Advertisement

Die Lokalisation von atemsynchron entladenden Neuronen in der retikulären Formation des Hirnstammes der Katze unter verschiedenen experimentellen Bedingungen

  • T. HukuharaJr.
  • Y. Saji
  • N. Kumadaki
  • H. Kojima
  • H. Tamaki
  • R. Takeda
  • F. Sakai
Chapter

Zusammenfassung

Es wurden die Lokalisation und das Aktivitätsmuster respiratorischer Einheiten in der Substantia reticularis bulbi et pontis an Pentobarbital-narkotisierten, spontan atmenden und an Gallamin-immobilisierten, künstlich beatmeten Katzen unter Lokalanaesthesie untersucht.
  1. 1.

    An beiden Präparationen waren in der Substantia reticularis bulbi die respiratorischen Einheiten diffus verteilt und untereinander gemischt.

     
  2. 2.

    In der Substantia reticularis pontis ließen sich zahlreiche respiratorische Einheiten an der immobilisierten und vagotomierten Katze, jedoch nicht am narkotisierten Tier ableiten.

     
  3. 3.

    Exspiratorische und zwei Typen von „phase-spanning“-Einheiten wurden wesentlich häufiger in der Medulla immobilisierter Katzen als bei narkotisierten Katzen gefunden.

     
  4. 4.

    Der Vergleich der Aktivitätsmuster von Einheiten immobilisierter und narkotisierter Katzen zeigte, daß das Entladungsmuster der respiratorischen Einheiten durch diese unterschiedlichen Versuchsbedingungen weitgehend beeinflußt werden kann.

     

Die Verteilung respiratorischer Einheiten in der Substantia reticularis der Medulla und des Pons sowie die Zusammenhänge zwischen Funktion und spontanem Entladungsmuster respiratorischer Neurone werden besonders im Hinblick auf die Lokalisation des „Atemzentrums“ diskutiert.

Schlüsselwörter

Respiratorisches Zentrum Hirnstamm retikuläre Formation respiratorisches Neuron Einzelzellentladung. 

Summary

Localization and discharge pattern of respiratory neurons in the pontine and the medullary reticular formation were studied in both pentobarbital anesthetized cats and in cats immobilized with Flaxedil.
  1. 1.

    In both preparations inspiratory, expiratory and another broader group of neurons not so clearly related to respiratory phases were scattered and intermingled throughout the medullary reticular formation.

     
  2. 2.

    Respiratory neurons in the pontine reticular formation were detected in vagotomized and immobilized cats but not in cats under pentobarbital anesthesia.

     
  3. 3.

    Expiratory neurons and another broader group of respiratory neurons were found more frequently in immobilized cats than in anesthetized cats.

     
  4. 4.

    Comparisons of discharge patterns of respiratory neurons in both preparations indicated that the activity patterns of neurons were influenced by the experimental conditions.

     

Localization of respiratory neurons in the medulla and the pons in relation to the localization of respiratory centers are discussed.

