Permeation morphinartig wirksamer Substanzen an den Ort der antinociceptiven Wirkung im Gehirn in Abhängigkeit von ihrer Iipoidlöslichkeit nach intravenöser und nach intraventrikulärer Applikation

  • B. Cube
  • Hj. Teschemacher
  • A. Herz
  • R. Hess


Morphinartige Substanzen Permeation in das Gehirn Intraventrikuläre Applikation „Intrinsic activity” Lipoidlöslichkeit 


The antinociceptive action of morphine and of a series of similar substances following intravenous and intraventricular administration was investigated by means of the tooth-pulp-test in rabbits; the relative effectiveness of the substances after the two methods of administration was compared with their lipid-solubility.
  1. 1

    Morphine was about 900 times as effective when administered intraventricu-larly than when injected intravenously; this difference was even more pronounced in the case of normorphine and (quaternary) N-methylmorphine, but was slightly less for dihydromorphine and hydromorphone. In the case of levorphanol, pethidine, etorphine, fentanyl and other synthetic analgesics, the difference in effectiveness between the two methods of administration was incomparably smaller (in the range of 1:10).

  2. 2

    The quotient effectiveness intravenous administration/effectiveness intraventricular administration bore a close relation to the lipid solubility of the substances derived from the partition coefficient (Pc) heptane/water and dichlor-ethane/water at pH 7.4. A similar correlation between Rf-values from thin-layer Chromatographie and this quotient was found. Morphine and its derivatives showed very low lipid-solubility (Pc heptane/water < 0.00001); that of the synthetic analgesics was higher, reaching Pc-values above 10. Thus it is concluded that the permeation of morphine and its hydrophilic derivatives into the CNS is impeded, whereas no important hindrance exists for permeation of the more lipophilic compounds having Pc’s above 0.01.

  3. 3

    Determination of the concentration of labelled substances in the brain (14C-morphine, 3H-dihydromorphine, 3H-fentanyl and 3H-etorphine) at the time of a defined antinociceptive effect confirmed this interpretation. In the case of morphine and dihydromorphine, brain concentrations were only 1/20 of the plasma level, while fentanyl and etorphine reached brain concentrations which were up to 10 times that in the plasma. Furthermore, the studies of concentration in the brain showed the gradation of effectiveness of the substances after intraventricular administration to be approximately equal to the gradation of their “intrinsic activity”.

  4. 4

    There was a close correlation between the lipid solubility of the substances and the rate of onset of their effect following intraventicular administration. This relation was much less pronounced after intravenous injection.

  5. 5

    The results are discussed in view of differences in the kinetics of distribution of the substances after intravenous and intraventricular application.



