Über die Abhängigkeit der Strophanthinwirkung auf den myokardialen Sauerstoffverbrauch vom Funktionszustand des Herzens

  • W. Klaus
  • R. Krebs


On the basis of some divergent observations concerning the action of cardiac glycosides on the myocardial oxygen consumption, it was suggested that the direction and the magnitude of this effect might be dependent on the experimental conditions and on the functional state of the hearts. Further characterization of this dependence was expected from measurements of the oxygen consumption of isolated guinea pig hearts working under different, well defined hemodynamic conditions. The hearts were perfused with Tyrode solution (37° C, carbogen saturated) and the mean aortic pressure (30 mm Hg) and the stimulation frequency (180/min) were kept constant.

In one series of experiments the venous filling pressure was fixed at 10 cm H2O and the end-diastolic pressure, the cardiac output, the coronary flow, and the oxygen consumption were measured. Ouabain (5 × 10−8 g/ml) caused an increase in cardiac output and a decrease in end-diastolic pressure, but did not significantly influence the coronary flow and the oxygen consumption. This result, however, is not conclusive because of the simultaneous and opposite change of two parameters (cardiac output, end-diastolic pressure) known to be involved in the regulation of the myocardial oxygen consumption.

In another series of experiments the cardiac output was kept constant (30 ml/ min), in addition to frequency and mean aortic pressure, and the changes in the aforementioned parameters were studied. Under these conditions the external cardiac work remained unchanged, only the end-diastolic pressure varied depending on the contractile ability of the particular heart muscle preparation. In both groups the oxygen consumption was increased with increasing end-diastolic pressure but the values for the ouabain-treated preparations were consistently higher than the corresponding control values at the same end-diastolic pressure. The maximum rate of rise in pressure development (dp/dt) showed an analogue dependence on the end-diastolic pressure. A combined analysis of all these data indicated that the myocardial oxygen consumption under all conditions studied was determined only by the magnitude of the maximum rate of rise of pressure development.

Because of the dependence of this parameter on the end-diastolic pressure (besides the direct influence of ouabain) it is conceivable that the effect of ouabain on the myocardial oxygen consumption is dependent on the hemodynamic conditions that is on the degree of sufficiency. Therefore, different effects of ouabain on myocardial oxygen consumption (increase, reduction, no change) may result at different functional states of the myocardium. The possible involvement of other factors determining the myocardial oxygen consumption under the influence of cardiac glycosides is briefly discussed.


Heart Muscle Ouabain Oxygen Consumption Hemodynamic Parameters kg]De|Schlüsselwörter Herzmuskel Strophanthin Sauerstoffverbrauch Hämodynamische Parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacaner, M.B., F. Lioy, and M.B. Visscher: Induced change in heart metabolism as a primary determinant of heart performance. Amer. J. Physiol. 209, 519–531 (1965).PubMedGoogle Scholar
  2. Barcroft, J., and W.E. Dixon: The gaseous metabolism of the mammalian heart. J. Physiol. (Lond.) 35, 182–204 (1906).Google Scholar
  3. Berglund, E., H.G. Borst, F. Duff, and A.L. Schreiner: Effect of heart rate on cardiac work, myocardial oxygen consumption and coronary blood flow in the dog. Acta physiol. scand. 42, 185–198 (1958).PubMedCrossRefGoogle Scholar
