
  126. 1.
    Owing to the paucity of adequate data this value is not too accurate. See W. H. Keesom: Helium. Amsterdam: Elsevier 1942.Google Scholar
  127. * Meissner [Z. Physik 18, 12 (1923)] used the following values: p c = 12.80 atm., T c = 33 18°K, r = 3.276, obtained by Kamerlingh-Onnes, Crommelin and Cath [Leiden Comm. 151c (1917)]. Woolley, Scott and Brickwedde [J. Res. Nat. Bur. Stand. 41, 379 (1948)] give the following values: p c = 12.98 atm.; T c = 33.19° K, and r = 3.13.Google Scholar
  128. ** These data come from Zelmanov’s work [J. Phys. USSR. 3, 43 (1940)].Google Scholar
  129. 1.
    M. Jacob: Phys. Z. 22, 65 (1921).Google Scholar
  130. 1.
    J. R. Roebuck and H. Osterberg: Phys. Rev. 46, 785 (1934).ADSGoogle Scholar
  131. 2.
    J. de Boer et al.: Physica, Haag 14, 139, 149, 520 (1948).ADSGoogle Scholar
  132. 3.
    Woolley, Scott and Brickwedde: J. Res. Nat. Bur. Stand. 41, 379 (1948).Google Scholar
  133. 4.
    J. L. Zelmanov: J. Phys. USSR. 3, 43 (1940). This work superceeds the earlier work of Keesom and Houthoff: Leiden Comm. Suppl. 65f (1928).Google Scholar
  134. 1.
    See J. K. Roberts and A. R. Miller: Heat and Thermodynamics, p. 105. London: Blackie & Son 1951.Google Scholar
  135. 2.
    For a van der Waals gas, the inversion temperature, T i, defined as that where α h = 0 for p → 0, is such that T i = 2T Boyle.Google Scholar
  136. 3.
    H. Hausen: Z. techn. Phys. 7, 444 (1926).Google Scholar
  137. 1.
    T - S and H - S diagrams for air due to Hausen: Forsch. Ing.-Wes. 274, 1 (1926).Google Scholar
  138. 1a.
    T - S diagram for H2 due to Woolley, Scott and Brickwedde: J. Res. Nat. Bur. Stand. 41, 379 (1948).Google Scholar
  139. 1b.
    T - S diagram for He due to Zelmanov: J. Phys. USSR. 8, 129 (1944). — For thermodynamic properties of O2 and N2 see for example U.S. Bur. Mines Paper 424, 1928.Google Scholar
  140. 1.
    See curves of Figs. 39, 40 and 41.Google Scholar
  141. 2.
    For tabulations of enthalpy see for example: for air Hausen [Forsch. Ing.-Wes. 274 (1926)]. For H2 see Woolley et al [J. Res. Nat. Bur. Stand. 41, 379 (1948)]). For He see S. W. Akin [Trans. Amer. Soc. Mech. Engrs. 72, 751 (1950)]. See also Table 10.Google Scholar
  142. 3.
    K. v. Linde: German patent 88 824 and Z. ges. Kälteind. 4, 23 (1897)- See also The Engineer. Nov. 13. and 20. 1896.Google Scholar
  143. 4.
    Hampson: May 1895. English Patent, 10165.Google Scholar
  144. 5.
    W. Siemens: English Patent, No. 2064. 1857. See also Min. Proc. Inst. Civ. Engrs. 68, 179 (1882).Google Scholar
  145. 1.
    If the compressed air is treated as a perfect gas, then for isothermal compression (math).Google Scholar
  146. 1.
    W. Meissner: Z. Physik 18, 12 (1923).ADSGoogle Scholar
  147. 2.
    Woolley, Scott and Brickwedde: J. Res. Nat. Bur. Stand. 41, 379 (1948).Google Scholar
  148. 3.
    Zelmanov: J. Phys. USSR. 3, 43 (1940).Google Scholar
  149. 3a.