Key-Words

Respiratory Center Brain Stem Reticular Formation Respiratory Neuron Unitary Discharge. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Achard, O., et V. Bucher: Courants d’action bulbaires à rythme respiratoire. Helv. physiol. pharmacol. Acta 12, 265–283 (1954).PubMedGoogle Scholar
  2. Amoroso, E. C, F.R. Bell, and H. Rosenberg: The localization of respiratory regions in the ovine rhombencephalon. J. Physiol. (Lond.) 113, 2P–3P (1951a).Google Scholar
  3. —: The localization of respiratory regions in the rhombencephalon of the sheep. Proc. roy. Soc. B 139, 128–140 (1951b).CrossRefGoogle Scholar
  4. Andereggen, P., R.J.H. Oberholzer et O. A.M. Wyss: Le mécanisme central des réflexes respiratoires d’origine vagale. IL La localisation du centre expirateur. Helv. physiol. pharmacol. Acta 4, 213–232 (1946).PubMedGoogle Scholar
  5. Ratsel, H.L.: Localization of bulbar respiratory center by microelectrode sounding. Exp. Neurol. 9, 410–426 (1964).CrossRefGoogle Scholar
  6. — Some functional properties of bulbar respiratory units. Exp. Neurol. 11, 341 to 366 (1965).Google Scholar
  7. Baumgarten, R.: Koordinationsformen einzelner Ganglienzellen der rhombencephalen Atemzentren. Pflügers Arch. ges. Physiol. 262, 573–594 (1956).CrossRefGoogle Scholar
  8. —: K. Balthasar u. H.P. Koepchen: Über ein Substrat atmungsrhythmischer Erregungsbildung im Rautenhirn der Katze. Pflügers Arch. ges. Physiol. 270, 504–528 (1960).CrossRefGoogle Scholar
  9. — A. von Baumgarten u. K.P. Schaefer: Beitrag zur Lokalisationsfrage bulboretikulärer respiratorischer Neurone der Katze. Pflügers Arch. ges. Physiol. 264, 217–227 (19CrossRefGoogle Scholar
  10. —, and E. Kanzow: The interaction of two types of inspiratory neurones in the region of the tractus solitarius of the cat. Arch. ital. Biol. 96, 361–373 (1958).Google Scholar
  11. — A. Mollica u. G. Moruzzi: Modulierung der Entladungsfrequenz einzelner Zellen der Substantia reticularis durch corticofugale und cerebelläre Impulse. Pflügers Arch. ges. Physiol. 259, 56–78 (1954).CrossRefGoogle Scholar
  12. Brock, L.G., J.S. Coombs, and J. C. Eccles: The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460 (1952).Google Scholar
  13. Brodie, D.A.: The effect of thiopental and cyanide on the activity of inspiratory neurones. J. Pharmacol. exp. Ther. 126, 264–269 (1959).PubMedGoogle Scholar
  14. Brookhart, J.M.: The respiratory effects of localized faradic stimulation of the medulla oblongata. Amer. J. Physiol. 129, 709–723 (1940).Google Scholar
  15. —: G. Moruzzi, and R.S. Snider: Spike discharges of single units in the cerebellar cortex. J. Neurophysiol. 13, 465–486 (1950).PubMedGoogle Scholar
  16. Cohen, M.I.: Intrinsic periodicity of the pontile pneumotaxic mechanism. Amer. J. Physiol. 195, 23–27 (1958).PubMedGoogle Scholar
  17. —: Discharge patterns of brainstem respiratory neurons in relation to carbon dioxide tension. J. Neurophysiol. 31, 142–165 (1968).PubMedGoogle Scholar
  18. —, and S.C. Wang: Respiratory neuronal activity in pons of cat. J. Neurophysiol. 22, 33–50 (1959).PubMedGoogle Scholar
  19. Dirken, M.N.J., and S. Woldring: Unit activity in bulbar respiratory center. J. Neurophysiol. 14, 211–225 (1951).PubMedGoogle Scholar
  20. Gesell, R., J. Bricker, and C. Magee: Structural and functional organization of the central mechanism controlling breathing. Amer. J. Physiol. 117, 423–452 (1936).Google Scholar
  21. Green, J.D.: A simple microelectrode for recording from the central nervous system. Nature (Lond.) 182, 962 (1958).CrossRefGoogle Scholar
  22. Haber, E., K.W. Kohn, S.H. Ngai, D.A. Holaday, and S.C. Wang: Localization of spontaneous respiratory neuronal activities in the medulla oblongata of the cat: A new location of the expiratory center. Amer. J. Physiol. 190, 350–355 (1957).PubMedGoogle Scholar
  23. Hukuhara, T., T. Sumi, and H. Okada: Action potentials in the normal respiratory centers and its centrifugal pathway in the medulla oblongata and spinal cord. Jap. J. Physiol. 4, 145–153 (1954).CrossRefGoogle Scholar
  24. Hukuhara, T., Jr., N. Kumadaki, H. Kojima, H. Tamaki, Y. Saji, and F. Sakai: Effects of electrical stimulation of N. vagus on the respiratory unit discharge in the brain stem of cats. Brain Res. 1, 310–311 (1966).Google Scholar