  4. — R.G. Monroe, and G.L. Schreiner: Myocardial oxygen consumption and coronary blood flow during potassium-induced cardiac arrest and during ventricular fibrillation. Acta physiol. scand. 41, 261–268 (1957).PubMedCrossRefGoogle Scholar
  5. Bing, R.J.: Cardiac metabolism. Physiol. Rev. 45, 171–213 (1965).PubMedGoogle Scholar
  6. — F.M. Maraist, J.F. Dammann, A. Draper, R. Heimbecker, R. Daley, R. Gerard, and P. Calazel: Effect of Strophanthus on coronary blood flow and cardiac oxygen consumption of normal and failing human hearts. Circulation 2, 513–516 (1950).PubMedCrossRefGoogle Scholar
  7. Blain, J.M., E.E. Eddleman, A. Siegel, and R.J. Bing: Studies on myocardial metabolism. V: The effects of Lanatoside C on the metabolism of the human heart. J. clin. Invest. 35, 314–321 (1956).PubMedCentralPubMedCrossRefGoogle Scholar
  8. Braunwald, E., R.D. Bloodwell, L.J. Goldberg, and A.G. Morrow: Studies on digitalis. IV. Observations in man on the effects of digitalis preparations on the contractility of the nonfailing heart and on total vascular resistance. J. clin. Invest. 40, 52–59 (1961).PubMedCentralPubMedCrossRefGoogle Scholar
  9. Britman, N.A., and H.J. Levine: Contractile element work: a major determinant of myocardial oxygen consumption. J. clin. Invest. 43, 1397–1408 (1964).PubMedCentralPubMedCrossRefGoogle Scholar
  10. Clancy, R.L., T.P. Graham, Jr., W.J. Powell, Jr., and J.P. Gilmore: Inotropic augmentation of myocardial oxygen consumption. Amer. J. Physiol. 212, 1055–1061 (1967).PubMedGoogle Scholar
  11. Cohn, A.E., and J.M. Steele: The influence of frequency of contraction of the isolated mammalian heart upon the consumption of oxygen. Amer. J. Physiol. 113, 654–658 (1935).Google Scholar
  12. Cotten, M. de, and P.E. Stropp: Action of digitalis on the non-failing heart of the dog. Amer. J. Physiol. 192, 114–120 (1958).PubMedGoogle Scholar
  13. Covell, J.W., E. Braunwald, J. Ross, Jr., and E.H. Sonnenblick: Studies on digitalis. XVI. Effects on myocardial oxygen consumption. J. clin. Invest. 45, 1535–1542(1966).PubMedCentralPubMedCrossRefGoogle Scholar
  14. Decherd, G., and M.B. Visscher: The relative importance of the performance of work and the initial fiber length in determining the magnitude of energy liberation in the heart. Amer. J. Physiol. 103, 400–406 (1933).Google Scholar
  15. Dresdale, D.T., Y.Z. Yuceoglu, R.J. Michtom, M. Schultz, and M. Lunger: Effect of lanatoside C on cardiovascular hemodynamics: Acute digitalizing doses in subjects with normal hearts and with heart disease without failure. Amer. J. Cardiol. 4, 88 (1959).PubMedCrossRefGoogle Scholar
  16. Emmenegger, H., M. Taeschler u. A. Cerletti: Ein isoliert durchströmtes, arbeitendes Herzpräparat der Katze. Helv. physiol. pharmacol. Acta 20, 213–226 (1962).Google Scholar
  17. Evans, C.L.: The mechanism of cardiac acceleration by warmth and by adrenalin. J. Physiol. (Lond.) 51, 91–104 (1917).Google Scholar
  18. Feinberg, H., E. Boyd, and G. Tanzini: Mechanical performance and oxygen utilization of the isovolumic rabbit heart. Amer. J. Physiol. 215, 132–139 (1968).PubMedGoogle Scholar
  19. — L.N. Katz, and E. Boyd: Determinants of coronary flow and myocardial oxygen consumption. Amer. J. Physiol. 202, 45–52 (1962).PubMedGoogle Scholar
  20. Gleason, W.L., and E. Braunwald: Studies on the first derivative of the ventricular pressure pulse in man. J. clin. Invest. 41, 80–91 (1962).PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gollwitzer-Meier, K., u. E. Krüger: Herzenergetik und Strophanthineinwirkung bei verschiedenen Formen der experimentellen Herzinsuffizienz. Pflügers Arch. ges. Physiol. 238, 251–278 (1937).CrossRefGoogle Scholar
  22. Gregg, D.E., C.R. Rayford, E.M. Khouri, A.A. Kattus, and W.P. McKeever: Effect of alteration of coronary perfusion pressure on oxygen uptake of left myocardium. Circulation 16, 888 (1957) (Abstr.).Google Scholar