    Johnston, Bezman and Hood: J. Amer. Chem. Soc. 68, 2367 (1946).Google Scholar
  150. 1.
    R. Linde: Z. VDI 65, 1357 (1921).Google Scholar
  151. 1.
    Data taken from R. Linde: Z. VDI 65, 1357 (1921).Google Scholar
  152. 1a.
    H. Lenz: Handbuch der Experimentalyphisk, vol. 9/1, p. 127. 1929; see alsoGoogle Scholar
  153. 1b.
    M. Davies: Gas Liquefaction and Rectification. London: Longmans 1949.Google Scholar
  154. 1c.
    M. Ruhemann: Gas Separation. Oxford Press 1940.Google Scholar
  155. 1.
    Johnston, Bezman and Hood: J. Amer. Chem. Soc. 68, 2367 (1946).Google Scholar
  156. 2.
    Keyes, Gerry and Hicks: J. Amer. Chem. Soc. 59, 1426 (1937).Google Scholar
  157. 3.
    Keesom and Houthoff: Leiden Comm. 65 (1928).Google Scholar
  158. 1.
    For very complete details of the exact sizes of tubing, dimensions of the apparatus see, for example, K. Olszewski: Ann. Phys. 10, 768 (1903).Google Scholar
  159. 1.
    See for example I. Roberts: Refrig. Engng. 60, 950 (1952).Google Scholar
  160. 2.
    See for example ref. 1 above; A. M. Clark: Bull. Inst. Internat. Froid. Annexe 1954, p. 2, 39. R. Schlatterer: Bull. Inst. Internat. Froid. Annexe 1954, p. 2, 21.Google Scholar
  161. 2a.
    B. H. van Dyke: Steel 123, 103 (1948). —Google Scholar
  162. 2b.
    B. H. van Dyke: Chem. Eng. News. 54, 126 (1947).Google Scholar
  163. 3.
    For example, the so-called Linde-Frankl system as reported by Hochgesand, Mitt. Forsch. Anst. GHH Konzern. 4, Part 1 (1935), and by J. Wucherer, Iron Coal Tr. Rev. 159, 723 (1949).Google Scholar
  164. 4.
    J. Dewar: J. Chem. Soc. 73, 529 (1898).Google Scholar
  165. 4a.
    J. Dewar: C. R. Acad. Sci. Paris 126, 1408 (1898). —Google Scholar
  166. 4b.
    J. Dewar: Proc. Roy. Soc. Lond. 63, 256 (1898).Google Scholar
  167. 5.
    F. G. Brickwedde: Ohio State Univ. Eng. Exp. Station, News 18, No. 3, 30 (1946).Google Scholar
  168. 6.
    M W. Travers: Phil. Mag. 1, 411 (1901), see also „Experimental Study of Gases“, p. 198, New York: MacMillan & Co. 1901, and Encyclopedia Britannica 14, 184 also by Travers.Google Scholar
  169. 1.
    For description of others see for example K. Olszewski: Ann. Phys. 10, 773 (1903). — Bull. int. Acad. Cracovie 1908, 389; 1912.Google Scholar
  170. 1.
    See also Lilienfeld: Z. kompr. flüss. Gase 13, 186 (1911).Google Scholar
  171. 2.
    H. Kamerlingh-Onnes: Leiden Comm. 94 (1906).Google Scholar
  172. 3.
    H. Kamerlingh-Onnes (Posthumous publication): Leiden Comm. 158 (1926). — C. A. Crommelin: Leiden Comm. Suppl. 45 (1922).Google Scholar
  173. 4.
    J. C. McLennan: Roy. Soc. Can. Trans. 15, 31 (1931).Google Scholar
  174. 4a.
    J. C. McLennan and G. M. Shrum: Roy. Soc. Can. Trans. 16, 181 (1922).Google Scholar
  175. 5.
    W. Meissner: Phys. Z. 29, 610 (1928).MathSciNetGoogle Scholar
  176. 6.
