Advertisement

Verteilung und Stoffwechsel von 14C -markiertem Tetracain nach intravenöser Injektion beim Meerschweinchen

  • D. Hansen
Chapter

Schlüsselwörter

Tetracain Verteilung Stoffwechsel Meerschweinchen 

Summary

The distribution and metabolism of intravenously injected 14C-tetracaine were studied in guinea pigs. Initially, the injected drug accumulated in various organs. An especially high concentration of radioactive material was found in the lungs. Probably, the drug is retained by pulmonary tissue as a kind of depot, owing to unknown haemodynamic current mechanisms. The redistribution takes place rather quickly. 90 min after the injection, a radioactivity level higher than that in the serum was found only in the liver, kidneys and adrenals. The excretion via the bile starts more quickly and is quantitatively more important than that in the urine.

Metabolic degradation of tetracaine in the living organism occurs rapidly. As a result of hydrolysis 4-n-butylaminobenzoic acid and 2-dimethylaminoethanol are formed. Apart from these two compounds other metabolites were found in the blood 90 min after the application of the drug.

Key-Words

Tetracaine Distribution Metabolism Guinea-Pig 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Åkerman, B., Åstrom, A., Ross, S., Telc, A.A.: Studies on the absorption, distribution and metabolism of labelled Prilocaine and Lidocaine in some animal species. Acta pharmacol. (Kbh.) 24, 389 (1966).CrossRefGoogle Scholar
  2. Beisenherz, G., Koss, F.W., Klatt, L., Binder, B.: Distribution of radioactivity in the tissue and excretory products of rats and rabbits following administration of 14C-Hygroton. Arch. int. Pharmacodyn. 161, 76 (1966).PubMedGoogle Scholar
  3. Fussgänger, R., Schaumann, O.: Über ein neues Lokalanaesthetikum der Novocainreihe (Pantocain). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 160, 53 (1931).CrossRefGoogle Scholar
  4. Gänshirt, H.: In: E. Stahl: Dünnschicht-Chromatographie, S. 329. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  5. Hansen, D., Ohnesorge, F.K., Palisaar, R.: Die Verteilung von 14C-markiertem Lidocain und Prilocain nach intravenöser Applikation beim Meerschweinchen. Anaesthesist 17, 168 (1968).PubMedGoogle Scholar
  6. Heim, F., Haas, A.: Über den fermentativen Abbau von Pantokain, Novokain und Kokain durch Extrakte aus Meerschweinchenleber,-niere,-gehirn und muskulatur. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 211, 458 (1950).Google Scholar
  7. Runge, H.G., Schmidt, S.: Pantocain, ein vollwertiger Kokainersatz. Arch. Ohr.-, Nas.-u. Kehlk.-Heilk. 128, 232 (1931).CrossRefGoogle Scholar
  8. Sung, C.J., Truant, A.P.: The physiological disposition of lidocaine and its comparison in some respects with procaine. J. Pharmacol. exp. Ther. 113, 433 (1954).Google Scholar
  9. Stahl, E.: Dünnschicht-Chromatographie, S. 507. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  10. Williams, T.R.: Detoxication mechanisms, 2. Edit., p. 451. London: Chapman-Hall Ltd. 1959.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • D. Hansen
    • 1
    • 2
  1. 1.Hals-Nasen-Ohrenklinik und Institut für PharmakologieUniversität KielDeutschland
  2. 2.Universitäts-Hals-Nasen- OhrenklinikKielDeutschland

Personalised recommendations