  23. Gremels, H.: Zur Physiologie und Pharmakologie der Energetik des Säugetierherzens. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 169, 689–723 (1933).CrossRefGoogle Scholar
  24. — Über den Einfluß von Digitalisglykosiden auf die energetischen Vorgänge am Säugetierherzen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 186, 625–660 (1937).CrossRefGoogle Scholar
  25. Harrison, T.R., B. Friedman, and H. Resnik, Jr.: Mechanism of acute experimental heart failure. Arch. intern. Med. 57, 927–948 (1936).CrossRefGoogle Scholar
  26. Heeg, E.: Untersuchungen über den Einfluß herzwirksamer Pharmaka auf den Druckablauf in der linken Herzkammer der Katze. Habil.-Schrift, Düsseldorf 1966.Google Scholar
  27. Hemingway, A., and A.R. Fee: The relationship between the volume of the heart and its oxygen usage. J. Physiol. (Lond.) 63, 299–303 (1927).Google Scholar
  28. Hoffmeister, H.E., H. Kreuzer u. W. Schoeppe: Der Sauerstoffverbrauch des stillstehenden, des leerschlagenden und des flimmernden Herzens. Pflügers Arch. ges. Physiol. 269, 194–206 (1959).CrossRefGoogle Scholar
  29. Kahler, R.L., E. Braunwald, L.L. Kelminson, L. Kedes, C.A. Chidsey, and S. Segal: Effect of alterations of coronary blood flow on the oxygen consumption of the non-working heart. Circulat. Res. 13, 501–509 (1963).PubMedCrossRefGoogle Scholar
  30. Katz, L.N., and H. Feinberg: The relations of cardiac effort to myocardial oxygen consumption and coronary flow. Circulat. Res. 6, 656–669 (1958).PubMedCrossRefGoogle Scholar
  31. Klaus, W., u. R. Krebs: Über den Einfluß von Digitoxigenin und Strophanthin auf mechanische Aktivität und Sauerstoffverbrauch isolierter Herzmuskelpräparate. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 102–117 (1968).CrossRefGoogle Scholar
  32. — u. W. Fleck: Eine verbesserte Methode zur gleichzeitigen Messung des Sauerstoffverbrauches und der mechanischen Aktivität isolierter Muskelpräparate. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 93–101 (1968).CrossRefGoogle Scholar
  33. Koyama, T., u. K. Brecht: Ein Beitrag zur Stabilisierung der Pt-Elektrode und ihrer Anwendung bei gleichzeitiger Bestimmung des Sauerstoffverbrauches und der mechanischen Aktivität des Muskels. Pflügers Arch. ges. Physiol. 286, 181–188 (1965).CrossRefGoogle Scholar
  34. Krebs, R., u. W. Klaus: Über die Beziehung zwischen O2-Verbrauch und Kontraktionskraft isolierter Meerschweinchenvorhöfe unter dem Einfluß von Digitoxigenin. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 30 (1966).CrossRefGoogle Scholar
  35. — Über die Wirkung von Strophanthin auf den myokardialen O2-Verbrauch in Abhängigkeit von der Ausgangslage. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 158 (1968).CrossRefGoogle Scholar
  36. Kühn, P., u. N. Brachfeld: Zur Wertigkeit des Tension-Time-Index und der maximalen linksventrikulären Druckanstiegsgeschwindigkeit (dp/dt) in der Korrelation zum myokardialen Sauerstoffverbrauch. Z. Kreisl.-Forsch. 58, 244–251 (1969).Google Scholar
  37. Laurent, D., C. Bolene-Williams, F.L. Williams, and L.N. Katz: Effect of heart rate on coronary flow and cardiac oxygen consumption. Amer. J. Physiol. 185, 355–364 (1956).PubMedGoogle Scholar
  38. Lee, K.S., D.H. Yu, and R. Burstein: The effect of ouabain on the oxygen consumption, the high energy phosphates and the contractility of the cat papillary muscle. J. Pharmacol. exp. Ther. 129, 115–122 (1960).PubMedGoogle Scholar
  39. Marchetti, G.V., G. Aguggini, L. Merlo, V. Noseda, and A. Santi: Coronary blood flow, oxygen consumption of the myocardium and cardiac work in the sheep. Pflügers Arch. ges. Physiol. 290, 80–88 (1966).CrossRefGoogle Scholar
