Advertisement

Die Rolle von Noradrenalin bei der Temperaturwirkung der Narkose The Role of Noradrenaline for the Temperature Effect of Anaesthesia

  • W. Feldberg
Chapter

Zusammenfassung

Vor einigen Jahren haben Prof. Myers und ich die Theorie aufgestellt, daß eine Funktion der im Hypothalamus vorkommenden Monoamine darin bestehe, Änderungen der Körpertemperatur herbeizuführen (Feldberg u. Myers, 1963, 1964a). Wenn diese Theorie richtig ist, ergibt sich die Frage: welche Temperaturänderungen beruhen auf dem Freiwerden dieser Monoamine?

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amin, A.N., T.B.B. Crawford, and J.H. Gaddum: The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol. (Lond.) 126, 596–618 (1954).Google Scholar
  2. Andén, N.E., A. Dahlström, K. Fuxe, and K. Larsson: Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Life Sci. 4, 1275–1279 (1965).PubMedCrossRefGoogle Scholar
  3. Anderson, B., M. Jobin, and K. Olsson: Serotonin and temperature control. Acta physiol. scand. 67, 50–56 (1966).CrossRefGoogle Scholar
  4. Banerjee, U., W. Feldberg, and V.J. Lotti: Effect on body temperature of morphine and ergotamine injected into the cerebral ventricles of cats. Brit. J. Pharmacol. 32, 523–538 (1968).PubMedGoogle Scholar
  5. Bligh, J.: Effects on temperature of monoamines injected into the lateral ventricles of sheep. J. Physiol. (Lond.) 185, 46–47 P (1966).Google Scholar
  6. Bogdanski, D.F., H. Weissbach, and S. Udenfriend: The distribution of serotonin, 5-hydroxytryptophan decarboxylase and monoamine oxidase in brain. J. Neurochem. 1, 272–278 (1957).PubMedCrossRefGoogle Scholar
  7. Brittain, R.T., and S.L. Handley: Temperature changes produced by the injection of catecholamines and 5-hydroxytryptamine into the cerebral ventricles of the conscious mouse. J. Physiol. (Lond.) 192, 805–813 (1967).Google Scholar
  8. Brodie, B.B., S. Spector, and P.A. Shore: Interaction of monoamine oxidase inhibition with physiological and biochemical mechanisms in brain. Ann. N.Y. Acad. Sci. 80, 609–614 (1959).PubMedCrossRefGoogle Scholar
  9. Carlsson, A., B. Falck, and N. Hillarp: Cellular localization of brain mono-amines. Acta physiol. scand. 56, Suppl. 196 (1962).Google Scholar
  10. Carmichael, E.A., W. Feldberg, and K. Fleischhauer: Methods for perfusing different parts of the cat’s cerebral ventricles with drugs. J. Physiol. (Lond.) 173, 354–367 (1964).Google Scholar
  11. Cooper, K.E., W.I. Cranston, and A.J. Honour: Effects of intraventricular and intrahypothalamic injection of noradrenaline and 5-HT on body temperature in conscious rabbits. J. Physiol. (Lond.) 181, 852–864 (1965).Google Scholar
  12. Dahlström, A., and K. Fuxe: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 26, Suppl. 232 (1964).Google Scholar
  13. Euler, U.S. von, E. Lindner u. S.O. Myrin: Über die fiebererregende Wirkung des Adrenalins. Acta physiol. scand. 5, 85–96 (1943).CrossRefGoogle Scholar
  14. Feldberg, W.: The monoamines of the hypothalamus as mediators of temperature responses. In: Recent advances in pharmacology, ed. J.M. Robson and R.S. Stacey, 4th Ed. London: Churchill 1968.Google Scholar
  15. — R.F. Hellon, and V.J. Lotti: Temperature effects produced in dogs and monkeys by injections of monoamines and related substances into the third ventricle. J. Physiol. (Lond.) 191, 501–515 (1967).Google Scholar
  16. — and R.D. Myers: Effects on temperature of monoamines injected into the cerebral ventricles of anaesthetized dogs. J. Physiol. (Lond.) 186, 413–423 (1966).Google Scholar
  17. —, and V.J. Lotti: Body temperature responses in cats and rabbits to the monoamine oxidase inhibitor tranylcypromine. J. Physiol. (Lond.) 190, 203–220 (1967a).Google Scholar
  18. — Temperature responses to monoamines and an inhibitor of MAO injected into the cerebral ventricles of rats. Brit. J. Pharmacol. 31, 152–161 (1967b).PubMedGoogle Scholar
  19. —, and R.D. Myers: A new concept of temperature regulation by amines in the hypothalamus. Nature (Lond.) 200, 1325 (1963).CrossRefGoogle Scholar
  20. — Effects on temperature of amines injected into the cerebral ventricles. A new concept of temperature regulation. J. Physiol. (Lond.) 173, 226–237 (1964a).Google Scholar
  21. — Temperature changes produced by amines injected into the cerebral ventricles during anaesthesia. J. Physiol. (Lond.) 175, 464–478 (1964b).Google Scholar
