Advertisement

The Influence of Tobacco Smoke and Nicotine on Thiocyanate Metabolism

  • H. Schievelbein
  • E. Werle
  • Elke Kathrin Schulz
  • R. Baumeister
Chapter

Summary

The enzyme thiosulphate-sulphurtransferase (EC 2.8.1.1, formerly called rhodanese) of guinea pig organs is inhibited after exposure of organ homogenates to cigarette smoke. The inhibitors are present in the gaseous phase and in the particulate matter of the smoke. After smoke exposure of guinea pigs in vivo, the enzyme is also inhibited in several organs, the thiocyanate content of most of the organs is increased. Nicotine has no influence on the activity of the enzyme in vitro, but administration of nicotine to guinea pigs in vivo leads to an inhibition of the enzyme in most of the organs investigated. The thiocyanate content of several organs is elevated after nicotine administration.

Key-Words

Tobacco Smoke Nicotine Thiosulphate-Sulphurtransferase Thiocyanate 

Zusammenfassung

Der Einfluß von Tabakrauch und Nicotin auf den Rhodanidstoffwechsel.

Die Thiosulfat-Sulfurtransferase (EC 2.8.1.1, früher Rhodanese genannt) wird durch Einleiten von Zigarettenrauch in Homogenate von Meerschweinchenorganen gehemmt; die Inhibitoren lassen sich sowohl in der Gasphase als auch in der Partikelphase des Rauches nachweisen. Nach Rauchexposition in vivo ist das Enzym in Meerschweinchenorganen ebenfalls gehemmt, der Rhodanidgehalt der meisten Organe ist erhöht. In Ansätzen in vitro übt Nicotin keinen Einfluß auf die Aktivität des Enzyms aus. Die Verabreichung von Nicotin in vivo jedoch führt zu einer Hemmung des Enzyms in den meisten untersuchten Organen, der Thiocyanatgehalt der meisten Organe ist nach Nicotinzufuhr erhöht.

Schlüsselwörter

Tabakrauch Nicotin Thiosulfat-Sulfurtransferase Rhodanid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armenio, G., P. D. Laforgia e M. Buonsanto: Eicerca dei solfocianati nella saliva umana. III. Rilievi comparativi tra l’influenza del fumo di tabacco e di altre foglie sechhe sulla percentuale dei tiocianati nella saliva. Boll. Soc. ital. Biol. sper. 28, 1452 (1952).PubMedGoogle Scholar
  2. — — Metodo di Cosby e Sumner modificato per la ricerca delia rodanese nelle ghiandole salivari. Boll. Soc. ital. Biol. sper. 29, 1095 (1953).Google Scholar
  3. Brückneb, J., and F. B. Desmond: cit. after Richterich 1965.Google Scholar
  4. Chisholm, I. A., J. Bronte-Stewaed, and W. S. Foulds: Hydroxocobalamin versus cyanocobalamin in the treatment of tobacco amblyopia. Lancet 1967, 450.Google Scholar
  5. Dabby, P. W., and J. Wilson: Cyanide, smoking and tobacco amblyopia. Observations on the cyanide content of tobacco smoke. Brit. J. Ophthal. 51, 336 (1967).CrossRefGoogle Scholar
  6. Densen, P. M., B. Davedow, H. E. Bass, and E. W. Jones: A chemical test for smoking behaviour. Arch, environm. Hlth 14, 365 (1967).CrossRefGoogle Scholar
  7. Foulds, W. S., J. Bronte-Steward, and I. A. Chisholm: Vitamin B12 content of aqueous humour. Nature (Lond.) 218, 586 (1968).CrossRefGoogle Scholar
  8. Lang, K.: Die Ehodanbildung im Tierkörper. Biochem. Z. 259, 243 (1933).Google Scholar
  9. — Rhodanese. In Hoppe-Seyler-Thierfelder: Handbuch der physiologisch-und pathologisch-chemischen Analyse, Bd. VI, Teil B, S. 780. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  10. Lindstrand, K., J. Wilson, and D. M. Matthews: Chromatography and microbiological assay of vitamin B12 in smokers. Brit. med. J. 1966; II, 988.Google Scholar
  11. Maliszewski, T. F., and D. E. Bass: “True” and “apparent” thiocyanate in body fluids of smokers and nonsmokers. J. appl. Physiol. 8, 289 (1955).PubMedGoogle Scholar
  12. Matthews, D.M., J. Wilson, and K.J. Zilhka: Cyanide and thiocyanate metabolism and Vitamin B12 in multiple sclerosis. J. Neurol. Neurosurg. Psychiat. 28, 426 (1965).PubMedCrossRefGoogle Scholar
  13. Phillips, C. S., R. G. Ainley, P. van Peborgh, E. J. Watson-Williams, and A. C. Bottomley: Vitamin B12 content of aqueous humour. Nature (Lond.) 217, 67 (1968).CrossRefGoogle Scholar
  14. Reinwein, D.: Die Verteilung der Thiosulfat-Schwefeltransferase und des Rhodanids im menschlichen und tierischen Organismus. Hoppe-Seylers Z. physiol. Chem. 326, 94 (1961).PubMedCrossRefGoogle Scholar
  15. Richterich, R.: Klinische Chemie. Frankfurt: Akademische Verlagsgesellschaft 1965.Google Scholar
  16. Sörbo, B. H.: On the properties of rhodanese. Partial purification, inhibitors and intracellular distribution. Acta chem. scand. 5, 724 (1951).CrossRefGoogle Scholar
  17. — Crystalline rhodanese. I. Purification and physicochemical examination. II. The enzyme catalyzed reaction. Acta chem. scand. 7, 1129 (1953).CrossRefGoogle Scholar
  18. Stöa, K. F.: Studies on thiocyanate in serum with some supplementary investigations in saliva, urine and cerebrospinal fluids. Årb. Univ. Bergen. Med. Ser. 2, 1 (1956/57).Google Scholar
  19. Werle, E., u. W. Lorenz: Speichelsekretion nach Pilocarpin, Histamin und Kininen. Arch. int. Pharmacodyn. 161, 477 (1966).PubMedGoogle Scholar
  20. Wilson, J.: Leber’ s heriditary optic atrophy: A possible defect of cyanide metabolism. Clin. Sci. 29, 505 (1965).PubMedGoogle Scholar
  21. —, and D. M. Matthews: Metabolic interrelationships between cyanide, thiocyanate and vitamin B12 in smokers and nonsmokers. Clin. Sci. 31, 1 (1966).PubMedGoogle Scholar
  22. Wokes, F.: Tobacco amblyopia. Lancet 1958 526.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • H. Schievelbein
    • 1
  • E. Werle
    • 1
  • Elke Kathrin Schulz
    • 1
  • R. Baumeister
    • 1
  1. 1.Klinisch-Chemisches InstitutChirurgischen Klinik der UniversitätMünchenDeutschland

Personalised recommendations