  40. Mason, D., and E. Braunwald: Studies on digitalis. IX. Effects of ouabain on the nonfailing human heart. J. clin. Invest. 42, 1105–1111 (1963).Google Scholar
  41. Maxwell, G.M., C.A. Castillo, D.H. White, Jr., C.W. Crumpton, and G.G. Rowe: Induced tachycardia: its effect upon the coronary haemodynamics, myocardial metabolism and cardiac efficiency of the intact dog. J. clin. Invest. 37, 1413–1418 (1958).PubMedCentralPubMedCrossRefGoogle Scholar
  42. McDonald, R.H., Jr.: Developed tension: a major determinant of myocardial oxygen consumption. Amer. J. Physiol. 210, 351–356 (1966).PubMedGoogle Scholar
  43. Modell, W.: The pharmacologic basis of the use of digitalis in congestive heart failure. Physiol. Pharmacol. Phycns. 1, 1 (1966).Google Scholar
  44. Moe, G.K., and M.B. Visscher: Studies on the native glycosides of digitalis lanata with particular reference to their effects upon cardiac efficiency and their toxicity. J. Pharmacol. exp. Ther. 64, 65 (1938).Google Scholar
  45. Monroe, R.G., and G.N. French: Left ventricular pressure-volume relationships and myocardial oxygen consumption in the isolated heart. Circulat. Res. 9, 362–374 (1961).PubMedCrossRefGoogle Scholar
  46. Neely, J.R., H. Liebermeister, E.J. Battersby, and H.E. Morgan: Effect of pressure development on oxygen consumption by isolated heart. Amer. J. Physiol. 212, 804–814 (1967).PubMedGoogle Scholar
  47. Olson, R.E., G. Roush, and M.M.L. Liang: Effect of acetyl strophanthidin upon the myocardial metabolism and cardiac work of normal dogs and dogs with congestive heart failure (abstract.) Circulation 12, 755 (1955).Google Scholar
  48. Opie, L.H.: Coronary flow rate and perfusion pressure as determinants of mechanical function and oxidative metabolism of isolated perfused rat heart. J. Physiol. (Lond.) 180, 529–541 (1965).Google Scholar
  49. Opitz, E., u. G. Thews: Einfluß von Frequenz und Faserdicke auf die Sauerstoffversorgung des menschlichen Herzmuskels. Arch. Kreisl.-Forsch. 18, 137–151 (1952).CrossRefGoogle Scholar
  50. Peters, H., and M.B. Fischer: Energy metabolism of the heart in failure and influence of drugs upon it. Amer. Heart J. 11, 273–291 (1936).CrossRefGoogle Scholar
  51. Rodbard, S., F. Williams, and C. Williams: The spherical dynamics of the heart (myocardial tension, oxygen consumption, coronary blood flow and efficiency). Amer. Heart J. 57, 348–360 (1959).PubMedCrossRefGoogle Scholar
  52. Rohde, E., u. S. Ogawa: Gaswechsel und Tätigkeit des Herzens unter dem Einfluß von Giften und Nervenreizung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 69, 200 (1912).CrossRefGoogle Scholar
  53. Rollett, E.L., P.M. Yurchak, W.B. Hood, and R. Gorlin: Pressure-volume correlates of left ventricular oxygen consumption in the hypervolemic dog. Circulat. Res. 17, 499–518 (1965).CrossRefGoogle Scholar
  54. Ross, J., Jr., E.H. Sonnenblick, G.A. Kaiser, P.L. Frommer, and E. Braunwald: Electroaugmentation of left ventricular performance and oxygen consumption by repetitive application of paired electrical stimuli. Circulat. Res. 16, 332–342 (1965).PubMedCrossRefGoogle Scholar
  55. Sarnoff, S.J., R. Braunwald, G.H. Welch, Jr., R.B. Case, W.N. Stainsby, and R. Macruz: Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension time index. Amer. J. Physiol. 192, 148–156 (1958).PubMedGoogle Scholar
  56. — J.P. Gilmore, A.G. Wallace, N.S. Skinner, Jr., J.H. Mitchell, and W.M. Daggett: Effect of acetyl strophanthidin therapy on cardiac dynamics, oxygen consumption and efficiency in the isolated heart with and without hypoxia. Amer. J. Med. 37, 3–13 (1964).PubMedCrossRefGoogle Scholar
  57. Schaper, W.K.A., R. Lewi, and A.H.M. Jageneau: The determinants of the rate of change of the left ventricular pressure (dp/dt). Arch. Kreisl.-Forsch. 46, 27–41 (1965).CrossRefGoogle Scholar
