Wirkung von cyclischem Adenosin-3′,5′-Monophosphat (3′,5′-AMP) und seinem Dibutyrylderivat (DBA) auf Iipolyse, Glykogenolyse und Corticosteronsynthese

  • P. Bieck
  • K. Stock
  • E. Westermann


  1. 1.

    Am isolierten Fettgewebe von Ratten hatte das Dibutyrylderivat des cyclischen Adenosin-3′,5′-Monophosphat (DBA) eine etwa 100 mal stärkere lipolytische Wirkung als das nicht substituierte cyclische Adenosin-3′,5′-Monophosphat (3′,5′-AMP). Hormone (ACTH, Noradrenalin) waren an diesem Testobjekt 10000 mal wirksamer als DBA. Durch Hemmung der Phosphodiesterase mit Theophyllin ließ sich auch die Wirkung des DBA verstärken.

  2. 2.

    An isolierten Nebennieren von Ratten stimulierte DBA die Corticosteronsynthese etwa 100mal stärker als 3′,5′-AMP; ACTH war aber 500mal wirksamer als DBA. Durch Theophyllin ließ sich die Wirkung von ACTH, DBA bzw. 3′,5′-AMP nicht verstärken. Hohe Konzentrationen des Xanthinderivates hemmten die Corticosteronsynthese.

  3. 3.

    An Ratten war die hyperglykämische Wirkung des DBA wesentlich stärker als diejenige des 3′,5′-AMP: Für eine Erhöhung des Blutzuckerspiegels um 40 mg/100 ml benötigten wir von DBA weniger als 1 μmol/kg, von 3′,5′-AMP aber 30 μmol/kg. Diese Wirkung der Nucleotide ließ sich durch Theophyllin nicht verstärken. Der Fettsäuren- und Glyceringehalt des Plasmas wurde durch Injektion von DBA bzw. 3′,5′-AMP nicht erhöht, sondern erniedrigt. — Die Ergebnisse wurden im Zusammenhang mit dem “Second Messenger Concept” von Sutherland u. Mitarb. diskutiert.



Cyclische Nucleotide Lipolyse Glykogenolyse Corticosteronsynthese. 


  1. 1.

    In isolated fat pads of rats the dibutyryl derivative of cyclic 3′,5′-AMP (DBA) proved to be 100 times more active in promoting lipolysis than 3′,5′-AMP itself; hormones (ACTH, Norepinephrine) were about 10.000 times more active than DBA. Inhibition of phosphodiesterase by theophylline potentiated the lipolytic effect of DBA as well as that of the hormones.

  2. 2.

    In isolated adrenals of rats the stimulatory effect of DBA on corticosterone synthesis was approximately 100 times greater than that of 3′,5′-AMP, but 500times less than that of ACTH. In contrast to lipolysis, the stimulatory effect of the nucleotides and ACTH on the adrenals was not enhanced by theophylline, but was rather inhibited by high doses of the xanthine derivative.

  3. 3.

    In unanesthetized rats the hyperglycemic action of intraperitoneally injected DBA was much greater than that of 3′,5′-AMP: In order to elevate blood glucose by 40 mg/100 ml, 1 μmole/kg of DBA but 30 μmoles/kg of 3′,5′-AMP were necessary. Pretreatment of the animals with theophylline did not potentiate this action of the nucleotides.—The level of plasma free fatty acids and glycerol was not elevated by DBA but was rather depressed. Only very high doses of DBA increased the level of plasma corticosterone.


The results are discussed in connection with the second messenger concept of Sutherland and coworkers.