    Jones, Larsen and Simon: Research 1, 420 (1948).Google Scholar
  177. 7.
    K. Clusius: Z. Naturforsch. 8, 479 (1953).ADSGoogle Scholar
  178. 8.
    R. Spoendlin: J. Res. CNRS. 28, 1 (1954).Google Scholar
  179. 9.
    R. Spoendlin: J. Res. CNRS. 3, 309 (1951).Google Scholar
  180. 1.
    De Modernisering van het Kamerlingh Onnes Laboratorium te Leiden. 1953.Google Scholar
  181. 2.
    Private communication from Prof. K. W. Taconis.Google Scholar
  182. † The liquefaction coefficient, e, given in this table may in some instances refer to the rate of provision of liquid H2 outside the liquéfier. For such situations the transfer loss must be known, before comparison of ε with theory can be made.Google Scholar
  183. * Vapor pressure of 2 mm for precooling bath stated only.Google Scholar
  184. ** Compressor displacement only quoted.Google Scholar
  185. 1.
    Travers: Phil. Mag. 1, 411 (1901).Google Scholar
  186. 2.
    K-Onnes: Leiden Comm. 94 f (1906).Google Scholar
  187. 3.
    Olzewski: Krakauer Anz. 1912.Google Scholar
  188. 4.
    K-Onnes: Leiden Comm. 158 (1926); Suppl. 45 (1922).Google Scholar
  189. 5.
    Meissner: Phys. Z. 29, 610 (1928).MathSciNetGoogle Scholar
  190. 6.
    Blanchard and Bittner: Rev. Sci. Instrum. 13, 394 (1942).ADSGoogle Scholar
  191. 7.
    Jones, Larsen and Simon: Research 1, 420 (1948).Google Scholar
  192. 8.
    Clusius: Z. Naturforsch. 8, 479 (1953).ADSGoogle Scholar
  193. 9.
    Spoendlin: J. Res. CNRS. 28, 1 (1954).Google Scholar
  194. 10.
    Gorter: De Modernisering van het Kamerlingh-Onnes Laboratorium te Leiden. 1953.Google Scholar
  195. 11.
    E. R. Blanchard and H. W. Bittner: Rev. Sci. Instrum. 13, 394 (1942).ADSGoogle Scholar
  196. 1.
    W. Meissner: Phys. Z. 29, 610 (1928).MathSciNetGoogle Scholar
  197. 2.
    Jones, Larsen and Simon: Research 1, 420 (1948).Google Scholar
  198. 3.
    C. B. Hood and E. R. Grilly: Rev. Sci. Instrum. 23, 357 (1952).ADSGoogle Scholar
  199. 4.
    H. Kamerlingh-Onnes: Leiden Comm. 94 f. (1906).Google Scholar
  200. 5.
    P. Kapitza and J. D. Cockroft: Nature, Lond. 129, 224 (1932).ADSGoogle Scholar
  201. 1.
    E. R. Blanchard and H. W. Bittner: Rev. Sci. Instrum. 13, 394 (1942).ADSGoogle Scholar
  202. 2.
    H. M. Huffman: Chem. Rev. 40, 1 (1947).Google Scholar
  203. 3.
    K. Clusius: Z. ges. Kälteind. 39, 94 (1932).Google Scholar
  204. 4.
    C. B. Hood and E. R. Grilly: Rev. Sci. Instrum. 23, 357 (1952).ADSGoogle Scholar
  205. 1.
    E. Cremer and M. Polanyi: Z. phys. Chem., Abt. B 21, 459 (1933).Google Scholar
  206. 2.
    Scott, Brickwedde, Urey and Wahl: J. Chem. Phys. 2, 454 (1934).ADSGoogle Scholar
  207. 3.
    Larsen, Simon and Swenson: Rev. Sci. Instrum. 19, 266 (1948).ADSGoogle Scholar
  208. 4.
