Advertisement

Isolierung und Charakterisierung von chromaffinen Noradrenalin-Granula aus Schweine-Nebennierenmark

  • H. Winkler
Chapter

Zusammenfassung

  1. 1.

    Die quantitative Verteilung von chromaffinen Granula und von Mikrosomen (durch Bestimmung der Glucose-6-Phosphatase) in den durch Differentialzentrifugation erhaltenen Fraktionen aus Schweinenebennierenmark wurde untersucht. Das Sediment II (“large granule fraction”), in dem sich die chromaffinen Granula befinden, enthält auch einen beträchtlichen Anteil der Mikrosomen. Durch neuerliche Zentrifugation (→ Sediment III) kann der Gehalt an Mikrosomen reduziert werden.

     
  2. 2.

    Durch Zentrifugation des Sediments III über 1,6 M Saccharoselösung können Granula isoliert werden, die etwa gleichviel Noradrenalin und Adrenalin enthalten (Mischgranula). Durch Zentrifugation über 2,05 bzw. 2,15 M Saccharose werden Granula isoliert, in denen 87,5 ± 2% (n = 18) der Katecholamine als Noradrenalin vorliegen (Noradrenalin-Granula). Die Verunreinigung dieser Granulafraktionen durch Mitochondrien, Lysosomen und Mikrosomen wird durch die Bestimmung charakteristischer Enzyme untersucht.

     
  3. 3.

    Chromaffine Granula, die bei 37° in isotoner Saccharose inkubiert werden, geben in den ersten 15 min 20% des Noradrenalin-, aber nur 2% des Adrenalingehaltes an das Medium ab. Nach diesem Zeitpunkt ist die Geschwindigkeit der Noradrenalin- bzw. Adrenalinabgabe gleich.

     
  4. 4.

    Der molare Katecholamin/ATP-Quotient beträgt für Misch- und Nor-adrenalingranula 4,5–5,0.

     
  5. 5.

    70% der Eiweiße in den Noradrenalingranula sind wasserlöslich. Durch Disk-Electrophorese der löslichen Proteine wird gezeigt, daß Noradrenalin- und Mischgranula ähnliche Eiweiße besitzen. Signifikante Unterschiede in der Aminosäurezusammensetzung der löslichen Eiweiße der Mischgranula und der unlöslichen Eiweiße der Noradrenalingranula werden festgestellt.

     
  6. 6.

    Der Lysolecithingehalt der Mischgranula beträgt 13,5, der der Noradrenalingranula 20% des Lipidphosphors. Der Großteil des Lysolecithins im Nebennierenmark ist in den chromaffinen Granula und zwar in der Membran dieser Organellen lokalisiert.

     

Schlüsselwörter

Nebennierenmark chromaffine Granula Noradrenalingranula Mikrosomen Lysolecithin. 

Summary

  1. 1.

    The distribution of chromaffin granules (catecholamines) and of microsomes (glucose-6-phosphatase) between the subcellular fractions of pig adrenal medulla was investigated. The sediment II (large granule fraction) in which the chromaffin granules are found contained a considerable amount of microsomes. This microsomal contamination could be reduced by an additional centrifugation step (→ sediment III).

     
  2. 2.

    Centrifugation of sediment III over 1,6 M sucrose solution yielded a sediment of granules which contained an equal amount of noradrenaline and adrenaline (= mixed granules). By centrifugation over either 2.05 or 2.15 M sucrose, granules were isolated which contained 87.5 ± 2% (n = 18) of their catecholamines as noradrenaline (noradrenaline-granules). The contamination of the mixed and nor-adrenaline-granules by other cell organelles was investigated.

     
  3. 3.

    During incubation of granules in isotonic sucrose at 37° 20% of the noradrenaline, but only 2% of the adrenaline content, was released into the medium within the first 15 min. From 15 min onwards noradrenaline and adrenaline were released at the same rate.

     
  4. 4.

    The proteins of noradrenaline-granules were found to be highly water soluble (70% of the total proteins). Disc-electrophoresis of the soluble proteins revealed that mixed- and noradrenaline-granules contained identical proteins. Significant differences in the amino acid composition of the soluble proteins of mixed granules and the insoluble proteins of noradrenaline-granules were found.

     
  5. 5.

    The lysolecithin content of mixed granules was 13.5% of the total phospho-lipids, that of noradrenaline-granules 20%. Most of the lysolecithin in the adrenal medulla is localised in the membranes of the chromaffin granules.

