Advertisement

Wirkungen von Amilorid und Triamteren auf die Lipolyse und den durch Enzyme induzierten Glucosetransport isolierter Fettzellen

  • Franz von Bruchhausen
  • Jürgen Streubel
Chapter

Zusammenfassung

  1. 1.

    An isolierten Fettzellen (Adipocyten) werden die Wirkungen von Amilorid und Triamteren auf die Lipolyse, auf die Enthemmung der Lipolyse und auf den Glucosetransport unter Stimulierung durch Phospholipase A, α-Chymotrypsin und Trypsin im Vergleich zu anderen gebräuchlichen Diuretica studiert.

     
  2. 2.

    Weder Amilorid noch Triamteren haben einen Einfluß auf die Lipolyse. Die Hemmung, die Insulin auf eine durch Wachstumshormon und Dexamethason sowie durch Adrenalin stimulierte Lipolyse ausübt, kann durch Amilorid und Triamteren in 10−3 bzw. 10−4 M Konzentration aufgehoben werden.

     
  3. 3.

    Amilorid und Triamteren hemmen die durch Phospholipase A, α-Chymotrypsin oder Trypsin angeregte Glucoseaufnahme in Fettgewebszellen ebenso wie die durch Insulin. Ein Angriff von Amilorid und Triamteren an der Zellmembran ist wahrscheinlich.

     
  4. 4.

    Die Stimulierung des Glucosetransports in die Fettzellen nach Auswaschen der Phospholipase A bleibt bestehen und steigert sich auf das Vierfache des Kontrollwertes. Mit diesem Verfahren ist es somit möglich, die stimulierende Grundkomponente von der hemmenden Komponente abzutrennen.

     

Schlüsselwörter

Adipocyten Plasmamembranen Diuretica Phospholipase A Proteasen 

Summary

  1. 1.

    Isolated fat cells (adipocytes) have been used to study the effects of amiloride and triamterene on lipolysis, on reversal of inhibition of lipolysis, and on glucose transport stimulated by phospholipase A, α-chymotrypsin, and trypsin. The effects have been compared with those of other diuretics.

     
  2. 2.

    Neither amiloride nor triamterene have an influence on lipolysis. The inhibition which insulin exerts on lipolysis stimulated by somatotrophic hormone and dexamethasone as well as by adrenaline can be abolished by amiloride and triamterene in concentrations of 10−3 M and 10−4 M respectively.

     
  3. 3.

    The uptake of glucose into adipose tissue cells which is stimulated by phospholipase A, α-chymotrypsin, or trypsin as well as by insulin, is inhibited by amiloride and triamterene. Amiloride and triamterene probably act on the cell membrane.

     
  4. 4.

    Stimulation of glycose transport into the fat cells can still be noted after washing out phospholipase A, and is increased to 4 times the control value. This procedure makes it possible to separate the stimulating component from the inhibiting component.

     

