Advertisement

Wirkung von Angiotensin auf Funktion und Noradrenalinabgabe isolierter Kaninchenherzen in Ruhe und bei Sympathicusreizung

  • K. Starke
  • U. Werner
  • H. J. Schümann
Chapter

Schlüsselwörter

Angiotensin Noradrenalinabgabe Isoliertes Kaninchenherz Sympathische Nerven 

Summary

  1. 1

    The influence of angiotensin on the isolated rabbit heart perfused at constant pressure or constant flow was investigated at rest and during electrical stimulation of the postganglionic sympathetic nerves.

     
  2. 2

    In low concentrations (32–100 ng/min or 1.4–5.3 ng/ml) angiotensin had considerable positive inotropic effects, while its chronotropic effects were weak and variable. High concentrations decreased the rate of beat, and an increase in the height of contraction was preceded by a transient phase of inhibition. In hearts perfused at constant pressure, angiotensin diminished coronary flow. The positive inotropic effect of angiotensin was not accompanied by the appearance of increased amounts of noradrenaline in the venous effluent.

     
  3. 3

    Angiotensin caused a dose-dependent increase in the output of noradrenaline induced by sympathetic nerve stimulation. The peptide was most potent in hearts perfused at constant flow; the threshhold dose of angiotensin for this procedure was 3.2 ng/min (128 pg/ml), and maximal effects (i.e., an increase by 81%) were observed with 32 ng/min (1.28 ng/ml). Doses about three times higher were required to obtain similar effects in hearts perfused at constant pressure. The reduction of coronary flow as seen under these conditions may be responsible for the weaker effect of angiotensin. Continuous infusion increased the output of noradrenaline during several successive stimulation periods.

     
  4. 4

    In most cases, the increase in output of noradrenaline induced by angiotensin did not lead to an increase in the response of the pacemaker or of the myocardium to sympathetic stimulation. Only in hearts perfused at constant flow during infusion of 32 ng/min of angiotensin the positive inotropic effect of sympathetic stimulation was significantly augmented.

     
  5. 5

    The results indicate that angiotensin may modulate the activity of the autonomic nervous system by influencing peripheral sympathetic nerves.

     

