Ca-abhängige Membranpotentialänderungen am Herzen und ihre Bedeutung für die elektro-mechanische Kopplung. Versuche mit Tetrodotoxin in Na-haltigen Lösungen

  • Hasso Scholz


Ventrikuläre Trabekel Tetrodotoxin Graduierte Depolarisation Ca-Einstrom Elektro-Mechanische Kopplung 


  1. 1

    Tetrodotoxin (TTX), at a concentration of less than 10−6 g/ml, had no effect on membrane potential and contraction of isolated, thin ventricular trabeculae of sheep and calf hearts. 10−6 to 2 × 10−6 g/ml TTX decreased the rate of rise, over-shoot, and duration (phase of 90% repolarisation) of the action potential and the amplitude of contraction, without change in the resting potential and the plateau (20% repolarisation phase) of the action potential. Excitation block regularly occurred only with 10−5 to 2 × 10−5 g/ml TTX.

  2. 2

    In a solution containing Na and TTX (5 × 10−6 — 2 × 10−5 g/ml) graded depolarisation was possible if the preparations were stimulated by square wave pulses of 500 msec duration across a sucrose bridge. In Ca-containing solutions the time-course of the electrotonic potentials showed two steps. The second step of depolarisation (SSD) began when the membrane potential reached — 60 to — 50 mV (threshold), and tension was initiated at the same level. Contractions reached their steady-state values only after about 5 depolarisations of the same size. There was no difference in the amplitude of contractions (steady-state level) elicited in Tyrode and in Tyrode -+ TTX.

  3. 3

    SSD and contraction were dependent on the [Ca] e . Rate of rise (V/sec) and amplitude (mV) of SSD and tension increased with increasing [Ca] e . In Ca-free solutions the electrotonic potentials reached their steady-state levels in one step. No SSD and tension were observed in the absence of Ca, even with reversal of membrane potential.

  4. 4

    In Tyrode + TTX the SSD was identical with the changes in membrane potential which could be observed in Na-free solution without TTX, but in Na-free solutions, contractions already reached their maximum during the first SSD.

  5. 5

    SSD in Na-free solution was not blocked by TTX.

    The results indicate that the second step of depolarization in Na-free as well as in Na-containing solution + TTX is due to a Ca inward current. It is tentatively concluded that not only in Na-free but also in Na-containing solution Ca ions carry charge across the membrane of cardiac muscle during depolarisation and that this Ca inward current is an important factor in excitation-contraction coupling.