Cyclic Nucleotides Lipolysis Glycogenolysis Corticoid Synthesis. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariens, E.J., J.M. van Rossum, and A.M. Simonis: A theoretical basis of molecular pharmacology. Arzneimittel-Forsch. 6, 282–293 (1956).Google Scholar
  2. Aulich, A.: Quantitative Bestimmung der Wirksamkeit verschiedener Stimulatoren und Hemmstoffe im lipolytischen System. Inaugural-Dissertation, Frankfurt a. M. 1968.Google Scholar
  3. —: K. Stock, and E. Westermann: Lipolytic effects of cyclic adenosine-3′,5′-monophosphate and its butyryl derivatives in vitro, and their inhibition by α-and β-adrenolytics. Life Sci. 6, 929–938 (1967).PubMedCrossRefGoogle Scholar
  4. Bieck, P., K. Stock, and E. Westermann: Antilipolytic effect of N6, 2′-0-di-butyryl-3′,5′-adenosine monophosphate in vivo. Life Sci. 7, 1125–1134 (1968).PubMedCrossRefGoogle Scholar
  5. —, u. E. Westermann: Wirkung von cyclischem Adenosin-3′,5′-Monophosphat und seinem Dibutyrylderivat auf Corticoidsynthese und Glykogenolyse an der Ratte. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257, 266 (1967).CrossRefGoogle Scholar
  6. Blecher, M., N.S. Merlino, and J.T. Ro’ane: Control of the metabolism and lipolytic effects of cyclic 3′,5′-adenosine monophosphate in adipose tissue by insulin, methyl xanthines and nicotinic acid. J. biol. Chem. 243, 3973–3977 (1968).PubMedGoogle Scholar
  7. Butcher, R.W., R.J. Ho, H.C. Meng, and E.W. Sutherland: Adenosine 3′,5′-monophosphate in biological materials. The measurement of cyclic 3′5′-AMP in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem. 240, 4515–4523 (1965).PubMedGoogle Scholar
  8. —, and E.W. Sutherland: Adenosine 3′,5′-phosphate in biological materials. J. biol. Chem. 237,1244–1250 (1962).PubMedGoogle Scholar
  9. Creange, J.E., and S. Roberts: Studies on the mechanism of action of cyclic 3′,5′-adenosine monophosphate on steroid hydroxylations in adrenal homogenates. Biochem. biophys. Res. Commun. 19, 73–78 (1965).CrossRefGoogle Scholar
  10. Dole, V.P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest. 35, 150–154 (1956).PubMedCentralPubMedCrossRefGoogle Scholar
  11. Drummond, G.J., and S. Perrot-Yee: Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J. biol. Chem. 236, 1126–1129 (1961).PubMedGoogle Scholar
  12. Eggstein, M., u. F.H. Kreutz: Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. Klin. Wschr. 44, 262–267 (1966).PubMedCrossRefGoogle Scholar
  13. Ellis, S., and A.J. Eusebi: Dissociation of epinephrine-induced hyperkalemia and hyperglycemia by adrenergic blocking drugs and theophylline; role of cyclic 3′,5′-AMP. Fed. Proc. 24, 151 (1965).Google Scholar
  14. Evans, G.: The adrenal cortex and endogenous carbohydrate formation. Amer. J. Physiol. 114, 297–304 (1936).Google Scholar
  15. Fain, J.N.: Effect of dibutyryl-3′,5′-AMP, theophylline and norepinephrine on lipolytic action of growth hormone and glucocorticoid in white fat cells. Endocrinology 82, 825–830 (1968).PubMedCrossRefGoogle Scholar
  16. Fassina, G.: Antagonistic action of metabolic inhibitors on dibutyryl cyclic 3′,5′-adenosine monophosphate-stimulated and coffeine-stimulated lipolysis in vitro. Life Sci. 6, 825–831 (1967).PubMedCrossRefGoogle Scholar
  17. Ferguson, J.J., Jr.: Protein synthesis and adrenocorticotropic responsiveness. J. biol. Chem. 238,2754–2759 (1963).PubMedGoogle Scholar