    E. R. Grilly: Rev. Sci. Instrum. 24, 1 (1953).ADSGoogle Scholar
  209. 5.
    Jones, Larsen and Simon: Research 1, 420 (1948).Google Scholar
  210. 6.
    E. R. Grilly: Rev. Sci. Instrum. 24, 1 (1953).ADSGoogle Scholar
  211. 7.
    W. Nernst: Z. Elektrochem. 17, 735 (1911)- SeeGoogle Scholar
  212. 7a.
    J. E. Lilienfeld: Z. kompr. fliiss. Gase 13, 165 (1911).Google Scholar
  213. 8.
    W. M. Latimer: J. Amer. Chem. Soc. 44, 90 (1922).Google Scholar
  214. 9.
    Latimer, Buffington and Hoenshel: J. Amer. Chem. Soc. 47, 1571 (1925).Google Scholar
  215. 10.
    M. Ruhemann: Z. Physik 65, 67 (1930).ADSGoogle Scholar
  216. 11.
    Keyes, Gerry and Hicks: J. Amer. Chem. Soc. 59, 1426 (1937).Google Scholar
  217. 12.
    Ahlberg, Estermann and Lundberg: Rev. Sci. Instrum. 8, 422 (1937).ADSGoogle Scholar
  218. 13.
    H. A. Fairbanks: Rev. Sci. Instrum. 17, 473 (1946).ADSGoogle Scholar
  219. 14.
    De Sorbo, Milton and Andrews: Chem. Rev. 39, 403 (1946).Google Scholar
  220. 1.
    F. R. Bichowsky: J. Ind. Chem. Soc. 14, 62 (1922).Google Scholar
  221. 1.
    B. V. Rollin: Proc. Phys. Soc. Lond. 48, 18 (1936).ADSGoogle Scholar
  222. 2.
    K. Seiler: Ann. Phys. 39, 129 (1941).Google Scholar
  223. 3.
    A. Schallamach: J. Sci. Instrum. 20, 195 (1943).ADSGoogle Scholar
  224. 4.
    J. Ashmead: Proc. Phys. Soc. Lond. 63, 504 (1950).ADSGoogle Scholar
  225. 5.
    R. Spoendlin: J. Res. CNRS. 28, 1 (1954).Google Scholar
  226. 1.
    G. Claude: Air liquide, Oxygène, Azote, Gaz rares. Paris 1926.Google Scholar
  227. 1.
    G. Claude: C. R. Acad. Sci. Paris 134, 1568 (1902).Google Scholar
  228. 2.
    G. Claude: Liquid air, Nitrogen and Oxygen. Paris 1926.Google Scholar
  229. 3.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947). See also Collins, Nason and Cannady: Refrig. Engng. 59, No. 12 (1951).ADSGoogle Scholar
  230. 1.
    B. C. P. Hochgesand: Mitt. Forsch. Anst. GHH Konzern 4, Part I (1935).Google Scholar
  231. 2.
    P. L. Kapitza: J. Phys. USSR. 1, 7 (1939).Google Scholar
  232. 1.
    M. Davies: The Physical Principles of Gas Liquefaction and Low Temperature Rectification. London: Longmans, Green & Co. 1949.Google Scholar
  233. 1.
    H. Lenz: Handbuch der Experimentalphysik, Bd. 9/1, p. 135. 1929.MathSciNetGoogle Scholar
  234. 2.
    M. Davies: Physical Principles of gas liquefaction and low temperature rectification. London: Longmans, Green & Co. 1949.Google Scholar
  235. 1.
    M. Davies: The Physical Principles of Gas Liquefaction and Low Temperature Rectification. London: Longmans Green & Co. 1949.Google Scholar
  236. 2.
    P. L. Kapitza: J. Phys. USSR. 1, 7 (1939). This was a small machine. For similar machines on a larger scale the power required can be made to approach 1.1 kW-hr/liter liquid.Google Scholar
  237. 3.
    R. Linde: Z. ges. Kälteind. 41, 183 (1934).Google Scholar
  238. 4.
