Über die gestörte Glucuronidsynthese in der Leber diabetischer Ratten

  • B. Müller-Oerlinghausen


Diabetes Glucuronide Insulin Leber Uridindiphosphat-Glucuronsäure 















The synthesis in vitro of o-aminophenol-glucuronide by liver tissue has been investigated in diabetic rats. Insulin deficiency was induced by withdrawal of insulin in alloxan treated, insulin substituted rats or by injection of anti-insulin-serum. The hepatic formation of o-aminophenol-glucuronide was strongly reduced under these conditions. This result could not be explained by differences in the activity of the UDP-glucuronyl-transferase. However, the concentration of UDP-glucuronic acid in liver tissue of the diabetic rats was also decreased to 50% of control values whereas the amount of UDPG was augmented. These findings are consistent with the observation that the activity of UDPG-dehydrogenase, the enzyme catalyzing the formation of UDP-glucuronic acid from UDPG, is reduced in the liver of diabetic or fasting rats. The activity of the UDPGA-pyrophosphatase which is responsible for inactivation of the nucleotide, has been found to be unchanged in the diabetic animals.


Diabetes Glucuronates Insulin Liver Uridine-Diphosphateglucuronic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnim, J., Grant, R.T., Wright, P.H.: Experimental diabetes in rats produced by parenteral administration of anti-insulinserum. J. Physiol. (Lond.) 153, 146 (1960).Google Scholar
  2. Dixon, R., Hart, L.G., Fouts, J.R.: The metabolism of drugs by liver microsomes from alloxan-diabetic rats. J. Pharmacol. exp. Ther. 133, 7 (1961).PubMedGoogle Scholar
  3. Dutton, G.J., Storey, I.D.E.: Uridine compounds in glucuronic acid metabolism. I. The formation of glucuronides in liver suspensions. Biochem. J. 57, 275 (1954).Google Scholar
  4. Folch, J., Lees, M., Sloanestanley, G.H.: A simple method for the isolation and purification of total lipides from animal tissues. J. biol. Chem. 226, 497 (1957).PubMedGoogle Scholar
  5. Goldberg, N.D.: The effects of nucleotide substrates containing 5-fluorouracil and 6-azauracil on certain kinetic parameters of UDPG-dehydrogenase and UDP-glucuronyl-transferase. Ph. D. Thesis, University of Wisconsin 1963.Google Scholar
  6. Gram, T.E., Hansen, A.R., Fouts, J.R.: The submicrosomal distribution of hepatic uridine diphosphate glucuronyltransferase in the rabbit. Biochem. J. 106, 587(1968).PubMedGoogle Scholar
  7. Handel, E. van: Suggested modifications of the micro determination of triglycerides. Clin. Chem. 7, 249 (1961).Google Scholar
  8. Hohorst, H.J., Stratman, D., Bartels, H.: Über die Wirkung von Insulin auf den Reduktionszustand des DPN-Systems und die Phosphorylierung der Adeninnukleotide in der Leber. Klin. Wschr. 42, 245 (1964).PubMedCrossRefGoogle Scholar
  9. Hornbrook, K.R., Burch, H.B., Lowry, O.H.: The effect of adrenalectomy and hydrocortisone on rat liver metabolites and glycogen synthetase activity. Molec. Pharmacol. 2, 106 (1966).Google Scholar
  10. Isselbacher, K.J.: Evidence for the multiplicity of glucuronyl transferases. In: Ikterus, ed. K. Beck. Stuttgart-New York: F.K. Schattauer 1968.Google Scholar
  11. — Chrabas, M.F., Quinn, R.C.: The solubilization and purification of a glucuronyl transferase from rabbit liver microsomes. J. biol. Chem. 237, 3033 (1962).PubMedGoogle Scholar
  12. Jagow, R., Kampfmeyer, H., Kiese, M.: The preparation of microsomes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 73 (1965).CrossRefGoogle Scholar
  13. Jahns, R.: Die Wirkung von Tolbutamid auf Blutglucose und Glucuronsäurekonjugation im Lebergewebe normaler, adrenalektomierter und mit Cortison behandelter Mäuse. Dissertation, Göttingen 1969.Google Scholar