Key-Words

Angiotensin Noradrenaline Release Isolated Rabbit Heart Sympathetic Nerves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aiken, J.W., Reit, E.: Stimulation of the cat stellate ganglion by angiotensin. J. Pharmacol. exp. Ther. 159, 107–114 (1968).PubMedGoogle Scholar
  2. Berry, W.B., Austen, W.G., Clark, W.D.: Studies on the relative cardiac and peripheral actions of angiotensin. Ann. Surg. 159, 520–528 (1964).PubMedGoogle Scholar
  3. Bianchi, A., de Schaepdryver, A.F., de Vleeschhouwer, G.R., Preziosi, P.: On the pharmacology of synthetic hypertensin. Arch. int. Pharmacodyn. 124, 21–44 (1960).PubMedGoogle Scholar
  4. Bickerton, R.K., Buckley, J.P.: Evidence for a central mechanism in angiotensin induced hypertension. Proc. Soc. Exp. Biol. (N.Y.) 106, 834–836 (1961).CrossRefGoogle Scholar
  5. Buckley, J.P.: Effects of synthetic angiotensin II on catecholamine levels and biological activity. Acta physiol. scand. 65, 273–278 (1965).PubMedCrossRefGoogle Scholar
  6. Cranston, W.I., Lavery, H., Lowe, R.D., Rosendorff, C.: The central pressor effect of angiotensin in the rabbit. J. Physiol. (Lond.) 198, 30–31 P (1968).Google Scholar
  7. Euler, U.S.V., Floding, I.: A fluorimetric micromethod for differential estimation of adrenaline and noradrenaline. Acta physiol. scand. 33, Suppl. 118, 45–56 (1955).Google Scholar
  8. Farr, W.C., Grupp, G.: Sympathetically mediated effects of angiotensin on the dog heart in situ. J. Pharmacol. exp. Ther. 156, 528–537 (1967).PubMedGoogle Scholar
  9. Feldberg, W., Lewis, G.P.: The action of peptides on the adrenal medulla. Release of adrenaline by bradykinin and angiotensin. J. Physiol. (Lond.) 171, 98–108 (1964).Google Scholar
  10. Finkielman, S., Worcel, M., Massani, Z.M., Nahmod, V.E., Paladini, A.C., Agrest, A.: Angiotensin blood levels in hypovolemic shock during osmotic diuresis. Amer. J. Physiol. 215, 308–313 (1968).PubMedGoogle Scholar
  11. Fowler, N.O., Holmes, J.C.: Coronary and myocardial action of angiotensin. Circulat. Res. 14, 191–201 (1964).PubMedCrossRefGoogle Scholar
  12. Haefely, W., Hürlimann, A., Thoenen, H.: Effects of bradykinin and angiotensin on ganglionic transmission. Biochem. Pharmacol. 14, 1393 (1965).Google Scholar
  13. Heeg, E., Meng, K.: Die Wirkung des Bradykinins, Angiotensins und Vasopressins auf Vorhof, Papillarmuskel und isoliert durchströmte Herzpräparate des Meerschweinchens. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 250, 35–41 (1965).CrossRefGoogle Scholar
  14. Hughes, I.E.: Chronotropic and pressor responses to angiotensin in rats anesthe-tised with urethane. Eur. J. Pharmacol. 3, 189–195 (1968).PubMedCrossRefGoogle Scholar
  15. Hukovic, S., Muscholl, E.: Die Noradrenalin-Abgabe aus dem isolierten Kaninchenherzen bei sympathischer Nervenreizung und ihre pharmakologische Beeinflussung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 244, 81–96 (1962).CrossRefGoogle Scholar
  16. Iversen, L.L.: The uptake and storage of noradrenaline in sympathetic nerves. Cambridge: The University Press 1967.Google Scholar
  17. James, T.N.: Absence of direct chronotropic action of angiotensin infused into the sinus node artery. Amer. J. Physiol. 209, 571–576 (1965).PubMedGoogle Scholar
  18. Koch-Weser, J.: Nature of the inotropic action of angiotensin on ventricular myocardium. Circulat. Res. 16, 230–237 (1965).PubMedCrossRefGoogle Scholar
  19. Krasney, J.A., Hogan, P.M., Lowe, R.F., Youmans, W.B.: Peripheral adrenergic basis for cardioaccelerator action of angiotensin. Amer. J. Physiol. 211, 1447 to 1450(1966).Google Scholar
  20. — Paudler, F.T., Smith, D.C., Davis, L.D., Youmans, W.B.: Mechanisms of cardioaccelerator action of angiotensin. Amer. J. Physiol. 209, 539–544 (1965).PubMedGoogle Scholar
  21. Kuschinsky, G., Lullmann, H.: Über die Wirkung von synthetischem Hypertensin auf Kammer-und Vorhofsmuskulatur der Katze. Klin. Wschr. 37, 928–931 (1959).PubMedCrossRefGoogle Scholar