    B. C. P. Hochgesand: Mitt. Forsch. Anst. GHH. Konzern 4, Part I (1935). See also: J. Wucherer: Iron and Coal Trades Rev. 159, 723 (1949).Google Scholar
  239. 5.
    P. L. Kapitza: J. Phys. USSR. 1, 7 (1939)Google Scholar
  240. 1.
    J. J. Coleman: Min. Proc. Inst. Civ. Engrs. 68 (1882).Google Scholar
  241. 2.
    E. Solvay: C. R. Acad. Sci. Paris 121, 1141 (1895).Google Scholar
  242. 1.
    G. Claude: C. R. Acad. Sci. Paris 134, 1568 (1902). See also G. Claude: Liquid Air, Oxygen and Nitrogen. Paris 1926.Google Scholar
  243. 1.
    This is called by Kapitza [J. Phys. USSR. 1, 7 (1939)] the “technical efficiency”.Google Scholar
  244. 2.
    Rayleigh: Nature, Lond. 58, 199 (1898).ADSGoogle Scholar
  245. 3.
    Thrupp: English Patent 26767, 1898.Google Scholar
  246. 1.
    R. Linde: Z. ges. Kälteind. 41, 183 (1934). See alsoGoogle Scholar
  247. 1a.
    M. Ruhemann: Separation of Gases. Oxford Univ. Press 1940.Google Scholar
  248. 2.
    B. C. P. Hochgesand: Mitt. Forsch. Anst. GHH. Konzern 4, Part I (1935).Google Scholar
  249. 3.
    J. S. Swearingen: Trans. Amer. Inst. Chem. Engr. 43, 85 (1947).Google Scholar
  250. 4.
    P. Kapitza: J. Phys. USSR. 1, 7, 29 (1939). See alsoGoogle Scholar
  251. 4a.
    M. M. Levitin and O. A. Stetzkayov: Avtogennoe. Delo 12, Nr. 5, 25 (1941).Google Scholar
  252. 1.
    H. Hausen [Z. ges. Kälteind. 48, 24 (1941)] has reinterpreted Kapitza’s data to give an adiabatic efficiency of from 76.5 to 78.5%.Google Scholar
  253. 2.
    J. S. Swearingen: Trans. Amer. Inst. Chem. Engr. 43, 85 (1947).Google Scholar
  254. 1.
    J. H. Rushton and E. P. Stevenson: Trans. Amer. Inst. Chem. Engr. 43, 61 (1947).Google Scholar
  255. 2.
    H. Kottas: Refrig. Engng. 59, 762 (1951).Google Scholar
  256. 3.
    Bleyle, Hinckley and Jewett: See A. D. Little Inc. reprint.Google Scholar
  257. 4.
    J. Wucherer: Bull. Inst. Internat. Froid. Annexe 1954, p. 2, 69.Google Scholar
  258. 5.
    A. Bose: Indian J. Phys. 23, 433 (1949).Google Scholar
  259. 6.
    P. Kapitza: Nature Lond. 133, 208 (1934). —Google Scholar
  260. 6a.
    P. Kapitza: Proc. Roy. Soc. Lond., Ser. A 147, 189 (1934).ADSGoogle Scholar
  261. 1.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947).ADSGoogle Scholar
  262. 2.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947).ADSGoogle Scholar
  263. 2a.
    Collins, Nason and Cannaday: Refrig. Engng. 59, No. 12 (1951). Also private communication from Professor S. C. Collins.Google Scholar
  264. 1.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947).ADSGoogle Scholar
  265. 2.
    Collins, Nason and Cannaday: Refrig. Engn. 59, No. 12. Also Private Communication from Professor S. C. Collins.Google Scholar
  266. 1.
    On reversal, the air instaneously in any one channel must be reversed in flow direction. If the quantity of air thus reversed in flow is large compared with the total flow, serious inefficiency is introduced.Google Scholar
  267. 1.