     

Key-Words

Adrenal Medulla Chromaffin Granules Noradrenaline Granules Microsomes Lysolecithin. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Banks, P., and K. Helle: The release of protein from the stimulated adrenal medulla. Biochem. J. 97, 40C–41C (1965).PubMedGoogle Scholar
  2. Bartlett, G.R.: Phosphorus assay in column chromatography. J. biol. Chem. 234, 466–468 (1959).PubMedGoogle Scholar
  3. Blaschko, H., H. Firemark, A.D. Smith, and H. Winkler: Lipids of the adrenal medulla: Lysolecithin, a characteristic constituent of chromaffin granules. Biochem. J. 104, 545–549 (1967).PubMedGoogle Scholar
  4. Brightwell, R., and A.L. Tappel: Lysosomal acid pyrophosphatase and acid phosphatase. Arch. Biochem. 124, 333–343 (1968).PubMedCrossRefGoogle Scholar
  5. Brücke, F., F. Kaindl u. H. Mayer: Über die Veränderung in der Zusammensetzung des Nebennierenmarkinkretes bei elektrischer Reizung des Hypothalamus. Arch. int. Pharmacodyn. 88, 407–412 (1952).PubMedGoogle Scholar
  6. Clarke, J.T.: Simplified “Disc” (Polyacrylamide Gel) Electrophoresis. Ann. N.Y. Acad. Sci. 121, 428–436 (1964).PubMedCrossRefGoogle Scholar
  7. Coupland, R.E., A.S. Pyper, and D. Hopwood: A method for differentiating between noradrenaline-and adrenaline-storing cells in the light and electron microscope. Nature (Lond.) 201, 1240–1242 (1964).CrossRefGoogle Scholar
  8. Crestfield, A.M., S. Moore, and W.H. Stein: The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J. biol. Chem. 238, 622–627 (1963).PubMedGoogle Scholar
  9. De Duve, C, B.C. Pressman, R. Gianetto, R. Wattiaux, and F. Appelmans: Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem. J. 60, 604–614 (1955).Google Scholar
  10. Eade, N.R.: The distribution of the catecholamines in homogenates of the bovine adrenal medulla. J. Physiol. (Lond.) 141, 183–192 (1958).Google Scholar
  11. Eränkö, O.: Fluorescing islets, adrenaline and noradrenaline in the adrenal medulla of some common laboratory animals. Ann. Med. exp. Fenn. 33,278–290 (1955).PubMedGoogle Scholar
  12. Euler, U.S., and U. Hamberg: Colorimetric determination of noradrenaline and adrenaline. Acta physiol. scand. 19, 74–84 (1949).CrossRefGoogle Scholar
  13. Folch, J., M. Lees, and G.H. Sloane-Stanley: A simple method for the isolation and purification of total lipides from animal tissues. J. biol. Chem. 226,497–509 (1957).PubMedGoogle Scholar
  14. Folkow, B., and U.S. Euler: Selective activation of noradrenaline and adrenaline producing cells in the cat’s adrenal gland by hypothalamic stimulation. Circulat. Res. 2, 191–195 (1954).PubMedCrossRefGoogle Scholar
  15. Gianetto, R., and C. de Duve: Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, glucuronidase and cathepsin by rat-liver particles. Biochem. J. 59, 433–438 (1955).PubMedGoogle Scholar
  16. Green, D.E., N.F. Haard, G. Lenaz, and H.I. Silman: On the noncatalytic proteins of membrane systems. Proc. nat. Acad. Sci. (Wash.) 60, 277–284 (1968).CrossRefGoogle Scholar
  17. Helle, K.: Some chemical and physical properties of the soluble protein fraction of bovine adrenal chromaffin granules. Molec. Pharmacol. 2, 298–310 (1966).Google Scholar
  18. Helle, K.B.: The chromogranin of the adrenal medulla: a high-density lipoprotein. Biochem. J. 109, 43P–44P (1968).PubMedGoogle Scholar
  19. Hillarp, N.-Å.: Isolation and some biochemical properties of the catecholamine granules in the cow adrenal medulla. Acta physiol. scand. 43, 82–96 (1958).PubMedCrossRefGoogle Scholar
  20. —: Further observations on the state of the catecholamines stored in the adrenal medullary granules. Acta physiol. scand. 47, 271–279 (1959).PubMedCrossRefGoogle Scholar
  21. Hillaep, N.-Å.: Some problems concerning the storage of catecholamines in the adrenal medulla. In: Adrenergic Mechanisms, pp. 481–486. Ed.: J.R. Vane, G.E.W. Wolstenholme, and M. O’Connor London: Churchill Ltd. 1960.Google Scholar
  22. —, and B. Hökfelt: Evidence of adrenaline and noradrenaline in separate adrenal medullary cells: Acta physiol. scand. 30, 55–68 (1954).Google Scholar
  23. —, and B. Nilson: The structure of the adrenaline and noradrenaline containing granules in the adrenal medullary cells with reference to the storage and release of the sympathomimetic amines. Acta physiol. scand. 31. Suppl. 113, 79–107 (1954).Google Scholar
  24. Hopwood, D.: An immunohistochemical study of the adrenal medulla of the ox. A comparison of antibodies against whole ox chromaffin granules and ox chromogranin A. Histochemie 13, 323–330 (1968).PubMedGoogle Scholar
  25. McIlvaine, T.C.: A buffer solution for colorimetric comparison. J. biol. Chem. 49, 183–186 (1921).Google Scholar