Key-Words

Adipocytes Plasma Membrane Diuretics Phospholipase A Proteases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baba, W. I., and G. R. Tudhope: Site and mechanism of action of the diuretic, triamterene. Clin. Sci. 27, 181–193 (1964).PubMedGoogle Scholar
  2. Baer, J. E., C. B. Jones, S. A. Spitzer, and H. F. Russo: The potassium-sparing and natriuretic acitivity of N-amidino-3, 5-diamino-6-chloropyrazin carboxamide hydroehloride dihydrate (Amiloride hydrochloride). J. Pharmacol. exp. Ther. 157, 472–485 (1967).PubMedGoogle Scholar
  3. Ball, G. M., and J. A. Greene: Localization of the site of action of triamterene diuretic. Proc. Soc. exp. Biol. (N. Y.) 113, 326–328 (1963).CrossRefGoogle Scholar
  4. Blecher, M.: Phospholipase C and mechanisms of action of insulin and cortisol on glucose entry into free adipose cells. Biochem. biophys. Res. Commun. 21, 202–209 (1965).PubMedCrossRefGoogle Scholar
  5. Blecher, M.: On the mechanism of action of phospholipase A and insulin on glucose entry into free adipose cells. Biochem. biophys. Res. Commun. 23, 68–74 (1966).PubMedCrossRefGoogle Scholar
  6. — Effects of insulin and phospholipase A on glucose transport across the plasma membrane of free adipose cells. Biochim. biophys. Acta (Amst.) 137, 557–571 (1967 a).Google Scholar
  7. — Enzyme specifity in the stimulation of glucose transport in the free adipose cells by phospholipases. Biochim. biophys. Acta (Amst.) 137, 572–574 (1967b).Google Scholar
  8. — Evidence for the involvement of cyclic-3′, 5′-adenosine monophosphate in glucose utilization by isolated rat epididymal adipose cells. Biochem. biophys. Res. Commun. 27, 560–567 (1967).PubMedCrossRefGoogle Scholar
  9. — N. S. Merlino, and J. T. Ro’ane: Control of the metabolism and lipolytic effects of cyelic-3′,5′-adenosine monophosphate in adipose tissue by insulin, methylxanthines, and nicotinic acid. J. biol. Chem. 243, 3973–3977 (1968).PubMedGoogle Scholar
  10. Bray, C. A.: Inhibition of glucose oxidation in adipose tissue by dibutyryladenosine-3′, 5′-phosphate. Biochem. biophys. Res. Commun. 28, 621–627 (1967).PubMedCrossRefGoogle Scholar
  11. Bruchhausen, F. v.: Hemmung des α-Amino-isobuttersäure-Transportes in das isolierte Fettgewebe durch N6 · O2′-Dibutyryl-adenosin-3′ · 5′-phosphat. Hoppe-Seylers Z. physiol. Chem. 349, 1437–1439 (1968).Google Scholar
  12. —, u. H. K. Bartelheimer: Veränderungen von Elektrolytbewegungen durch Diuretica am isolierten Fettgewebe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 97–98 (1968).CrossRefGoogle Scholar
  13. —, u. H. Herken: Wirkungen des 6-Aminonicotinsäureamids auf die insulinabhängige Glucoseaufnahme in das epididymale Fettgewebe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 388–400 (1966).CrossRefGoogle Scholar
  14. — H. J. Voss u. H.-J. Merker: Wirkung von Triamteren auf insulinstimulierbare Prozesse des Fettgewebes. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 416–429 (1967).CrossRefGoogle Scholar
  15. — I. Kaiser u. H. Herken: Über Wirkungen von N-Amidino-3, 5-diamino-6-chloro-pyrazincarboxamid (Amilorid) auf den Glucosetransport und die Proteinsynthese des epididymalen Fettgewebes der Ratte. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 262, 139–151 (1969).CrossRefGoogle Scholar
  16. Butcher, R. W., and C. E. Baird: Effects of lipolytic and antilipolytic substances on adenosine-3′5′-monophosphate levels in isolated fat cells. J. biol. Chem. 243, 1705–1712 (1968).PubMedGoogle Scholar
  17. — J. G. T. Sneyd, C. R. Park, and E. W. Sutherland: Effect of insulin on adenosine 3′, 5′-monophosphate in the rat epididymal fat pad. J. biol. chem. 241, 1651–1653 (1966).PubMedGoogle Scholar
  18. Crabbé, J.: A hypothesis concerning the mode of action of amiloride and of triamterene. Arch. int. Pharmacodyn. 173, 474–477 (1968).PubMedGoogle Scholar
  19. Dreierkauf, F. A., and H. L. Boom: Changes in the phosphatide pattern of yeast cells in relation to active carbohydrate transport. Biochim. biophys. Acta (Amst.) 150, 214–225 (1968).Google Scholar
  20. Ehrlich, E. N., and J. Crabbé: The mechanism of action of amipramizide. Pflügers Arch. 302, 79–96 (1968).PubMedCrossRefGoogle Scholar
  21. Eigler, J., J. Kelter u. E. Renner: Wirkungscharakteristika eines neuen Acylguanidins — Amiloride-HCl (MK 870) — an der isolierten Haut von Amphibien. Klin. Wschr. 45, 737–738 (1967).PubMedCrossRefGoogle Scholar
  22. Fain, J. N.: Adrenergic blockade of hormone-induced lipolysis in isolated fat cells. Ann. N. Y. Acad. Sci. 139, 879–890 (1967).PubMedCrossRefGoogle Scholar