    W. E. Lobo: Chem. Ind. 59, 53 (1946).Google Scholar
  268. 2.
    A. D. Little Inc. Hydrogen liquéfier specifications. 1953.Google Scholar
  269. 1.
    P. L. Kapitza: Nature, Lond. 133, 208 (1934). —Google Scholar
  270. 1a.
    P. L. Kapitza: Proc. Roy. Soc. Lond., Ser. A 147, 189 (1934).ADSGoogle Scholar
  271. 2.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947). —ADSGoogle Scholar
  272. 2a.
    S. C. Collins: Science, Lancaster, Pa. 116, 289 (1952).ADSGoogle Scholar
  273. 3.
    W. Meissner: Phys. Z. 43, 261 (1952).Google Scholar
  274. 4.
    C. T. Lane: Rev. Sci. Instrum. 12, 326 (1941).ADSGoogle Scholar
  275. 5.
    Nicol, Smith, Heer and Daunt: Rev. Sci. Instrum. 24, 16 (1953).ADSGoogle Scholar
  276. 6.
    S. C. Collins: Science, Lancaster. Pa. 116, 298 (1952).ADSGoogle Scholar
  277. 7.
    H. M. Long and F. E. Simon: Nature, Lond. 172, 581 (1953).ADSGoogle Scholar
  278. 7a.
    H. M. Long and F. E. Simon: Appl. Sci. Res. A 4, 237 (1954).Google Scholar
  279. 7b.
    H. M. Long and F. E. Simon: Z. Kältetechn. 6, 150 (1954).Google Scholar
  280. 1.
    L. Cailletet: C. R. Acad. Sci. Paris 85, 1213 (1877).Google Scholar
  281. 2.
    K. Olszewski: Ann. Phys. u. Chem. 31, 58 (1887). —ADSGoogle Scholar
  282. 2a.
    K. Olszewski: Wiener Ber. 95, 1 (1887). See alsoGoogle Scholar
  283. 2b.
    K. Olszewski: Phil. Mag. 39, 188 (1895).Google Scholar
  284. 3.
    F. Simon: Z. ges. Kälteind. 39, 89 (1932).Google Scholar
  285. 3a.
    F. Simon: Also Phys. Z. 34, 232 (1932).Google Scholar
  286. 3b.
    F. Simon and J. E. Ahlberg: Z. Physik 81, 816 (1933).ADSGoogle Scholar
  287. 4.
    See article on “Helium Liquefaction” below by S. C. Collins for fuller details.Google Scholar
  288. 5.
    Simon, Cooke and Pearson: Proc. Phys. Soc. 47, 678 (1935).ADSGoogle Scholar
  289. 6.
    G. L. Pickard and F. E. Simon: Proc. Phys. Soc. 60, 405 (1948).ADSGoogle Scholar
  290. 1.
    Simon, Cooke and Pearson: Proc. Phys. Soc. 47, 678 (1935).ADSGoogle Scholar
  291. 1.
    G. L. Pickard and F. E. Simon: Proc. Phys. Soc. 60, 405 (1948).ADSGoogle Scholar
  292. 2.
    F. Simon and J. E. Ahlberg: Z. Physik 81, 816 (1933).ADSGoogle Scholar
  293. 3.
    Simon, Cooke and Pearson: Proc. Phys. Soc. 47, 678 (1935).ADSGoogle Scholar
  294. 4.
    J. W. L. Köhler and C. O. Jonkers: Philips techn. Rev. 16, 69, 105 (1954).Google Scholar
  295. 5.
    H. Kamerlingh-Onnes: Leiden Comm. 14 (1894); 87 (1903); Leiden Comm. Suppl. 35 (1913).Google Scholar
  296. 6.
    K. v. Linde: Z. ges. Kälteind. 4, 23 (1897).Google Scholar
  297. 7.
    Hampson: English Patent 10165. 1895.Google Scholar
  298. 8.