  22. Lewis, G.P., Reit, E.: The action of angiotensin and bradykinin on the superior cervical ganglion of the cat. J. Physiol. (Lond.) 179, 538–553 (1965).Google Scholar
  23. Liebau, H., Distler, A., Wolff, H.P.: Untersuchungen zur indirekten sympathomimetischen Wirkung von Angiotensin an isolierten Blutgefäßen. Klin. Wschr. 44, 322–326 (1966).PubMedCrossRefGoogle Scholar
  24. Massani, Z.M., Finkielman, S., Worcel, M., Agrest, A., Paladini, A.C.: Angiotensin blood levels in hypertensive and nonhypertensive diseases. Clin. Sci. 30, 473 to 483 (1966).Google Scholar
  25. McCubbin, J.W., Page, I.H.: Renal pressor system and neurogenic control of arterial pressure. Circulat. Res. 12, 553–559 (1963).CrossRefGoogle Scholar
  26. Meier, R., Tripod, J., Studer, A.: Comparaison des propriétés vasculaires périphériques de l’hypertensine synthétique et de divers vasoconstricteurs. Arch. int. Pharmacodyn. 117, 185–196 (1958).PubMedGoogle Scholar
  27. Palaic, D., Khairallah, P.A.: Inhibition of noradrenaline uptake by angiotensin. J. Pharm. Pharmacol. 19, 396–397 (1967a).PubMedCrossRefGoogle Scholar
  28. — Effect of angiotensin on uptake and release of norepinephrine by brain. Biochem. Pharmacol. 16, 2291–2298 (1967b).PubMedCrossRefGoogle Scholar
  29. — Inhibition of norepineprine re-uptake by angiotensin in brain. J. Neurochem. 15, 1195–1202 (1968).PubMedCrossRefGoogle Scholar
  30. Pals, D.T., Masucci, F.D.: Effect of cocaine, desipramine, and angiotensin on uptake of noradrenaline in tissues of pithed rats. Nature (Lond.) 217, 772–773 (1968).CrossRefGoogle Scholar
  31. Panisset, J. C, Bourdois, P.: Effect of angiotensin on the responses to noradrenaline and sympathetic nerve stimulation, and on 3H-noradrenaline uptake in cat mesenteric blood vessels. Can. J. Physiol. Pharmacol. 46, 125–131 (1968).PubMedCrossRefGoogle Scholar
  32. Peach, M.J., Ford, G.D.: The actions of angiotensin II on canine myocardial and plasma catecholamines. J. Pharmacol. exp. Ther. 162, 92–100 (1968).PubMedGoogle Scholar
  33. Ross, G., White, F.N.: Role of catecholamines in cardiovascular responses to angiotensin. Amer. J. Physiol. 211, 1419–1423 (1966).PubMedGoogle Scholar
  34. Schümann, H.J., Güther, W.: Untersuchungen zum Wirkungsmechanismus von Angiotensin am isolierten Aortenpräparat und am Blutdruck von Ratten und Meerschweinchen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 169–182 (1967).CrossRefGoogle Scholar
  35. Staszewska-Barczak, J., Vane, J.R.: The release of catecholamines from the adrenal medulla by peptides. Brit. J. Pharmacol. 30, 655–667 (1967).PubMedGoogle Scholar
  36. Thoenen, H., Hürlimann, A., Haefely, W.: The effect of angiotensin on the response to postganglionic sympathetic stimulation of the cat spleen: lack of facilitation of norepinephrine liberation. Med. Pharmacol. exp. 13, 379–385 (1965).Google Scholar
  37. Walter, P., Bassenge, E.: Effect of angiotensin on vascular smooth muscle. Pflügers Arch. 307, 70–82 (1969).PubMedCrossRefGoogle Scholar
  38. Zimmerman, B.G.: Effect of acute sympathectomy on responses to angiotensin and norepinephrine. Circulat. Res. 11, 780–787 (1962).PubMedCrossRefGoogle Scholar
  39. — Evaluation of peripheral and central components of action of angiotensin on the sympathetic nervous system. J. Pharmacol. exp. Ther. 158, 1–10 (1967).PubMedGoogle Scholar
  40. — Gisslen, J.: Pattern of renal vasoconstriction and transmitter release during sympathetic stimulation in presence of angiotensin and cocaine. J. Pharmacol. exp. Ther. 163, 320–329 (1968).PubMedGoogle Scholar
  41. — Whitmore, L.: Effects of angiotensin and phenoxybenzamine on release of norepinephrine in vessels during sympathetic nerve stimulation. Int. J. Neuropharmacol. 6, 27–38 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • K. Starke
    • 1
  • U. Werner
    • 1
  • H. J. Schümann
    • 1
  1. 1.Pharmakologisches Institut Klinikum EssenRuhr-UniversitätEssenDeutschland

Personalised recommendations