  26. Racker, E.: Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim. biophys. Acta (Amst.) 4,211–214 (1950).CrossRefGoogle Scholar
  27. Redgate, E.S., and E. Gellhorn: Nature of sympathetico-adrenal discharge under conditions of excitation of the central autonomie structures. Amer. J. Physiol. 174, 475–480 (1953).PubMedGoogle Scholar
  28. Reid, E.: Membrane Systems. In: Enzyme Cytology, pp. 321–406. Ed. D.B. Roodyn London: Academic Press 1967.Google Scholar
  29. Sage, H.J., W.J. Smith, and N. Kirshner: Mechanism of secretion from the adrenal medulla. 1. A microquantitative immunologic assay for bovine adrenal catecholamine storage vesicle protein and its application to studies of the secretory process. Molec. Pharmacol. 3, 81–89 (1967).Google Scholar
  30. Schneider, F.H., A.D. Smith, and H. Winkler: Secretion from the adrenal medulla: biochemical evidence for exocytosis. Brit. J. Pharmacol. 31, 94–104 (1967).PubMedGoogle Scholar
  31. Schümann, H.J.: The distribution of adrenaline and noradrenaline in chromaffin granules of the chicken. J. Physiol. (Lond.) 137, 318–326 (1957).Google Scholar
  32. —: Die Wirkung von Insulin und Reserpin auf den Adrenalin-und ATP-Gehalt der chromaffinen Granula des Nebennierenmarks. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 233, 237–249 (1958).Google Scholar
  33. Skipski, V.P., R.F. Peterson, and M. Barclay: Quantitative analysis of phospholipids by thin-layer chromatography. Biochem. J. 90, 374–378 (1964).PubMedGoogle Scholar
  34. Smith, A.D.: Biochemistry of adrenal chromaffin granules. In: The Interaction of Drugs and Subcellular Components in Animal Cells, pp. 239–292. Ed. P.N. Campbell London: Churchill Ltd. 1968.Google Scholar
  35. —, and H. Winkler: The localization of lysosomal enzymes in chromaffin tissue. J. Physiol. (Lond.) 183, 179–188 (1966).Google Scholar
  36. — A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem. J. 103, 480–482 (1967 a).PubMedGoogle Scholar
  37. — Purification and properties of an acidic protein from chromaffin granules of bovine adrenal medulla. Biochem. J. 103, 483–492 (1967b).PubMedGoogle Scholar
  38. — Lysosomal phospholipases A1 and A2 of bovine adrenal medulla. Biochem. J. 108, 867–874 (1968).PubMedGoogle Scholar
  39. Smith, W.J., and N. Kirshner: A specific soluble protein from the catecholamine storage vesicles of bovine adrenal medulla. I. Purification and chemical characterization. Molec. Pharmacol. 3, 52–62 (1967).Google Scholar
  40. Strieder, N., E. Ziegler, H. Winkler, and A.D. Smith: Some properties of soluble proteins from chromaffin granules of different species. Biochem. Pharmacol. 17, 1553–1556 (1968).PubMedCrossRefGoogle Scholar
  41. Taugner, G., u. W. Hasselbach: Über den Mechanismus der Catecholamin-Speicherung in den „chromaffinen Granula“ des Nebennierenmarks. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 255, 266–286 (1966).CrossRefGoogle Scholar
  42. Tramezzani, J.H., S. Chiocchio, and G.F. Wassermann: A technique for light and electron microscopic identification of adrenaline0and noradrena-line —: storing cells. J. Histochem. Cytochem. 12, 890–899 (1964).PubMedCrossRefGoogle Scholar
  43. West, G.B.: The comparative pharmacology of the suprarenal medulla. Quart. Rev. Biol. 30, 116–137 (1955).PubMedCrossRefGoogle Scholar
  44. Winkler, H., and A.D. Smith: Lipids of adrenal chromaffin granules: Fatty acid composition of phospholipids, in particular lysolecithin. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 379–388 (1968).CrossRefGoogle Scholar
  45. — N. Strieder u. E. Ziegler: Über Lipide, insbesondere Lysolecithin, in den chromaffinen Granula verschiedener Species. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 407–415 (1967a).CrossRefGoogle Scholar
  46. — E. Ziegler, and N. Strieder: Studies on the proteins from chromaffin granules of ox, horse and pig. Nature (Lond.) 211, 982–983 (1966).CrossRefGoogle Scholar
  47. — Gewinnung und Eigenschaften der Katecholaminspeichernden Granula eines Phäochromocytoms. Klin. Wschr. 45, 1238–1241 (1967b).PubMedCrossRefGoogle Scholar
  48. Wood, J.G., and R.J. Barrnett: Histochemical demonstration of norepinephrine at a fine structural level. J. Histochem. Cytochem. 12, 197–209 (1964).PubMedCrossRefGoogle Scholar
  49. Zlatkis, A., B. Zak, and A.J. Boyle: A new method for the direct determination of serum cholesterol. J. Lab. clin. Med. 41, 486–492 (1953).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • H. Winkler
    • 1
  1. 1.Pharmakologisches Institut der UniversitätInnsbruckÖsterrich

Personalised recommendations