    W. Siemens: English Patent 2064. 1857.Google Scholar
  299. 9.
    G. Claude: Liquid air, oxygen and nitrogen. Paris 1913.Google Scholar
  300. 10.
    M. Fränkl: German Patent. 490878. 1928.Google Scholar
  301. 1.
    S. C. Collins: Chem. Eng. 53, 106 (1946).Google Scholar
  302. 2.
    K. von Linde: Z. ges. Kälteind. 4, 23 (1897).Google Scholar
  303. 1.
    See for example. S. C. Collins and F. G. Keyes: J. Phys. Chem. 43, 5 (1939).Google Scholar
  304. 2.
    Hampson: English Patent 10165. 1895.Google Scholar
  305. 3.
    J. W. Cook: Bur. Stand. Sci. Papers. 17, No. 419 (1921).Google Scholar
  306. 1.
    R. Spoendlin: J. Res. CNRS. 15, 1 (1951).Google Scholar
  307. 2.
    See, for example, the design of W. F. Giauque used by J. G. Daunt and H. L. Johnston. [Rev. Sci. Instrum. 20, 122 (1949).]ADSGoogle Scholar
  308. 3.
    In this section and in Sect. 46 some basic information on heat transfer between fluids and solids is given. For more detail the reader is referred to the many texts on this subject, including for example W. H. McAdams: Heat Transfer. New York: John Wiley & Sons. 1942. —Google Scholar
  309. 3a.
    R. C. L. Bosworth: Heat transfer Phenomena. New York: John Wiley & Sons 1952. —zbMATHGoogle Scholar
  310. 3b.
    M. Jacob and G. A. Hawkines: Elements of Heat Transfer and Insulation. New York: John Wiley & Sons 1950. — Also reference is recommended to the very complete monograph byGoogle Scholar
  311. 3c.
    H. Hausen: Wärmeübertragung in Gegenstrom, Gleichstrom und Kreuzstrom. Berlin: Springer 1950.Google Scholar
  312. 1.
    For further discussion of the term “effective” see Sect. 45.Google Scholar
  313. 1.
    W. H. Keesom: Helium, p. 86. Amsterdam: Elsevier 1942.Google Scholar
  314. 1.
    R. B. Jacobs and S. C. Collins: J. Appl. Phys. 11, 491 (1940).ADSGoogle Scholar
  315. 1.
    H. Hausen: Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Berlin: Springer 1950.Google Scholar
  316. 1.
    See general references given in Sect. 42 for further detail.Google Scholar
  317. 2.
    W. Nusselt: Z. VDI 53, 1750, 1809 (1909). —Google Scholar
  318. 2a.
    W. Nusselt: Phys. Z. 12, 285 (1911).Google Scholar
  319. 3.
    W. H. McAdams: Heat Transmission, p. 145. New York: McGraw Hill 1951.Google Scholar
  320. 4.
    See data given by J. A. van Lammeren (Technik der tiefen Temperaturen, p. 55. Berlin: Springer 1941) for air, H2 and He at various temperatures.Google Scholar
  321. 1.
    See T. A. Hall and P. H. Tsoa [Proc. Roy. Soc. Lond., Ser. A 191, 6 (1947)] for low temperature measurements. See alsoADSGoogle Scholar
  322. 1a.
    B. H. Schultz [Appl. Sci. Res. A 1, 287, 400 (1947/49)] for theoretical discussion of these factors in their application to heat interchangers.Google Scholar
  323. 2.
    C. Starr: Rev. Sci. Instrum. 12, 193 (1941).ADSGoogle Scholar
  324. 3.
    H. Blasius: Phys. Z. 12, 1175 (1911).zbMATHGoogle Scholar
  325. 1.
    C. Starr [Rev. Sci. Instrum. 12, 193 (1941)] gives this formula in consideration of hydrogen liquefier interchangers. His numerical constant, however, is incorrect by a factor of ten.ADSGoogle Scholar
  326. 2.