  18. Garren, L.D.: Studies on the possible role of protein synthesis in the regulation of steroidogenesis by ACTH. In: Protein and Polypeptide Hormones. M. Margoulies, Ed.; Part 1, pp. 189-192. Excerpta Medica Foundation, Amsterdam 1968.Google Scholar
  19. Grahame-Smith, D.G., R.W. Butcher, R.L. Ney, and E.W. Sutherland: Adenosine-3′,5′-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J. biol. Chem. 242, 5535 to 5541 (1967).Google Scholar
  20. Guillemin, R., G.W. Clayton, H.S. Lipscomb, and J.D. Smith: Fluorometric measurement of rat plasma and adrenal corticosterone concentration; a note on technical details. J. Lab. clin. Med. 53, 830–832 (1959).PubMedGoogle Scholar
  21. Halkerston, J.D.K., M. Feinstein, and O. Hechter: An anomalous effect of theophylline on ACTH and adenosine 3′,5′-monophosphate stimulation. Proc. Soc. exp. Biol. (N.Y.) 122, 896 (1966).CrossRefGoogle Scholar
  22. Hanahan, D.J., and J.N. Olley: Chemical nature of monophosphoinositides. J. biol. Chem. 231, 813–829 (1958).PubMedGoogle Scholar
  23. Haynes, R. C, Jr.: The activation of adrenal phosphorylase by the adrenocorticotropic hormone. J. biol. Chem. 233, 1220–1222 (1958).PubMedGoogle Scholar
  24. Ho, R.-J., B. Jeanrenaud, and A.E. Renold: Ouabain-sensitive fatty acid release from isolated fat cells. Experientia (Basel) 22, 86 (1966).CrossRefGoogle Scholar
  25. Huggett, A. St. G., and D.A. Nixon: Enzymic determination of blood glucose. Biochem. J. 66,12 P (1957).Google Scholar
  26. Jungas, R.L., and E.G. Ball: Studies on the metabolism of adipose tissue. XII. The effects of insulin and epinephrine on free fatty acid and glycerol production in the presence and absence of glucose. Biochemistry 2, 383–388 (1963).PubMedCrossRefGoogle Scholar
  27. Karaboyas, G. C, and S.B. Koritz: Identity of the site of action of 3′,5′-adenosine monophosphate and adrenocorticotropic hormone in corticosteroidgenesis in rat adrenal and beef adrenal cortex slices. Biochemistry 4, 462–468 (1965).CrossRefGoogle Scholar
  28. Koritz, S.B.: Some observations on the stimulation in vitro of corticoid production by adenosine 3′,5′-monophosphate in rat adrenal. Biochim. biophys. Acta (Amst.) 60,179–181 (1962).CrossRefGoogle Scholar
  29. —: On the mechanism of action of adrenocorticotropin. In: Protein and Polypeptide Hormones, M. Margoulies, Ed.; Part 1, pp. 171-175. Excerpta Medica Foundation, Amsterdam 1968.Google Scholar
  30. Levine, R.A.: Cardiovascular and metabolic effects of adenosme-3′,5′-monophosphate in man. J. clin. Invest. 44, 1068–1073 (1965).Google Scholar
  31. —: Effects of exogenous adenosine 3′,5′-monophosphate in man. II. Glucose, nonesterified fatty acid and cortisol responses. Metabolism 17, 34–45 (1968).PubMedCrossRefGoogle Scholar
  32. —, and J.A. Vogel: Cardiovascular and metabolic effects of adenosine-3′,5′-monophosphate in vivo. Nature (Lond.) 207, 987–988 (1965).CrossRefGoogle Scholar
  33. Lowry, O. H., N.J. Rosebrough, A.L. Farr, and R.J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  34. Michal, G.: Pers. Mitteilung (1968).Google Scholar
  35. Northrop, G., and R.E. Parks: The effects of adrenergic blocking agents and theophylline on 3′,5′-AMP-induced hyperglycemia. J. Pharmacol. exp. Ther. 145,87–91(1964).PubMedGoogle Scholar
  36. Pfeiffer, E.F., W.E. Vaubel, K. Retienne, D. Berg u. H. Ditschuneit: ACTH-Bestimmung mittels Messung des Plasma-Corticosterons der mit Dexamethason hypophysenblockierten Ratte. Klin. Wschr. 38, 980–986 (1960).PubMedCrossRefGoogle Scholar
