Advertisement

Quantitative Analyse der Catecholamin-Biosynthese des Nebennierenmarks in vivo und Ruhesekretion neugebildeter Amine unter besonderer Berücksichtigung des Dopamins

  • Klaus Hempel
  • Heinrich F. K. Männl
Chapter

Schlüsselwörter

Dopamin Sekretion Nebennierenmark Catecholamine Biosyntheserate 

Summary

Cats and rabbits were injected intravenously with 3H-tyrosine and the radioactivity of the catecholamines in adrenal glands and adrenal blood was measured up to 60 min after injection. Adrenal blood was collected in a cava pocket. In addition the specific activity of free 3H-tyrosine in blood plasma was measured as a function of time.

Radioactive dopamine could be demonstrated in venous blood from adrenals of cat and rabbit by different methods (column chromatography with Dowex 50, paper chromatography, high voltage paper electrophoresis). On the other hand arterial blood flowing to the adrenals contained no 3H-dopamine.

During the 30 min after the injection of 3H-tyrosine cat adrenals secreted about 14% of the synthesized radioactive catecholamines as 3H-dopamine and 8% as 3H-noradrenaline. In contrast to this the adrenals of rabbits secreted not more than 3% as 3H-dopamine and about 20% as 3H-noradrenaline.

The catecholamine biosynthesis rate of the adrenals and their dopamine resting secretion was estimated from the specific activity of 3H-tyrosine in blood plasma and the radioactivity of catecholamines in adrenal glands and adrenal blood. In cats two adrenals synthesized 0.75 mμMol/min catecholamine per kg body weight and in rabbits 0.074 nμMol/min/kg body wt. respectively. The dopamine resting secretion in cats was about 0.08 nμMol/min and in rabbits about 0.002 mμMol/min.