    R. v. Linde: Z. ges. Kälteind. 41, 161 (1934).Google Scholar
  327. 3.
    R. B. Jacobs and S. C. Collins: J. Appl. Phys. 11, 491 (1940).ADSGoogle Scholar
  328. 4.
    P. Kapitza: Proc. Roy. Soc. Lond., Ser. A 147, 189 (1934).ADSGoogle Scholar
  329. 1.
    F. R. Bichowski: J. Industr. Engng. Chem. 14, 62 (1922).Google Scholar
  330. 2.
    McMahon, Bowen and Bleyle, jr.: Trans. Amer. Soc. Mech. Engrs. 72, 623 (1950).Google Scholar
  331. 3.
    S. C. Collins: Rev. Sci. Instrum. 18, 157 (1947).ADSGoogle Scholar
  332. 1.
    Nicol, Smith, Heer and Daunt: Rev. Sci. Instrum. 24, 16 (1953).ADSGoogle Scholar
  333. 2.
    J. Ashmead: Proc. Phys. Soc. Lond. 63, 504 (1950).ADSGoogle Scholar
  334. 1.
    M. Fränkl: German Patents 490878 and 492431. 1928. US. Patents 1890646. 1932. -1970299. 1934.Google Scholar
  335. 2.
    See for example R. Linde: Z. ges. Kälteind. 41, 183 (1934). —Google Scholar
  336. 2a.
    B. C. P. Hochgesand: Mitt. Forsch. GHH. Konzern 4, 14 (1935). —Google Scholar
  337. 2a.
    J. Wucherer: Iron Coal Tr. Rev. 159, 723 (1949).Google Scholar
  338. 3.
    P. Borchard: Proc. VIII. Int. Congr. Refrig. London, p. 118 (1951).Google Scholar
  339. 1.
    See footnote to p. 84 for the effect of dead volume on the range of operational pressures.Google Scholar
  340. 2.
    H. Hausen: Z. ges. Kälteind. 39, 1 (1932).Google Scholar
  341. 3.
    G. Lund and B. F. Dodge: Industr. Engng. Chem. 40, 1019 (1948).Google Scholar
  342. 1.
    H. Glaser: Z. VDI 53, 925 (1939).Google Scholar
  343. 2.
    Time averages are denoted by a superscipt bar. Averages over configurational space are denoted by a subscript m.Google Scholar
  344. 1.
    H. Hausen: Z. ges. Kälteind. 39, 1 (1932).Google Scholar
  345. 1.
    H. Hausen: Z. ges. Kälteind. 39, 1 (1932).Google Scholar
  346. 2.
    Hausen: Wärmeübertragung in Gegenstrom, Gleichstrom und Kreuzstrom, pp. 262 to 452. Berlin: Springer 1950.Google Scholar
  347. 1.
    H. Hausen: Wärmeübertragung in Gegenstrom, Gleichstrom und Kreuzstrom. Berlin: Springer 1950.Google Scholar
  348. 2.
    B. H. Schultz: Appl. Sci. Res. 3, 173 (1952).Google Scholar
  349. 3.
    S. C. Collins: Chem. Engng. 53, 106 (1946).Google Scholar
  350. 4.
    P. R. Trumpler and B. F. Dodge: Chem. Engng. Progr. 43, 75 (1947).Google Scholar
  351. 1.
    For detailed discussion of this, which is outside the scope of this article, see W. E. Lobo and G. T. Skaperdas: Chem. Engng. Progr. 43, 69 (1947).Google Scholar
  352. 2.
    J. H. Rushton and E. P. Stevenson: Chem. Engng. Progr. 43, 61 (1947).Google Scholar
  353. 3.
    See reference 4 below.Google Scholar
  354. 4.
    W. E. Lobo and G. T. Skaperdas: Chem. Engng. Progr. 43, 69 (1947).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1956

Authors and Affiliations

  • J. G. Daunt

There are no affiliations available

Personalised recommendations