Freisetzung von Serotonin und Histamin aus Thrombocyten durch aliphatische und aromatische Amine

  • B. May
  • I. Menkens
  • Erik Westermann


Thrombocyten Serotonin Histamin Aliphatische Amine Aminfreisetzung 


The Release of Serotonin and Histamine from Thrombocytes by Aliphatic and Aromatic Amines.

In studies with washed platelets and with platelet-rich plasma of the rabbit the following results were obtained:
  1. 1

    Incubation of thrombocytes with aliphatic amines having different lengths of the carbon chain (C6–C10) produced a dose-dependent decrease of the serotonin and histamine content of the cells. Amines with a long carbon chain (e.g. C10, C9) were 10–20 times more effective than those having a short chain length (e.g. C6, C7). While C10 and lysolecithin lead to an approximative equal decrease in serotonin and histamine content of the cells, C6 mainly induced a liberation of serotonin. Incubation of the cells with C10 or lysolecithin induced a very rapid amine liberation, while C6 and C7 had a slow amine releasing action upon the platelets.

  2. 2

    Aromatic amines (e.g. phenylethylamine, tyramine) showed a selective and dose-dependent liberation of serotonin from the thrombocytes; only very high concentrations (e.g. 1.2 mg/ml) also reduced the histamine level. Introduction of a second phenolic hydroxyl group in the ring (catechol derivatives) or of an alcoholic hydroxyl group into the side chain diminished the serotonin liberating effect of the amines. Methylation of the amine group or of the alpha-carbon atom of the side chain did not influence their efficacy. — Cocaine or desmethylimipramine had no inhibitory effect upon the serotonin liberation induced by tyramine.

  3. 3

    It is assumed, that the histamine liberation induced by aliphatic amines is the result of a cytolysis,—very similar to the action of lysolecithin; this histamine liberating action corresponds to the hemolytic and surface-active properties of these substances.—In contrast, the selective and preferential liberation of serotonin by aromatic amines and by aliphatic amines with a short carbon chain is very likely due to a displacement of serotonin from the storage sites in the intact cells.