Ventricular Trabeculae Tetrodotoxin Graded Depolarisation Ca Inward Current Excitation-Contraction Coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoni, H., Jacob, R., Kaufmann, R.: Mechanische Reaktionen des Frosch-und Warmblütermyokards bei künstlicher Verkürzung und Verlängerung der Aktionspotentialdauer. Pflügers Arch. ges. Physiol. 300, 51–52 (1968).CrossRefGoogle Scholar
  2. Bülbring, E., Tomita, T.: Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J. Physiol. (Lond.) 189, 299–315 (1967).Google Scholar
  3. Clark, A.J.: The action of ions and lipoids upon the frog’s heart. J. Physiol. (Lond.) 47, 66–107(1913).PubMedGoogle Scholar
  4. Coraboeuf, E., Vassort, G.: Effets de la tétrodotoxine, du tétraéthylammonium et du manganèse sur l’activité du myocarde de Rat et de Cobaye. C.E. Acad. Sci. (Paris) 264, 1072–1075 (1967).Google Scholar
  5. Deck, K.A., Trautwein, W.: Ionic currents in cardiac excitation. Pflügers Arch. ges. Physiol. 280, 63–80 (1964).CrossRefGoogle Scholar
  6. Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: Excitatory membrane current in heart muscle (Purkinje fibers). Pflügers Arch. ges. Physiol. 292, 255–273 (1966).CrossRefGoogle Scholar
  7. Peper, K., Rüdel, R., Trautwein, W.: — The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Pflügers Arch. ges. Physiol. 295, 213–226 (1967).CrossRefGoogle Scholar
  8. Frankenhaeuser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244 (1957).Google Scholar
  9. Freund, H.-J.: Die Beeinflussung der bioelektrischen und mechanischen Aktivität des Säugetiermyokards bei stufenweisem Ersatz von extracellulärem Na++ durch Li++ . Pflügers Arch. ges. Physiol. 296, 234–238 (1967).CrossRefGoogle Scholar
  10. Giebisch, G., Weidmann, S.: Membrane currents in mammalian ventricular heart muscle fibres using a “voltage-clamp” technique. Helv. physiol. pharmacol. Acta 25, CR 189 (1967).Google Scholar
  11. Hagiwara, S., Nakajima, S.: Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J.gen.Physiol. 49, 793–806(1966).PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hashimoto, Y., Holman, M.E., McLean, A.J.: Effect of tetrodotoxin on the electrical activity of the smooth muscle of the vas deferens. Nature (Lond.) 215, 430–432 (1967).CrossRefGoogle Scholar
  13. Kao, C.Y.: Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev. 18, 997–1049 (1966).PubMedGoogle Scholar
  14. Kuriyama, H., Osa, T., Toida, N.: Effect of tetrodotoxin on smooth muscle cells of the guinea-pig taenia coli. Brit. J. Pharmacol. Chemother. 27, 366–376 (1966).CrossRefGoogle Scholar
  15. Langer, G.A.: Kinetic studies of calcium distribution in ventricular muscle of the dog. Circulat. Res. 15, 393–405 (1964).PubMedCrossRefGoogle Scholar
  16. Lüttgau, H. C, Niedergerke, R.: The antagonism between Ca and Na ions on the frog’s heart. J. Physiol. (Lond.) 143, 486–505 (1958).Google Scholar
  17. Meves, H.: Das Aktionspotential der Riesennervenzellen der Weinbergschnecke Helix pomatia. Pflügers Arch. ges. Physiol. 289, R 10 (1966).Google Scholar
  18. Nakamura, Y., Nakajima, S., Grundfest, H.: The action of tetrodotoxin on electrogenic components of squid giant axons. J. gen. Physiol. 48, 985–996 (1965).CrossRefGoogle Scholar
  19. Narahashi, T., Moore, J.W., Scott, W.R.: Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. gen. Physiol. 47, 965–974 (1964).PubMedCentralPubMedCrossRefGoogle Scholar
  20. Niedergerke, R.: Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol. (Lond.) 167, 515–550 (1963a).PubMedGoogle Scholar
  21. — Movements of Ca in beating ventricles of the frog heart. J. Physiol. (Lond.) 167, 551–580 (1963b).PubMedGoogle Scholar
  22. — Orkand, R.K.: The dual effect of calcium on the action potential of the frog’s heart. J. Physiol. (Lond.) 184, 291–311 (1966a).Google Scholar
  23. — The dependence of the action potential of the frog’s heart on the external and intracellular sodium concentration. J. Physiol. (Lond.) 184, 312–334 (1966b).PubMedGoogle Scholar
  24. Nonomura, Y., Hotta, Y., Ohashi, H.: Tetrodotoxin and manganese ions: effects on electrical activity and tensions in taenia coli of guinea-pig. Science 152, 97–99 (1966).PubMedCrossRefGoogle Scholar