Morphine-Like Substances Permeation into Brain Intraventricular Application “Intrinsic Activity” Lipid-Solubility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, T.K.: The comparative potencies of codeine and its demethylated metabolites after intraventricular injection in the mouse. J. Pharmacol. exp. Ther. 140, 155 (1963).PubMedGoogle Scholar
  2. Ariens, E.J.: Receptor theory and structure-action-relationships. Advanc. Drug Res. 3, 235–285 (1966).Google Scholar
  3. Beckett, A.H.: Analgesics and their antagonists: some steric and chemical considerations. J. Pharm. Pharmacol. 8, 848–859 (1956).PubMedCrossRefGoogle Scholar
  4. Blane, G.F., Dobbs, H.E.: Distribution of tritium labelled etorphine (M 99) and dihydromorphine in pregnant rats at term. Brit. J. Pharmacol. 30, 166–172 (1967).PubMedGoogle Scholar
  5. Boura, A.L.A., Fitzgerald, A.E.: The pharmacology of N-(-cyclopropyl-methyl)-19-isopentyl-norovinol hydrochloride. A potent and long lasting central depressant. Brit. J. Pharmacol. 26, 301–321 (1966).Google Scholar
  6. Braenden, O., Eddy, N., Halbach, H.: Synthetic substances with morphine-like effect. Relationship between chemical structure and analgesic action. Bull. Wld Hlth Org. 13, 923 (1955).Google Scholar
  7. Bray, G.A.: A simple liquid scintillator for counting aquous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960).CrossRefGoogle Scholar
  8. Casy, A.F., Wright, J.: Ionisation constants and partition coefficients of some analgesically active 2-benzylbenzimidazole derivatives and related components. J. Pharm. Pharmacol. 18, 677–683 (1966).PubMedCrossRefGoogle Scholar
  9. Cube, B. von: Vergleich der analgetischen Wirkung morphinartiger Substanzen bei intravenöser und bei intraventrikulärer Applikation in Hinblick auf ihre Lipoidlöslichkeit. Inaug. Diss., Med. Fak. München 1969.Google Scholar
  10. Diemer, K., Henn, R.: Kapillarvermehrung in der Hirnrinde der Ratte unter chronischem Sauerstoffmangel. Naturwissenschaften 6, 135–136 (1965).CrossRefGoogle Scholar
  11. Dobbing, J.: The blood-brain-barrier. Physiol. Rev. 41, 130 (1961).PubMedGoogle Scholar
  12. Feldberg, W., Sherwood, S.C.: Behaviour of rats after intraventricular injection of eserine and DFP. J. Physiol. (Lond.) 125, 488 (1954).Google Scholar
  13. Foster, R.S., Jenden, D.J., Lomax, P.: A comparison of the pharmacological effects of morphine and N-methylmorphine. J. Pharmacol. exp. Ther. 167, 185–195 (1967).Google Scholar
  14. Hayashi, T., Karahashi, Y., Takeuchi, S.: Seizure action of quaternary ammonium compounds applied into cerebrospinal fluid of dogs. Keio J. Med. 14, 13–18 (1965).PubMedCrossRefGoogle Scholar
  15. Herz, A., Albus, K., Metys, J., Schubert, P., Teschemacher, Hj.: On the central sites of the antinociceptive action of morphine-like substances. In Vorbereitung (1970).Google Scholar
  16. Albus, K., Metys, J., Schubert, P., Teschemacher, Hj. — Holzhäuser, H., Teschemacher, Hj.: Zentrale und periphere Wirkungen von Cholinomimetika und ihre Abhängigkeit von der Lipoidlöslichkeit. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 280–297 (1966).Google Scholar
  17. Albus, K., Metys, J., Schubert, P., Teschemacher, Hj. — Metyš, J., Schöndorf, N., Hoppe, S.: Über den Angriffspunkt der analgetischen Wirkung von Morphin. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 143 (1968).CrossRefGoogle Scholar
  18. Albus, K., Metys, J., Schubert, P., Teschemacher, Hj. — Teschemacher, Hj., Hofstetter, A., Kurz, H.: The importance of lipid solubility for the central action of cholinomimetic drugs. Int. J. Neuropharmacol. 4, 207 (1965).PubMedCrossRefGoogle Scholar
  19. Hess, R., Teschemacher, Hj., Herz, A.: Über die Permeation von Xanthinderivaten in Gehirn und Liquor in Abhängigkeit von Lipoidlöslichkeit, Gewebsbindung und Stoffwechsel. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 261, 469–485 (1968).CrossRefGoogle Scholar
  20. Hoffmeister, F.: Tierexperimentelle Untersuchungen über den Schmerz und seine pharmakologische Beeinflussung. Aulendorf: Edition Cant. 1968.Google Scholar
  21. Horlington, M., Lockett, M.: Antagonism between alkylated norcompounds of the morphine group injected intraventricularly to mice. J. Pharm. Pharmacol. 11, 415–420 (1959).PubMedCrossRefGoogle Scholar
  22. Hug, C.C.: Transport of narcotic analgesics by choreoid plexus and kidney in vitro. Biochem. Pharmacol. 16, 345–359 (1967).PubMedCrossRefGoogle Scholar
  23. Janssen, P.: Chemical structure and morphinomimetic activity. In: A. Soulairac, J. Cahn, and J. Charpentier, Eds. London: Academic Press 1968.Google Scholar
  24. Johannesson, T.: Morphine and codeine. The analgesic effect in tolerant and non-tolerant rats. Acta pharmacol. (Kbh.) 29, 3 (1967).Google Scholar
  25. Kupfferberg, H.J., Way, E.L.: Pharmacologic basis for the increased sensitivity of the newborn rat to morphine. J. Pharmacol. exp. Ther. 141, 105–112 (1963).Google Scholar
  26. Lockett, M., Davis, M.M.: The analgesic action of normorphine administered intracisternally to mice. J. Pharm. Pharmacol. 10, 80–85 (1958).PubMedCrossRefGoogle Scholar
  27. Mahin, D.T., Lofberg, R.T.: A simplified method of sample preparation for determination of tritium, carbon 14 and sulfur 35 in blood or tissue by liquid scintillation counting. Analyt. Biochem. 16, 500–509 (1966).CrossRefGoogle Scholar
  28. Mellet, L., Woods, L.: Analgesia and addiction. Drug Res. 5, 159–267 (1963).Google Scholar
  29. Portoghese, P.S.: A new concept on the mode of interaction of narcotic analgesics with receptors. J. Med. Chem. 8, 609–616 (1965).PubMedCrossRefGoogle Scholar
  30. Schubert, P., Teschemacher, Hj., Kreutzberg, G.H., Herz, A.: Autoradiographische Darstellung 14C-markierten Morphins nach intraventrikulärer und intracerebraler Injektion. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 221 (1968).CrossRefGoogle Scholar
  31. — Intracerebral distribution patterns of morphine and morphine-like substances after intraventricular and local injection. In Vorbereitung (1970).Google Scholar
  32. Scrafani, J.T., Hug, C.C.: Active uptake of dihydromorphine and other narcotic analgesics by cerebral cortical slices. Biochem. Pharmacol. 17, 1557–1566 (1968).PubMedCrossRefGoogle Scholar
  33. Takemori, A.E., Stenwick, M.W.: Studies on the uptake of morphine by choreoid plexus in vitro. J. Pharmacol. exp. Ther. 154, 586–594 (1966).PubMedGoogle Scholar
  34. Tanaka, K., Kadowaki, Y.: The inhibitory effect of local anaesthetics on the excitement elicited by intraventricularly injected morphine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 9–14 (1964).CrossRefGoogle Scholar
  35. Teschemacher, Hj.: Permeationsverhalten morphinartiger Substanzen nachintraventrikulärer und intracerebraler Injektion (In Vorbereitung).Google Scholar
  36. Way, E.L.: Brain uptake of morphine: Pharmacologie implications. Fed. Proc. 26, 1115–1118 (1967).PubMedGoogle Scholar
  37. — Adler, T.K.: The pharmacologic implications of the fate of morphine and its surrogates. Pharmacol. Rev. 12, 383–446 (1960).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • B. Cube
    • 1
  • Hj. Teschemacher
    • 1
  • A. Herz
    • 1
  • R. Hess
    • 1
  1. 1.Max-Planck-Institut für PsychiatrieMünchen 23Deutschland

Personalised recommendations