Key-Words

Dopamine Secretion Adrenal Medulla Catecholamine Biosynthesis-Rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bertler, A., A. Carlsson, and E. Rosengren: A method for the fluorometric determination of adrenaline and noradrenaline in tissues. Acta. physiol. scand. 44, 273 (1958).PubMedCrossRefGoogle Scholar
  2. — N.-A. Hillarp, and E. Rosengren: Some observations on the synthesis and storage of catecholamines in the adrenaline cells of the suprarenal medulla. Acta physiol. scand. 50, 124 (1960).CrossRefGoogle Scholar
  3. Bhagat, B., and F.E. Shideman: Repletion of cardiac catecholamines in the rat: Importance of the adrenal medulla and synthesis from precursors. J. Pharmacol. exp. Ther. 143, 77 (1964).PubMedGoogle Scholar
  4. Birkofer, L., u. K. Hempel: Synthese tritiummarkierter Aminosäuren hoher spezifischer Aktivität. Chem. Ber. 96, 1373 (1963).CrossRefGoogle Scholar
  5. Bülbring, E., and J.H. Burn: Liberation or noradrenaline from the suprarenal gland. Brit. J. Pharmacol. 4, 202 (1949).PubMedGoogle Scholar
  6. Butterworth, K.R., and M. Mann: A quantitative comparison of the sympathomimetic amine content of the left and right adrenal glands of the cat. J. Physiol. (Lond.) 136, 294 (1957).Google Scholar
  7. Crone, C.: The secretion of adrenal medullary hormones during hypoglycemia in intact, decerebrate and spinal sheep. Acta physiol. scand. 63, 213 (1965).PubMedCrossRefGoogle Scholar
  8. Dengler, H.: Über das Vorkommen von Oxytyramin in der Nebenniere. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 373 (1957).CrossRefGoogle Scholar
  9. Duner, H.: The influence of the blood glucose level on the secretion of adrenaline and noradrenaline from the suprarenal. Acta physiol. scand. 28, suppl. 102, 36 (1953).Google Scholar
  10. — The effect of insulin hypoglycemia on the secretion of adrenaline and noradrenaline from the suprarenal of cat. Acta physiol. scand. 32, 63 (1954).PubMedCrossRefGoogle Scholar
  11. Eade, N.R.: The distribution of catechol amines in homogenates of bovine adrenal medulla. J. Physiol. (Lond.) 141, 183 (1958).Google Scholar
  12. —, and D.R. Wood: The release of adrenaline and noradrenaline from the adrenal medulla of the cat during splanchnic stimulation. Brit. J. Pharmacol. 13, 390 (1958).PubMedGoogle Scholar
  13. Gey, K.F., and A. Pletscher: Distribution and metabolism of DL-3, 4-dihydroxy-[2-14C]-phenylalanine in rat tissues. Biochem. J. 92, 300 (1964).PubMedGoogle Scholar
  14. Goodall, McC.: Studies of adrenaline and noradrenaline in mammalian heart and suprarenals. Acta physiol. scand. 24, suppl. 85, 42 (1951).Google Scholar
  15. Hempel, K.: Über die gleichzeitige Messung von Tritium und 14C in biologischem Material mit dem Flüssigkeitsscintillationszähler. Atompraxis 10, 148 (1964).Google Scholar
  16. —, u. M. Deimel: Untersuchungen zur gezielten Strahlentherapie des Melanoms und des chromaffkien Systems durch selektive H-3-Inkorporation nach Gabe von H-3-markiertem DOPA. Strahlentherapie 121, 22 (1963).PubMedGoogle Scholar
  17. —, and H.F.K. Männl: Resting secretion of dopamine from the adrenal glands of the cat in vivo. Experientia (Basel) 23, 919 (1967 a).CrossRefGoogle Scholar
  18. — Über die Bildung von H-3-Dopa aus H-3-Tyrosin und die Bestimmung der Dopa-Neubildungsrate in der Nebenniere des Huhnes und der Katze unter in vivo-Bedingungen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 391 (1967b).CrossRefGoogle Scholar
  19. — Dopamin, ein neuer Bestandteil des Nebennieren-Inkrets. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 263, 222 (1969).CrossRefGoogle Scholar
  20. Holtz, P., K. Credner u. G. Kroneberg: Über das sympathicomimetische pressorische Prinzip des Harns. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 204, 228 (1944/47).CrossRefGoogle Scholar
  21. — A. Engelhardt, K. Greeff u. H.J. Schümann: Der Adrenalin-und Arterenolgehalt des vom Nebennierenmark bei Carotissinusentlastung und elektrischer Splanchnicusreizung abgegebenen Inkretes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 215, 58 (1952).Google Scholar
  22. —, u. D. Palm: Brenzcatechinamine und andere sympathicomimetische Amine. Biosynthese und Inaktivierung, Freisetzung und Wirkung. Ergebn. Physiol. 58, (1966).Google Scholar
  23. Holtz, P., u. H.J. Schümann: Karotissinusentlastung und Nebeniernen. Arterenol chemischer Überträgerstoff sympathischer Nervenerregungen und Hormon des Nebennierenmarks. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 206, 49 (1949).Google Scholar
  24. — K. Stock, u. E. Westermann: Pharmakologie des Tetrahydropapaverolins und seine Entstehung aus Dopamin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 387 (1964).CrossRefGoogle Scholar