  25. —: Y. Saji, H. Kojima, H. Tamaki, R. Takeda, and F. Sakai: Effects of urethan on the respiratory unit activity in the reticular formation of the brain stem of the cat. Proc. 14th Annual Meeting of the Japan EEG Society, p. 183 (1965a).Google Scholar
  26. —: and H. Kumagai: Localization of respiratory neurones in brainstem of cat during various experimental conditions. In Abstracts, p. 194, 23rd International Physiological Congress, Tokyo, September 1965 b.Google Scholar
  27. Kahn, N., and S.C. Wang: Electrophysiological basis for pontine apneustic center and its role in integration of the Hering-Breuer reflex. J. Neurophysiol. 30, 301–318(1967).PubMedGoogle Scholar
  28. Koizumi, K., J. Uchiyama, and C. McCBrooks: Muscle afferents and activity of respiratory neurons. Amer. J. Physiol. 200, 679–684 (1961).PubMedGoogle Scholar
  29. Kumagai, H., F. Sakai, A. Sakuma, and T. Hukuhara, Jr.: Relationship between activity of respiratory center and EEG. In: Schade, J.P., and T. Tokizane (Eds.); Progress in Brain Research, vol.21, Correlative Neurosciences, Part A, Fundamental Mechanisms, pp. 98-111 (1966).Google Scholar
  30. Nahas, G.G.: Regulation of respiration. Ann. N.Y. Acad. Sci. 109, 559-560, 582–585 (1963).Google Scholar
  31. Nelson, J.R.: Single unit activity in medullary respiratory centers of the cat. · J. Neurophysiol. 22, 590–598 (1959).PubMedGoogle Scholar
  32. Nesland, R., and F. Plum: Subtypes of medullary respiratory neurons. Exp. Neurol. 12, 337–348 (1965).CrossRefGoogle Scholar
  33. Oberholzer, R.J.H., P. Andereggen et O.A.M. Wyss: Le mécanisme central des réflexes respiratoires d’origine vagale. IV. Localisation précise du centre réflexe inspirateur. Helv. physiol. pharmacol. Acta 4, 495–512 (1946).PubMedGoogle Scholar
  34. Otsuka, Y., F. Sakai, A. Sakuma, Y. Saji, S. Nakanishi u. T. Sawabe: Periodische Veränderungen des Elektrencephalogramms. Jap. J. Pharmacol. 13, 253–258 (1963).PubMedCrossRefGoogle Scholar
  35. Pitts, R.F.H.W., and S.W. Ranson: Localization of the medullary respiratory centers in the cat. Amer. J. Physiol. 126, 673–688 (1939).Google Scholar
  36. Reinoso-Suarez, F.: Topographischer Hirnatlas der Katze. Darmstadt: Merck AG 1961.Google Scholar
  37. Rossi, G.F., and A. Zanchetti: The brain stem reticular formation. Anatomy and physiology. Arch. ital. Biol. 95, 199–435 (1957).Google Scholar
  38. Sakai, F., A. Sakuma, Y. Otsuka, Y. Saji u. H. Kumagai: Wirkung der Hypound Hyperventilation auf das Elektroencephalogramm. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 244, 145–152 (1962).CrossRefGoogle Scholar
  39. Salmoiraghi, G. C, and B.D. Burns: Localization and patterns of discharge of respiratory neurones in brain stem of cat. J. Neurophysiol. 23, 2–13 (1960).PubMedGoogle Scholar
  40. Scheibel, M.E., and A.B. Scheibel: Periodic sensory nonresponsiveness in reticular neurons. Arch. ital. Biol. 103, 300–316 (1965).PubMedGoogle Scholar
  41. Sumi, T.: Spinal respiratory neurons and their reaction to stimulation of intercostal nerves. Pflügers Arch. ges. Physiol. 278, 172–180 (1963).CrossRefGoogle Scholar
  42. Takagi, K., and T. Nakayama: Respiratory discharge of the pons. Science 128, 1206 (1958).PubMedCrossRefGoogle Scholar
  43. Wang, S. C, and S.H. Ngai: General organization of central respiratory mechanisms. In: Fenn, W. O., and H. Rahn (Eds.): Handbook of PhysioL, Sect. 3, Respiration Vol. 1, Am. Physiol. Soc, Washington, D. C, 1964, pp. 487-505.Google Scholar
  44. Woldring, S., and M.N.J. Dirken: Site and extension of bulbar respiratory center. J. Neurophysiol. 14, 227–241 (1951).PubMedGoogle Scholar
  45. Wyss, O. A.M.: Die nervöse Steuerung der Atmung. Ergebn. Physiol. 54, 1–479 (1964).PubMedCrossRefGoogle Scholar
  46. —: P. Andereggen et R.J.H. Oberholzer: Le mécanisme central des réflexes respiratoires d’origine vagale. III. La « vagotomie centrale ». Helv. physiol. pharmacol. Acta 4, 443–458 (1946).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • T. HukuharaJr.
    • 1
    • 2
  • Y. Saji
    • 1
  • N. Kumadaki
    • 1
  • H. Kojima
    • 1
  • H. Tamaki
    • 1
  • R. Takeda
    • 1
  • F. Sakai
    • 1
  1. 1.Pharmakologisches InstitutUniversität TokyoTokyoJapan
  2. 2.Department of Pharmacology Faculty of MedicineUniversity of TokyoTokyoJapan

Personalised recommendations