  22. — Changes in temperature produced by microinjections of amines into the anterior hypothalamus of cats. J. Physiol. (Lond.) 177, 239-245 (1965a).Google Scholar
  23. — Hypothermia produced by chloralose acting on the hypothalamus. J. Physiol. (Lond.) 179, 509–517 (1965b).Google Scholar
  24. — Appearance of 5-hydroxytryptamine and an unidentified pharmacologically active lipid acid in effluent from perfused cerebral ventricles. J. Physiol. (Lond.) 184, 837–855 (1965c).Google Scholar
  25. Findlay, J.D., and D. Robertshaw: The mechanism of body temperature changes induced by intraventricular injections of adrenaline, noradrenaline and 5-hydroxytryptamine in the ox (Bos taurus). J. Physiol. (Lond.) 189, 329–336 (1967).Google Scholar
  26. Funderburk, W.H., K.F. Finger, A.B. Drakontides, and J.A. Schneider: EEG and biochemical findings with MAO inhibitors. Ann. N.Y. Acad. Sci. 96, 289–302 (1962).PubMedCrossRefGoogle Scholar
  27. Gaddum, J.H., and N.J. Giarman: Preliminary studies on the biosynthesis of 5-hydroxytryptamine. Brit. J. Pharmacol. 11, 88–92 (1956).PubMedGoogle Scholar
  28. Koe, B.K., and A. Weissman: p-Chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmacol. exp. Ther. 154, 499–516 (1966).PubMedGoogle Scholar
  29. Koella, W.P., A. Feldstein, and J.S. Szichman: The effect of para-chloro-phenylalanine on the sleep of cats. Elctroenceph. clin. Neurophysiol. 25, 481–490 (1968).CrossRefGoogle Scholar
  30. Kuntzman, R., P.A. Shore, D. Bogdanski, and B.B. Brodie: Microanalytical procedures for fluorometric assay of brain Dopa-5-HTP decarboxylase, nor-epinephrine and serotonin, and a detailed mapping of decarboxylase activity in brain. J. Neurochem. 6, 226–232 (1961).CrossRefGoogle Scholar
  31. Myers, R.D.: Release of chemical factors from the diencephalic region of the unanaesthetized monkey during changes in body temperature. J. Physiol. (Lond.) 188, 50–51 (1967a).Google Scholar
  32. — Transfusion of cerebrospinal fluid and tissue bound chemical factors between the brains of conscious monkeys: a new neurobiological assay. Physiol. Behav. 2, 373–377 (1967b).CrossRefGoogle Scholar
  33. Myers, R.D.: The significance of transmitter substances for hypothalamic temperature regulation. Proc. XXIV Internat. Congr. Physiol. Sci. 6, 285–286 (1968).Google Scholar
  34. — A. Kawa, and D. Beleslin: Evoked release of 5-HT and NEFA from the hypothalamus of the monkey during thermoregulation. Experientia (Basel) 25 (in press) (1969).Google Scholar
  35. —, and L.G. Sharpe: Temperature in the monkey: transmitter factors released from the brain during thermoregulation. Science 161, 572–573 (1968 a).PubMedCrossRefGoogle Scholar
  36. — Chemical activation of ingestive and other hypothalamic regulatory mechanisms. Physiol. Behav. 3, 987–995 (1968).CrossRefGoogle Scholar
  37. Ruckebusch, Y., M.L. Geivel, et J.P. Laplace: Variations interspécifiques des modifications de la température centrale liées a l’injection cérébro-ventriculaire de catécholamines et de 5-hydroxytryptamine. C.R. Soc. Biol. (Paris) 159, 1748 (1965).Google Scholar
  38. J.P. Laplace: — Effects comportementaux et électrographiques de l’injection cérébro-ventriculaire de catécholamines chez le mouton. Thérapie 21, 483–491 (1966).PubMedGoogle Scholar
  39. Spectoe, S.: Monoamine oxidase in control of brain serotonin and norepinephrine content. Ann. N.Y. Acad. Sci. 107, 856–861 (1963).CrossRefGoogle Scholar
  40. Summers, R.J.: Effects of MAO inhibitors on the hypothermia produced in cats by halothane. Brit. J. Pharmac. (in press) (1969).Google Scholar
  41. Udenfriend, S., and C.R. Creveling: Location of dopamine betaoxidase in brain. J. Neurochem. 4, 350–352 (1959).PubMedCrossRefGoogle Scholar
  42. —, and H. Weissbach: Turnover of 5-hydroxytryptamine (Serotonin) in tissues. Proc. Soc. exp. Biol. (N.Y.) 97, 748–751 (1958).CrossRefGoogle Scholar
  43. Vane, J.R.: A sensitive method for the assay of 5-hydroxytryptamine. Brit. J. Pharmacol. 12, 344–349 (1957).PubMedGoogle Scholar
  44. Vogt, M.: The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451–481 (1954).Google Scholar
  45. — Catecholamines in brain. Pharmacol. Rev. 11, 483–489 (1959).PubMedGoogle Scholar
  46. Weiner, N.: The distribution of monoamine oxidase and succinic oxidase in brain. J. Neurochem. 6, 79–86 (1960).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • W. Feldberg
    • 1
  1. 1.National Institute for Medical ResearchLondon, N.W. 7England

Personalised recommendations