Thrombocytes Serotonin Histamine Aliphatic Amines Amine Liberation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahtee, L.: 5-hydroxytryptamine release from blood platelets and haemolysis of red blood cells of rabbit induced by phenothiazines and related compounds. Ann. Med. exp. Fenn. 44, 431–452 (1966a).PubMedGoogle Scholar
  2. — Surface activity of phenothiazines and related compounds. Ann. Med. exp. Fenn. 44, 453–457 (1966b).PubMedGoogle Scholar
  3. Bak, I.J., R. Hassler, B. May, and E. Westermann: Morphological and biochemical studies on the storage of serotonin and histamine in blood platelets of the rabbit. Life Sci. 6, 1133–1146 (1967).PubMedCrossRefGoogle Scholar
  4. —, and B.May: Electron microscopical observations on a possible releasing mechanism of serotonin from blood platelets. I. Int. Sympos. über Stoffwechsel und Membranpermeabilität von Erythrocyten und Thrombocyten; Wien, 17.-20.6.1968 (im Druck).Google Scholar
  5. Baker, R.V., H. Blaschko, and G.V.R. Born: The isolation from blood platelets of particles containing 5-hydroxytryptamine and adenosine triphosphate. J. Physiol. (Lond.) 149, 55 P–56 P (1959).Google Scholar
  6. Baumgartner, H.R., and G.V.R. Born: Effects of 5-hydroxytryptamine on platelet aggregation. Nature (Lond.) 218, 137–141 (1968).CrossRefGoogle Scholar
  7. Bogdanski, D.F., A. Pletscher, B.B. Beodie, and S. Udenfriend: Identification and assay of serotonin in brain. J. Pharmacol. exp. Ther. 117, 82–88 (1956).PubMedGoogle Scholar
  8. Born, G.V.R., and R.E. Gillson: Studies on the uptake of 5-hydroxytryptamine by blood platelets. J. Physiol. (Lond.) 146, 472–491 (1959).Google Scholar
  9. — A. Hornykiewiez, and A. Stafford: The uptake of adrenaline and noradre-naline by blood platelets of the pig. Brit. J. Pharmacol. 13, 411–414 (1958).PubMedGoogle Scholar
  10. Buckingham, S., and E.W. Maynert: The release of 5-hydroxytryptamine, potassium and amino acids from platelets. J. Pharmacol. exp. Ther. 143, 332–339 (1964).PubMedGoogle Scholar
  11. Carlsson, A., P.A. Shore, and B.B. Brodie: Release of serotonin from blood platelets by reserpine in vitro. J. Pharmacol. exp. Ther. 120, 334–339 (1957).PubMedGoogle Scholar
  12. Clayton, S., and M.J. Cross: The aggregation of blood platelets by catecholamines an by thrombin. J. Physiol. (Lond.) 169, 82 P–83 P (1963).Google Scholar
  13. Da Prada, M., G. Bartholini, and A. Pletscher: Formation of 5-hydroxytrytophol by blood platelets after thrombin and reserpine. Experientia (Basel) 21, 135–136 (1965a).CrossRefGoogle Scholar
  14. — Effect of monoamine liberators on the metabolism of 5-hydroxytryptamine in blood platelets. Biochem. Pharmacol. 14, 1721–1726 (1965b).PubMedCrossRefGoogle Scholar
  15. — A. Pletscher, J.P. Tranzer, and H. Knuchel: Subcellular localization of 5-hydroxytryptamine and histamine in blood platelets. Nature (Lond.) 216, 1315–1317 (1967).CrossRefGoogle Scholar
  16. Eade, N.R.: The release of catecholamines from isolated chromaffine granules. Brit. J. Pharmacol. 12, 61–65 (1957).PubMedGoogle Scholar
  17. Erspamer, V.: Occurence of indolealkylamines in nature. In: 5-hydroxytryptamine and related indolealkylamines, S. 132–181. Handbuch d. exp. Pharmakol., Bd. XIX. Berlin-Heidelberg-New York: Springer 1966.CrossRefGoogle Scholar
  18. Feldberg, W., and J.L. Mongar: Comparison of histamine release by compound 48/80 and octylamine in perfused tissues. Brit. J.Pharmacol. 9, 197–201 (1954).PubMedGoogle Scholar
  19. Garcia-Arocha, H.: Release of histamine and 5-hydroxytryptamine from cells of the peritoneal fluid of rats. Canad. J. Biochem. Physiol. 39, 395–402 (1961).PubMedCrossRefGoogle Scholar
  20. Giertz, H.: 4. Bildung und Freisetzung biologisch aktiver Substanzen unter besonderer Berücksichtigung des Histamins. Pathogenese und Therapie allergischer Reaktionen, S. 424–517. Stuttgart: Enke 1966.Google Scholar