  58. Sciarini, L.J., E.M. Ackerman, and W.T. Salter: The response of isolated hypodynamic myocardium to inotropic drugs. J. Pharmacol. exp. Therap. 92, 432–442 (1948).Google Scholar
  59. Selzer, A., and R.O. Malmborg: Hemodynamic effects of digoxin in latent cardiac failure. Circulation 25, 695–702 (1962).PubMedCrossRefGoogle Scholar
  60. Siegel, J.H., and E.H. Sonnenblick: Isometric time-tension relationship as an index of myocardial contractility. Circulat. Res. 12, 597–610 (1963).PubMedCrossRefGoogle Scholar
  61. Siess, M.: Die Bedeutung des Substrates für den Sauerstoffverbrauch isolierter Meerschweinchenvorhöfe nach Leistungssteigerung durch g-Strophanthin oder Adrenalin. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 202–203 (1968).CrossRefGoogle Scholar
  62. Sonnenblick, E.H., A.G. Morrow, and J.F. Williams, Jr.: Effects of heart rate on the dynamics of force development in the intact human ventricle. Circulation 33, 945–951 (1966a).PubMedCrossRefGoogle Scholar
  63. — J. Ross Jr., J.W. Covell, G.A. Kaiser, and E. Braunwald: Velocity of contraction as a determinant of myocardial oxygen consumption. Amer. J. Physiol. 209, 919–927 (1965).PubMedGoogle Scholar
  64. — J.F. Williams, Jr., G. Glick, D.P. Mason, and E. Braunwald: Studies on digitalis. XV. Effects of cardiac glycosides on myocardial force-velocity relations in the nonfailing human heart. Circulation 34, 532–539 (1966b).PubMedCrossRefGoogle Scholar
  65. Starling, E.H., and M.B. Visscher: The regulation of the energy output of the heart. J. Physiol. (Lond.) 62, 243–261 (1926-27).Google Scholar
  66. Stead, E.A., Jr., J.V. Warren, and E.S. Brannon: Effects of lanatoside C on the circulation of patients with congestive failure. A study using catheterization of the right side of the heart. Arch. intern. Med. 81, 282–291 (1948).Google Scholar
  67. Stewaet, H.J., and A.E. Cohn: Studies on the effect of the action of digitalis on the output of blood from the heart: III. Part 1. The effect on the output in normal human hearts. Part 2. The effect on the output of hearts in heart failure with congestion in human beings. J. clin. Invest. 11, 917–955 (1932).CrossRefGoogle Scholar
  68. van Citters, R.L., W.E. Ruth, and K.R. Reissmann: Effect of heart-rate on oxygen consumption of the isolated dog heart performing no external work. Amer. J. Physiol. 191, 443–445 (1957).Google Scholar
  69. van der Veen, K.J., and A.F. Willebrands: Effect of frequency and Ca++ concentration on oxygen consumption of the isolated rat heart. Amer. J. Physiol. 212, 1536–1540(1967).PubMedGoogle Scholar
  70. Wallace, A.G., N.S. Skinner, Jr., and J.H. Mitchell: Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Amer. J. Physiol. 205, 30–36 (1963).PubMedGoogle Scholar
  71. Weissler, A.M., W.G. Gamel, H.E. Grode, S. Cohen, and C.D. Schoenfeld: The effect of digitalis on ventricular ejection in normal human subjects. Circulation 29, 721–729 (1964).PubMedCrossRefGoogle Scholar
  72. Whalen, W.J.: The relation of work and oxygen consumption on isolated strips of cat and rat myocardium. J. Physiol. (Lond.) 157, 1–17 (1961).Google Scholar
  73. Williams, J.F., E.H. Sonnenblick, and E. Braunwald: Determinants of atrial contractile force in the intact heart. Amer. J. Physiol. 209, 1061–1068 (1965).PubMedGoogle Scholar
  74. Yankopoulos, N.A., C. Kawai, E.E. Federici, L.N. Adler, and W.H. Abelmann: The hemodynamic effects of ouabain upon the diseased left ventricle. Amer. Heart J. 76, 466–480 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • W. Klaus
    • 1
  • R. Krebs
    • 1
  1. 1.Pharmakologisches Institut der UniversitätMainzDeutschland

Personalised recommendations