  23. Fain, J. N., V. P. Kovacev, and R. O. Scow: Effect of growth hormone and dexamethasone on lipolysis and metabolism in isolated fat cells of the rat. J. biol. Chem. 240, 3522–3529 (1965).PubMedGoogle Scholar
  24. Hanahan, D. J., and J. N. Olley: Chemical nature of monophosphoinositides. J. biol. Chem. 231, 813–828 (1958).PubMedGoogle Scholar
  25. Jungas, R. C.: Role of cyclic-3′,5′-AMP in the response of adipose tissue to insulin. Proc. nat. Acad. Sci. (Wash.) 56, 757–763 (1966).CrossRefGoogle Scholar
  26. —, and E. G. Ball: Studies on the metabolism of adipose tissue XII. The effects of insulin and epinephrine on free fatty acid and glycerol production in the presence and absence of glucose. Biochemistry 2, 383–388 (1963).PubMedCrossRefGoogle Scholar
  27. Keahl, M. E.: The action of insulin on cells. New York: Academic Press 1961.Google Scholar
  28. Kuo, J. F.: Comparisons of the effects of bacillus subtilis protease, type VIII (subtilopeptidase A), and insulin on isolated adipose cells. II. Antilipolytic action. J. biol. Chem. 243, 211–215 (1968).PubMedGoogle Scholar
  29. Levine, R.: The action of insulin at the cell membrane. Amer. J. Med. 40, 691–694 (1966a).PubMedCrossRefGoogle Scholar
  30. — The place of insulin and glucagon in the regulation of carbohydrate metabolism. In: D-Glucose und verwandte Verbindungen in Medizin und Biologie (Bartelheimer, Heyde u. Thorn, ed.). Stuttgart: Enke 1966b.Google Scholar
  31. Müller-Oerlinghausen, B., u. U. Schwabe, A. Hasselblatt, and F. H. Schmidt: Activity of 3′, 5′-AMP phosphodiesterase in liver and adipose tissue of normal and diabetic rats. Life Sci. 7, 593–598 (1968).PubMedCrossRefGoogle Scholar
  32. Ottolenghi, A.: Phospholipase activity of rat tissues and its modification by trypsin. Lipids 2, 303–307 (1967).PubMedCrossRefGoogle Scholar
  33. Pätau, K.: Zur statistischen Beurteilung von Messungsreihen (eine t-Tafel). Biol. Zbl. 63, 154 (1943).Google Scholar
  34. Rapport, M. M., and N. Alonzo: Photometric determination of fatty acid ester groups in phospholipides. J. biol. Chem. 217, 193–198 (1955).PubMedGoogle Scholar
  35. Rieser, P., and C. H. Rieser: Anabolic responses of diaphragm muscle to insulin and to other pancreatic proteins. Proc. Soc. exp. Biol. (N. Y.) 116, 669 (1964a).CrossRefGoogle Scholar
  36. — Insulin-catalyzed proteolysis. Biochem. biophys. Res. Commun. 17, 373 to 376 (1964b).CrossRefGoogle Scholar
  37. Rodbell, M.: Metabolism of isolated fat cells I. Effects of hormones on glucose metabolism and lipolysis. J. biol. Chem. 239, 375–380 (1964).PubMedGoogle Scholar
  38. — Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens α-toxin) and of insulin on glucose and amino acid metabolism. J. biol. Chem. 241, 130–139 (1966).PubMedGoogle Scholar
  39. —, and A. B. Jones: Metabolism of isolated fat cells III. The similar inhibitory action of phospholipase C (Clostridium perfringens α-toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J. biol. Chem. 241, 140–143 (1966).PubMedGoogle Scholar
  40. Schultz, G., G. Senft, W. Losert u. R. Sitt: Biochemische Grundlagen der Diazoxyd-Hyperglykämie. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 253, 372 (1966).CrossRefGoogle Scholar
  41. Senft, G., W. Losert, G. Schultz, R. Sitt u. H. K. Bartelheimer: Ursachen der Störungen im Kohlehydratstoffwechsel unter dem Einfluß sulfonamidierter Diuretica. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 369–382 (1966).CrossRefGoogle Scholar
  42. — K. Munske, G. Schultz u. M. Hoffmann: Der Einfluß von Hydrochlorothiazid und anderen sulfonamidierten Diuretica auf die 3′, 5′-AMP-Phosphodiesterase-Aktivität in der Rattenniere. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 259, 344–359 (1968).CrossRefGoogle Scholar
  43. Sneyd, J. G. T., J. D. Corbin, and C. R. Park: The role of cyclic AMP in the action of insulin. Advanc. exp. Med. 2, 367–376 (1968).CrossRefGoogle Scholar
  44. Standl, E., H. Haslbeck, C.-A. Geser u. H. Mehnert: Untersuchungen zur Frage einer Wechselwirkung von saluretisch wirksamen Thiazidderivaten und Thiamin bei Diabetikern. Klin. Wschr. 46, 1171–1173 (1968).PubMedCrossRefGoogle Scholar
  45. Streubel, J.: Dissertation, Med. Fakultät Berlin (in Vorbereitung).Google Scholar
  46. Wiebelhaus, V. D., J. Weinstock, A. R. Maass, F. T. Brennan, G. Sosnowski u. T. Larsen: The diuretic and natriuretic activity of triamterene and several related pteridines in the rat. J. Pharmacol. exp. Ther. 149, 397–403 (1965).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • Franz von Bruchhausen
    • 1
  • Jürgen Streubel
    • 1
  1. 1.Pharmakologisches InstitutFreien UniversitätBerlin 33Deutschland

Personalised recommendations