  21. Grobecker, H., P. Holtz u. J. Jonsson: Über die Wirkung des Tyramins auf den isolierten Darm. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 491–509 (1966).CrossRefGoogle Scholar
  22. Grobecker, H. D. Palm, I.J. Bak, and R. Hassler: In vitro lysis of erythrocytes and chromaffine granules by prenylamine. Experientia (Basel) 24, 701–703 (1968).CrossRefGoogle Scholar
  23. Habermann, E., u. H. Springer: Serotoninfreisetzung aus Blutplättchen durch Hämolytika, bakterielle und tierische Gifte. Naturwissenschaften 45, 133–134 (1958).CrossRefGoogle Scholar
  24. Högberg, B., and B. Uvnäs: Further observations on the disruption of rat mesentery mast cells caused by Compound 48/80, antigen-antibody-reaction, lecithinase A und decylamine. Acta physiol. scand. 48, 133–145 (1960).PubMedCrossRefGoogle Scholar
  25. Holl, J.: Ausbreitungsfunktion und Haftfähigkeit der Thrombocyten in Abhängigkeit von den physikalischen Eigenschaften blutfremder Oberflächen. Inaug.-Diss., Frankfurt a. M. 1963.Google Scholar
  26. Holtz, P.,u. D. Palm G. Durmanowa: Über den Mechanismus der sympathikomimetischen Wirkungen einiger aliphatischer Amine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 252, 144–158 (1965).CrossRefGoogle Scholar
  27. Holtz, P., u. D. Palm: Brenzkatechinamine und andere sypathicomimetische Amine. Biosynthese und Inaktivierung, Freisetzung und Wirkung. Ergebn. Physiol. 58, 1–580 (1966).Google Scholar
  28. Hughes, B., and B.B. Brodie: The mechanism of serotonin and catecholamine uptake by platelets. J. Pharmacol. exp. Ther. 127, 96–102 (1959).PubMedGoogle Scholar
  29. Humphrey, J.H., and R. Jaques: The histamine and serotonin content of the platelets and polymorphonuclear leucocytes of various species. J. Physiol. (Lond.) 124, 305–310 (1954).Google Scholar
  30. Kampenvan E.J., and W.G. Zijlstra: Standardization of hemoglobinometry. II. The hemiglobincyanide method. Clin. chim. Acta 6, 538–544 (1961).CrossRefGoogle Scholar
  31. Lembeck, F., u. H. Held: Serotoninfreisetzung aus isolierten Granula enterochromaffiner Zellen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 409–420 (1966).CrossRefGoogle Scholar
  32. Markwardt, F.: Studies on the release of biogenic amines from blood platelets. Biochemistry of blood platelets, p. 105–114. London-New York: Academic Press 1967.Google Scholar
  33. — W. Barthel u. E. Glusa: Die Veränderungen des Serotonin-und Histamingehaltes der Blutplättchen unter dem Einfluß von Lokalanaesthetica. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 336–344, (1966).CrossRefGoogle Scholar
  34. May, B., I.J. Bak, E. Böhle, and R. Hassler: Electron microscopical and biochemical studies on the serotonin granules in carcinoid syndrome. Life Sci. 7, 785–800 (1968).PubMedCrossRefGoogle Scholar
  35. — u. E. Westermann: Biochemische und morphologische Untersuchungen über Speicherung und Freisetzung von Serotonin und Histamin an Thrombocyten. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 313 (1967 a).CrossRefGoogle Scholar
  36. — C. Holler u. E. Westermann: Über die Bedeutung der Phospholipase A für die histaminfreisetzende Wirkung des Cobragiftes. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 237–256 (1967b).CrossRefGoogle Scholar
  37. — I. Menkens, and E. Westermann: Differential release of serotonin and histamine from blood platelets of the rabbit by aliphatic and aromatic amines. Life Sci. 6, 2079–2085 (1967 c).PubMedCrossRefGoogle Scholar
  38. McIntire, F.C.: The mechanism of histamine release in rabbit blood. Int. Arch. Allergy 10, 32–55 (1957).CrossRefGoogle Scholar
  39. Minard, D.: The presence and distribution of histamine in blood. Amer. J. Physiol. 132, 327–335 (1941).Google Scholar
  40. Mongar, J.L., and H.O. Schild: Quantitative measurement of the histamine-releasing activity of a series of monoalkyl-amines using minced guinea-pig lung. Brit. J. Pharmacol. 8, 103–109 (1953).PubMedGoogle Scholar
