Advertisement

Spinale Wirkungen von Apamin

  • H. Wellhöner
Chapter

Zusammenfassung

Die spinalen Wirkungen von Apamin, einem neurotoxischen Polypeptid aus Bienengift, wurden an spinalisierten Katzen untersucht. 15 min nach i.v. Injektion von 0,5–1,0 mg/kg war der Mittelwert und die Streuung der Amplitudenmaxima der monosynaptischen Extensorreflexpotentiale signifikant gewachsen. Die Mittelwerte der Amplitudenmaxima bei den monosynaptischen Flexor-reflexpotentialen verhielten sich unter Apamin uneinheitlich, jedoch nahm die Streuung der Einzelwerte ebenfalls stark zu. Die polysynaptischen Komponenten der Reflexpotentiale nach Reizung von Flexorreflexafferenzen wurden stark vergrößert, das Dorsalwurzelpotential und der Dorsalwurzelreflex nahmen mäßig zu. Die Effektivität der polysynaptischen Hemmung eines Gastrocnemiusreflexes durch konditionierende Reizung des N. biceps post, + semitendinosus nahm jedoch ab. Mit der Konditionierungstechnik ließ sich eine Änderung der direkten Hemmung, der rekurrenten Hemmung sowie der räumlichen und zeitlichen Förderung durch Apamin nicht nachweisen. Aus den Versuchen wird geschlossen, daß Apamin vornehmlich polysynaptische Reflexbögen erregt und daß hierbei excitatorische Mechanismen stärker gefördert werden als inhibitorische.

Schlüsselwörter

Apamin spinale Reflexe 

Summary

Apamin, a neurotoxic polypeptide from bee venom, has been investigated for activity on the spinal cord in spinal cats. 15 minutes after intravenous injection of 0,5–1,0 mg/kg, the mean and the standard deviation of the amplitudes of the monosynaptic extensor reflex potentials increased. With monosynaptic flexor reflex potentials, no uniform influence on the mean of the amplitudes became apparent, but again the standard deviation was significantly increased by the drug. Polysynaptic reflex potentials from flexor reflex afferents were also greatly increased. While dorsal root potentials and dorsal root reflexes were slightly augmented, the effectiveness of polysynaptic inhibition exerted on the monosynaptic gastrocnemius reflex by conditioning stimulation of Ia-afferents from the posterior biceps + semitendinosus nerve became smaller. No influence of apamin on the spatial and temporal summation, on the direct inhibition, and on the recurrent inhibition could be observed using the conditioning technique. From the results it is concluded that apamin mainly augments polysynaptic reflexes and that excitatory polysynaptic pathways become more effective than inhibitory polysynaptic mechanisms.

Key-Words

Apamin Spinal Reflexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Beadley, K. D., D. M. Easton, and J. C. Ecoles: An investigation of primary or direct inhibition. J. Physiol. (Lond.) 122, 474–488 (1953).Google Scholar
  2. Brooks, C. McC, K. Koizumi, and J. L. Malcolm: Effects of changes in temperature on reactions of spinal cord. J. Neurophysiol. 18, 205–216 (1955).PubMedGoogle Scholar
  3. J. L. Malcolm — — Origin of the dorsal root reflex. J. Neurophysiol. 19, 61–74 (1956).Google Scholar
  4. Brooks, V. B., and V. J. Wilson: Recurrent inhibition in the cat’s spinal cord. J. Physiol. (Lond.) 146, 380–391 (1959).Google Scholar
  5. Carpenter, D., I. Engbert, H. Funkstein, and A. Lundberg: Decerebrate control of reflexes to primary afferents. Acta physiol. scand. 59, 424–437 (1963).PubMedCrossRefGoogle Scholar
  6. Decandia, M., and L. Provint: Motoneurone excitability during repetitive stimulation of group I afferent fibres. Experientia (Basel) 22, 187–188 (1966).CrossRefGoogle Scholar
  7. Eccles, J. C, F. Magni, and W. D. Willis: Depolarization of central terminals of group I afferent fibres from muscle. J. Physiol. (Lond.) 160, 62–93 (1962).Google Scholar
  8. — R. Schmidt, and W. D. Willis: Presynaptic inhibition on the spinal monosynaptic reflex pathway. J. Physiol. (Lond.) 161, 282–297 (1962).Google Scholar
  9. W. D. Willis — —: Pharmacological studies on presynaptic inhibition. J. Physiol. (Lond.) 168, 500–530 (1963).Google Scholar
  10. Frank, K., and M. G. F. Fuortes: Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc. 16, 39–40 (1957).Google Scholar
  11. Green, D. G., and J. O. Kellerth: Polysynaptic versus presynaptic inhibition in antagonistic stretch reflexes. Science 152, 1097–1099 (1966).PubMedCrossRefGoogle Scholar
  12. Haase, J., u. Ü. Tan: Die excitatorischen Wirkungen von Desoxyephedrin (Per-vitin) auf die tonische Spinalmotorik der Katze. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 252, 20–31 (1965).Google Scholar
  13. Habermann, E.: Recent studies in Hymenoptera venoms. Proc. II. Int. Pharmacol. Meet. Prague 1963, Vol. 9, pp. 53–62. Oxford: Pergamon 1965.Google Scholar
  14. —, u. K.-G. Reiz: Ein neues Verfahren zur Gewinnung der Komponenten von Bienengift, insbesondere des zentral wirksamen Peptids Apamin. Biochem. Z. 341, 451–466 (1965).Google Scholar
  15. Haux, P., H. Sawerthal u. E. Habermann: Sequenzanalyse des Bienengift-Neurotoxins (Apamin) aus seinen tryptischen und chymotryptischen Spaltstücken. Hoppe-Seylers Z. physiol. Chem. 348, 737–738 (1967).PubMedGoogle Scholar
  16. Jefferson, A. A., and W. Schlapp: Some effects of repetitive stimulation of afferents on reflex conduction. In: Wolstentolme, G. E. W. (Edit.): Ciba Found. Symp. on The Spinal Cord. Boston: Little and Brown 1953.Google Scholar
  17. Jong, R. H. de, R. Robles, and K. I. Morikawa: Gallamine (Flaxedil) and synaptic transmission in the spinal cord. Science 160, 768–769 (1968).PubMedCrossRefGoogle Scholar
  18. Lloyd, D. P. C.: Neuron patterns controlling transmission of ipsilateral handlimb reflexes in cat. J. Neurophysiol. 6, 293–315 (1943).Google Scholar
  19. —: Facilitation and inhibition of spinal motoneurones. J. Neurophysiol. 9, 421–438 (1946).PubMedGoogle Scholar
  20. —, and V.J. Wilson: Reflex depression in rhythmically active monosynaptic reflex pathways. J. gen. Physiol. 40, 409–426 (1957).PubMedCentralPubMedCrossRefGoogle Scholar
  21. Rudomin, P., and H. Dutton: Effects of presynaptic and postsynaptic inhibition on the variability of the monosynaptic reflex. Nature (Lond.) 216, 292–293 (1967).CrossRefGoogle Scholar
  22. Swerdlow, Y. S., and V. I. Alekseeva: Effect of tetanus toxin on presynaptic inhibition in the spinal cord. Fed. Proc. 25, T 931–T 936 (1966).Google Scholar
  23. Weber Erna: Grundriß der biologischen Statistik, 6. Aufl. Jena: G. Fischer 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • H. Wellhöner
    • 1
  1. 1.Max-Planck-Institut für experim. MedizinGöttingenDeutschland

Personalised recommendations