  25. Houssay, B.A., and C.E. Rapela: Adrenal secretion of adrenalin and noradrenalin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 219, 156 (1953).Google Scholar
  26. Kaindl, F., and U.S. von Euler: Liberation of nor-adrenaline and adrenaline from the suprarenals of the cat during carotid occlusion. Amer. J. Physiol. 166, 284 (1951).PubMedGoogle Scholar
  27. Kroneberg, G., und H.J. Schümann: Adrenalinsekretion und Adrenalin Verarmung der Kaninchennebennieren nach Reserpin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 234, 133 (1958).CrossRefGoogle Scholar
  28. Laverty, R., and D.F. Sharman: The estimation of small quantities of 3, 4-di-hydroxyphenylethylamine in tissues. Brit. J. Pharmacol. 24, 538 (1965).PubMedGoogle Scholar
  29. — and M. Vogt: Action of 2, 4, 5-Trihydroxyphenylethylamine on the storage and release of noradrenaline. Brit. J. Pharmacol. 24, 549 (1965).PubMedGoogle Scholar
  30. Lishajko, F.: Occurrence and some properties of dopamine containing granules in the sheep adrenal. Acta physiol. scand. 72, 255 (1968).PubMedCrossRefGoogle Scholar
  31. Malmejac, J.: Activity of the adrenal medulla and its regulation. Physiol. Rev. 44, 186 (1964).PubMedGoogle Scholar
  32. Marley, E., and W.D.M. Paton: The output of sympathetic amines from the cat’s adrenal gland in response to splanchnic nerve activity. J. Physiol. (Lond.) 155, 1 (1961).Google Scholar
  33. Maurer, W.: Untersuchungen zur Größe des Eiweißumsatzes von Plasma-und Organeiweiß. Wien. Z. inn. Med. 38, 393 (1957).PubMedGoogle Scholar
  34. Mirkin, B.L., and D.D. Bonnycastle: A pharmacological and chemical study of humoral mediators in the sympathetic nervous system. Amer. J. Physiol. 178, 529 (1957).Google Scholar
  35. — D.M. Brown, and R.A. Ulstrom: Catecholamine binding protein: Binding of tritium to a specific protein fraction of human plasma following in vitro incubation with tritiated noradrenaline. Nature (Lond.) 212, 1270 (1966).CrossRefGoogle Scholar
  36. Poisner, A.M., and W.W. Douglas: The release of dopamine on stimulation of the adrenal medulla. Pharmacologist 7, 168 (1965).Google Scholar
  37. Puppi, A., I. Benedeczky, A. Tigyi, and K. Lissak: Identification of dopamine-containing granules in the adrenal medulla. Acta physiol. Acad. Sci. hung. 27, 341 (1965).PubMedGoogle Scholar
  38. Robinson, R.L.: Stimulation of the catecholamine output of the isolated, perfused adrenal gland of the dog by angiotensin and bradykinin. J. Pharmacol. exp. Ther. 156, 252 (1967).PubMedGoogle Scholar
  39. —, and D.T. Watts: Inhibition of adrenal secretion of epinephrine during infusion of catecholamines. Amer. J. Physiol. 203, 713 (1962).PubMedGoogle Scholar
  40. Roston, S.: Rapid movement of epinephrine and norepinephrine into human erythrocytes. Nature (Lond.) 215, 432 (1967).CrossRefGoogle Scholar
  41. Shepherd, D.M., and G.B. West: Noradrenaline and the suprarenal medulla. Brit. J. Pharmacol. 6, 665 (1951).PubMedGoogle Scholar
  42. — Hydroxytyramine and the adrenal medulla. J. Physiol. (Lond.) 120, 15 (1953).Google Scholar
  43. Spector, S., A. Sjoerdsma, P. Zaltzman-Nirenberg, M. Levitt, and S. Udenfriend: Norepinephrine synthesis from tyrosine-C14 in isolated perfused guinea pig heart. Science 139, 1299 (1963).PubMedCrossRefGoogle Scholar
  44. Stewart, G.N., and J.M. Rogoff: The spontaneous liberation of epinephrin from the adrenals. J. Pharmacol. exp. Ther. 8, 479 (1916).Google Scholar
  45. Udenfriend, S.: Fluorescence Assay in Biology and Medicine. New York-London: Academic Press 1962, p. 134.Google Scholar
  46. — Biosynthesis of the sympathetic neurotransmitter, norepinephrine. Harvey Lectures 60, 57 (1966).PubMedGoogle Scholar
  47. Vandermeulen, R., A. Cession-Fossion, J. Lecomte, F. Orban et G. Lejeune: Présence de dopamine dans les surrénales humaines. Rev. franç. Étud. clin. Biol. 14, 283 (1969).PubMedGoogle Scholar
  48. — et G. Peters: Présence de dopamine dans les surrénales de la chèvre. Arch. internat. Physiol. Biochim. 76, 916 (1968).CrossRefGoogle Scholar
  49. Vanotti, A., Th. Lemarchand-Beraud et B.-B. Scazziga: Produits iodés plasmatiques dans les maladies thyroidiennes. Expos. ann. Biochim. méd. 25, 151 (1964).Google Scholar
  50. Waalkes, T.P., and S. Udenfriend: A fluorometric method for the estimation of tyrosine in plasma and tissues. J. Lab. clin. Med. 50, 733 (1957).PubMedGoogle Scholar
  51. Weiss, B., and G.V. Rossi: Metabolism of dopa-14C in the normal and a-methyldopa-treated mouse. Biochem. Pharmacol. 12, 1399 (1963).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • Klaus Hempel
    • 1
    • 2
  • Heinrich F. K. Männl
    • 1
  1. 1.Institut für Medizinische StrahlenkundeUniversität WürzburgDeutschland
  2. 2.WürzburgDeutschland

Personalised recommendations