  41. Movat, H.Z., J.F. Mustard, N.S. Taichman, and T. Uriuhara: Platelet aggregation and release of ADP, serotonin and histamine associated with phagocytosis of antigen-antibody complexes. Proc. Soc. exp. Biol. (N.Y.) 120, 232–237 (1965).CrossRefGoogle Scholar
  42. O’Brien, J.R.: Some effects of adrenaline and anti-adrenaline compounds on platelets in vitro and in vivo. Nature (Lond.) 200, 763–764 (1963).CrossRefGoogle Scholar
  43. Paasonen, M.K.: Inactivation of 5-hydroxytryptamine by mammalian blood platelets. Biochem. Pharmacol. 8, 241–244 (1961).PubMedCrossRefGoogle Scholar
  44. — Release of 5-hydroxytryptamine from blood platelets. J. Pharm. Pharmacol. 17, 681–697 (1965).PubMedCrossRefGoogle Scholar
  45. —, and M.M. Airaksinen: Metabolism of 5-hydroxytryptamine in blood platelets of the rabbit. Ann. Med. exp. Fenn. 43, 236–240 (1965).PubMedGoogle Scholar
  46. —, and E. Solatunturi: Monoamine oxidase in mammalian blood platelets. Ann. Med. exp. Fenn. 43, 98–100 (1965).PubMedGoogle Scholar
  47. Padawer, J., and A.S. Gordon: Isolation of mast cells from other cellular elements of rat peritoneal fluid. Proc. Soc. exp. Biol. (N.Y.) 88, 29–31 (1955).CrossRefGoogle Scholar
  48. Paton, W.D.M.: Histamine release by compounds of simple chemical structure. Pharmacol Rev. 9, 269–328 (1957).PubMedGoogle Scholar
  49. Pletscher, A.: Metabolism, transfer and storage of 5-hydroxytryptamine in blood platelets. Brit. J. Pharmacol. 32, 1–16 (1968).PubMedGoogle Scholar
  50. — G. Bartholini, and M. da Prada: Metabolism of monoamines by blood platelets and relation to 5-hydroxytryptamine liberation. Mechanisms of release of biogenic amines. Proc. Int. Wenner-Gren Ctr. Sympos., Stockholm 1965, pp. 165–175. Oxford: Pergamon Press 1966.Google Scholar
  51. Rand, M., and G. Reid: Source of “serotonin” in serum. Nature (Lond.) 168, 385 (1951).CrossRefGoogle Scholar
  52. Rothschild, A.M.: Effect of catecholamines and their chloroanalogues on the in vitro release of histamine from cells of rat peritoneal fluid. Biochem. Pharmacol. 11, 979–980 (1962).PubMedCrossRefGoogle Scholar
  53. Schümann, H.J., u. A. Phelippu: Untersuchungen zum Mechanismus der Freisetzung von Brenzcatechinaminen durch Tyramin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 241, 273–280 (1961).CrossRefGoogle Scholar
  54. Shore, P.A., A. Burkhalter, and V.H. Cohn, Jr.: A method for the fluorometric assay of histamine in tissues. J. Pharmacol. exp. Ther. 127, 182–186 (1959).PubMedGoogle Scholar
  55. Solatunturi, E., and M.K. Paasonen: Intracellular distribution of monoamine oxidase, 5-hydroxytryptamine and histamine in blood platelets of rabbit. Ann. Med. exp. Fenn. 44, 427–430 (1966).PubMedGoogle Scholar
  56. Toh, C.C.: Release of 5-hydroxytryptamine (serotonin) and histamine from platelets by tissue extracts. J. Physiol. (Lond.) 133, 402–411 (1956).Google Scholar
  57. Tranzer, J.P., M. da Prada, and A. Pletscher: Ultrastructural localization of 5-hydroxytryptamine in blood platelets. Nature (Lond.) 212, 1574–1575 (1966).CrossRefGoogle Scholar
  58. Westerholm, B.: Observations on 5-hydroxytryptamine and histamine release from rabbit platelets. Acta physiol. scand. 63, 257–271 (1965).PubMedCrossRefGoogle Scholar
  59. Zon, L., E. Ceder, and C.W. Crigler: The presence of histamine in the platelets in the rabbit. u. S. Publ. Hlth Rept. 54, 1978–1986 (1939).CrossRefGoogle Scholar
  60. Zucker, M.B., and M.M. Rapport: Identification and quantitative determination of serotonin (5-hydroxytryptamine) in platelets, the source of serum serotonin. Fed. Proc. 13, 170–171 (1954).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • B. May
    • 1
  • I. Menkens
    • 1
  • Erik Westermann
    • 1
  1. 1.Institut für PharmakologieMedizinischen HochschuleHannover-BuchholzDeutschland

Personalised recommendations