  37. Posternak, Th., E.W. Sutherland, and W.F. Henion: Derivatives of cyclic 3′,5′-adenosine monophosphate. Biochim. biophys. Acta (Amst.) 65, 558–560 (1962).CrossRefGoogle Scholar
  38. Riley, G.A., and R.C. Haynes, Jr.: The effect of adenosine 3′,5′-phosphate on phosphorylase activity in beef adrenal cortex. J. biol. Chem. 238, 1563–1570 (1PubMedGoogle Scholar
  39. Roberts, S., J.E. Creange, and P.L. Young: Stimulation of steroid transformations in adrenal mitochondria by cyclic 3′,5′-adenosine phosphate. Biochem. biophys. Res. Commun. 20, 446–451 (1965).PubMedCrossRefGoogle Scholar
  40. Rudman, D., L.A. Garcia, S.J. Brown, M.F. Malkin, and W. Perl: Dose response curves for the adipokinetic action of aromatic amines and adrenocorticotropin upon the isolated adipose tissue of the hamster. J. Lipid Res. 5. 28–37 (1964).PubMedGoogle Scholar
  41. Saffran, M., and A.V. Schally: In vitro bioassay of corticotropin: Modification and statistical treatment. Endocrinology 56, 523 (1955).PubMedCrossRefGoogle Scholar
  42. Stock, K., u. E. Westermann: Über die Bedeutung des Noradrenalingehaltes im Fettgewebe für die Mobilisierung unveresterter Fettsäuren. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 465–487 (1965).Google Scholar
  43. —: Hemmung der Lipolyse durch α-und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1 Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 334–354(1966).CrossRefGoogle Scholar
  44. — Hemmung der lipolytischen Wirkung von cyclischem Adenosin-3′,5′-Monophosphat und seinem N6,2′-0-dibutyryl-Derivat sowie von Theophyllin durch α-und β-Sympathicolytica. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 257,339(1967).CrossRefGoogle Scholar
  45. —: Interactions between ACTH, adrenolytic drugs and prostaglandin E1 in the lipolytic system. In: Protein and Polypeptide Hormones. M. Marguolies, Ed., Part 1, pp. 159–161. Amsterdam: Excerpta Medica Foundation 1968.Google Scholar
  46. Strauch, L.: Ultramikro-Methode zur Bestimmung des Stickstoffs in biologischem Material. Z. klin. Chem. 3, 165–167 (1965).Google Scholar
  47. Sutherland, E.W., and G.A. Robison: The role of cyclic 3′,5′-AMP in response to catecholamines and other hormones. Pharmacol. Rev. 18, 145–162 (1966).PubMedGoogle Scholar
  48. —: and R.W. Butcher: Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation 37, 279–306 (1968).CrossRefGoogle Scholar
  49. Turtle, J.R., G.K. Littleton, and D.M. Kipnis: Stimulation of insulin secretion by theophylline. Nature (Lond.) 213, 727 (1967).CrossRefGoogle Scholar
  50. Weiss, B., J.I. Davies, and B.B. Brodie: Evidence for a role of adenosine 3′,5′-monophosphate in adipose tissue lipolysis. Biochem. Pharmacol. 15, 1553–1561(1966).PubMedCrossRefGoogle Scholar
  51. Westermann, E.: Mechanismus und pharmakologische Beeinflussung der endokrinen Lipolyse. 12. Symposion der Deutschen Ges. f. Endokrinologie, S. 154–173. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  52. —, and K. Stock: The autonomic nervous system and energy metabolism. J. Neurovisc. Relat., Suppl. IX (in press) (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • P. Bieck
    • 1
  • K. Stock
    • 1
  • E. Westermann
    • 1
  1. 1.Institut für PharmakologieMedizinische Hochschule HannoverHannover-KleefeldDeutschland

Personalised recommendations