  25. Ogura, Y., Mori, Y.: Comparison of crystalline tetrodotoxin sensivity on different sites of the toad heart. III. International Pharmacological Congress, São Paulo. Abstract 499 (1966).Google Scholar
  26. Ozeki, M., Freeman, A.R., Grundfest, H.: The membrane components of crustacean neuromuscular systems. I. Immunity of different electrogenic components to tetrodotoxin and saxitoxin. J. gen. Physiol. 49, 1319–1334 (1966).Google Scholar
  27. Reiter, M.: Über die verschiedene Temperaturabhängigkeit der Wirkung erhöhter Ca++ -und verringerter Na++ -Konzentrationen auf die Kontraktionskraft des Rattenherzens. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 241, 171–172 (1961).CrossRefGoogle Scholar
  28. — Die Beziehung von Calcium und Natrium zur inotropen Glykosidwirkung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 245, 487–499 (1963).Google Scholar
  29. — Der Einfluß der Natriumionen auf die Beziehung zwischen Frequenz und Kraft der Kontraktion des isolierten Meerschweinchenmyokards. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 261–286 (1966).CrossRefGoogle Scholar
  30. Reuter, H.: Über die Wirkung von Adrenalin auf den cellulären Ca-Umsatz des Meerschweinchenvorhofs. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 401–412 (1965).Google Scholar
  31. — Strom-Spannungsbeziehungen von Purkinje-Fasern bei verschiedenen extra-cellulären Calcium-Konzentrationen und unter Adrenalineinwirkung. Pflügers Arch. ges. Physiol. 287, 357–367 (1966).CrossRefGoogle Scholar
  32. — The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J. Physiol. (Lond.) 192, 479–492 (1967).Google Scholar
  33. — Slow inactivation of currents in cardiac Purkinje fibres. J. Physiol. (Lond.) 197, 233–253 (1968).Google Scholar
  34. — Beeler, G.W.: Calcium current and activation of contraction in ventricular myocardial fibers. Science 163, 399–401 (1969).CrossRefGoogle Scholar
  35. — Scholz, H.: Über den Einfluß der extracellulären Ca-Konzentration auf Membranpotential und Kontraktion isolierter Herzpräparate bei graduierter Depolarisation. Pflügers Arch. ges. Physiol. 300, 87–107 (1968).CrossRefGoogle Scholar
  36. — Seitz, N.: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (Lond.) 195, 451–470 (1968).Google Scholar
  37. Rougier, O., Vassort, G., Stämpfli, R.: Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflügers Arch. ges. Physiol. 301, 91–108 (1968).CrossRefGoogle Scholar
  38. Scholz, H., Reuter, H.: Über die Beziehung zwischen Membranpotential und Kontraktion am Herzen unter dem Einfluß von Adrenalin. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 196–197 (1968).CrossRefGoogle Scholar
  39. Stanley, E.J., Reiter, M.: The antagonistic effects of sodium and calcium on the action potential of guinea pig papillary muscle. Naunyn-Schmiedebergs Arch, exp. Path. Pharmak. 252, 159–172 (1965).CrossRefGoogle Scholar
  40. Takahashi, D., Inoko, Y.: Experimentelle Untersuchungen über das Fugugift. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 26, 401–418 (1890).CrossRefGoogle Scholar
  41. Takata, M., Moore, J.W., Kao, C.Y., Fuhrman, F.A.: Blockage of sodium conductance increase in lobster giant axon by tarichatoxin (tetrodotoxin). J. gen. Physiol. 49, 977–988 (1966).PubMedCentralPubMedCrossRefGoogle Scholar
  42. Weidmann, S.: The effect of the cardiac membrane potential on the rapid availability of the sodium carrying system. J. Physiol. (Lond.) 127, 213–224 (1955a).PubMedGoogle Scholar
  43. — Effects of calcium ions and local anaesthetics on the electrical properties of Purkinje fibres. J. Physiol. (Lond.) 129, 568–582 (1955b).PubMedGoogle Scholar
  44. Wilbrandt, W., Koller, H.: Die Calciumwirkung am Froschherzen als Funktion des Ionengleichgewichts zwischen Zellmembran und Umgebung. Helv. physiol. pharmacol. Acta 6, 208–221 (1948).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • Hasso Scholz
    • 1
  1. 1.Pharmakologisches Institut der UniversitätMainzDeutschland

Personalised recommendations