  14. Künzel, B., Müller-Oerlinghausen, B.: Wirkung von Testosteron und einem Anti-Androgen (Cyproteronacetat) auf die Glucuronidbildung in der Rattenleber. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 262, 112 (1969).CrossRefGoogle Scholar
  15. Levvy, G.A., Storey, I.D.E.: The measurement of glucuronide synthesis by tissue preparations. Biochem. J. 44, 295 (1949).PubMedGoogle Scholar
  16. Lipschitz, W.L., Bueding, E.: Mechanism of the biological formation of conjugated glucuronic acids. J. biol. Chem. 129, 333 (1939).Google Scholar
  17. Miettinen, T.A., Leskinen, E.: Enzyme levels of glucuronic acid metabolism in the liver, kidney and intestine of normal and fasted rats. Biochem. Pharmacol. 12, 565 (1963).CrossRefGoogle Scholar
  18. Mills, G.T., Smith, E.E.B.: In: H. U. Bergmeyer: Methoden der enzymatischen Analyse. Weinheim: Verlag Chemie 1962.Google Scholar
  19. Müller-Oerlinghausen, B., Hasselblatt, A., Jahns, R.: Impaired hepatic synthesis of glucuronic acid conjugates in diabetic rats. Life Sci. 6, 1529 (1967).PubMedCrossRefGoogle Scholar
  20. Hasselblatt, A., Jahns, R. — Vermehrte Bildung von Bilirubinglucuronid in der Leber während der Insulin-Sulfonylharnstoff-Hypoglykämie. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 254 (1968).CrossRefGoogle Scholar
  21. Hasselblatt, A., Jahns, R. — Jahns, R., Künzel, B., Hasselblatt, A.: Die Wirkung von Tolbutamid auf Blutglucose und Glucuronsäurekonjugation in Lebergewebe normaler und adrenalektomierter Mäuse. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 262, 17 (1969).CrossRefGoogle Scholar
  22. Pogell, B.M., Leloir, L.F.: Nucleotide activation of liver microsomal glucuronidation. J. biol. Chem. 236, 293 (1961).PubMedGoogle Scholar
  23. Rieder, H.P.: Eine neue Modifikation der Cu-Folin-Methode zur Bestimmung des Totalproteins im Liquor cerebrospinalis. Klin. Wschr. 44, 1036 (1966).PubMedCrossRefGoogle Scholar
  24. Salitis, G., Oliver, I.T.: Inhibition of uridine diphosphate glucose dehydrogenase by metabolic intermediates of galactose. Biochim. biophys. Acta (Amst.) 81, 55 (1964).Google Scholar
  25. Schriefers, H., Keck, B., Otto, M.: Biosynthese von Steroidglucuroniden bei verschiedenen Stoffwechselzuständen. Acta endocr. (Kbh.) 50, 25 (1965).Google Scholar
  26. Söling, H.D., Kattermann, R., Schmidt, H., Kneer, P.: The redox state of NAD+ / NADH-systems in rat liver during ketosis, and the so called “triosephosphate block”. Biochim. biophys. Acta (Amst.) 115, 1 (1966).Google Scholar
  27. Steiner, D.F., Rauda, V., Williams, R.H.: Severe ketoacidosis in the alloxan diabetic rat. Endocrinology 68, 809 (1961).CrossRefGoogle Scholar
  28. Rauda, V., Williams, R.H. — Effects of insulin, glucagon, and glucocorticoids upon hepatic glycogen synthesis from uridine diphosphate glucose. J. biol. Chem. 236, 299 (1961b).Google Scholar
  29. Strominger, J.L., Kalckar, H.M., Axelrod, J., Maxwell, E.S.: Enzymatic oxidation of uridine diphosphate glucose to uridine diphosphate glucuronic acid. J. Amer. chem. Soc. 76, 6411 (1954).CrossRefGoogle Scholar
  30. Temple, A.R., Clement, M.S., Done, A.K.: Studies of glucuronidation. IV. Evidences of different processes for o-aminophenol and p-nitrophenol. Proc. Soc. exp. Biol. (N.Y.) 128, 307 (1968).CrossRefGoogle Scholar
  31. Wong, K.P., Sourkes, T.L.: Determination of UDPG and UDPGA in tissues. Analyt. Biochem. 21, 444 (1967).PubMedCrossRefGoogle Scholar
  32. Sourkes, T.L. — Glucuronidation of 3-o-methylnoradrenaline, Harmalol and some related compounds. Biochem. J. 110, 99 (1968).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • B. Müller-Oerlinghausen
    • 1
    • 2
  1. 1.Institut für Pharmakologie und Toxikologie der UniversitätGöttingenDeutschland
  2. 2.Dept. of Medical SciencesMinistry of Public Health Yod-se/BangkokThailand

Personalised recommendations