Advertisement

Über den Einfluß induzierender Substanzen auf Fremdstoff-Oxydasen und andere Redoxenzyme der Leber

  • W. Koransky
  • S. Magour
  • G. Noack
  • R. Schulte Hermann
Chapter

Zusammenfassung

Die Aktivität einiger Redoxenzyme der Rattenleber wurde nach Behandlung mit folgenden induzierenden Substanzen untersucht: Phenobarbital, α-Hexachlorcyclohexan (α-HCH), CFT 1201 (Phenyldiallylessigsäure-diäthylaminoäthylester) sowie 3,4-Benzpyren. Der zeitliche Ablauf der Aktivitätsänderungen wurde verfolgt.
  1. 1.

    α-HCH und CFT 1201 erhöhen ebenso wie Phenobarbital die Cytochrom-P450-Konzentration und die NADPH-abhängige Reduktion von Cytochrom c. Die Aktivität der NADH-Cytochrom c-Reduktase wird durch die drei Substanzen gesenkt. Die Aktivität der Aldehyd-Oxydase aus Hyaloplasma wird nur durch α-HCH beschleunigt.

     
  2. 2.

    Phenobarbital und α-HCH steigern die Demethylierungsrate von Aminopyrin wesentlich mehr als die Konzentration des Cytochroms P450. Benzpyren erhöht die Hydroxylierungsgeschwindigkeit von Acetanilid stärker als die Konzentration des P450

     
  3. 3.

    CFT 1201 hemmt die Acetanilid-Oxydation nur in vivo, nicht aber in vitro.

     
  4. 4.

    Phenobarbital induziert die mikrosomalen Enzyme stärker als α-HCH, während dieses — wie frühere Befunde zeigten — zu einer stärkeren Proliferation der Leberzellen führt.

     

Schlüsselwörter

Enzyminduktion Arzneimittel-Stoffwechsel Mikrosomale Redoxenzyme Chlorkohlenwasserstoffe. 

Summary

In rats, the activity of some hepatic redox-enzymes was measured following the administration of the enzyme-inducing substances phenobarbital, α-hexachlorocyclohexane (α-HCH = α-benzene hexachloride), CFT 1201 (phenyl-diallylacetic acid ester of diethylaminoethanol), or 3,4-benzpyrene. In particular, the time course of changes in enzyme activities was studied.
  1. 1.

    α-HCH and CFT 1201, like phenobarbital, increase the concentration of cytochrome P450 and accelerate the NADPH-dependent reduction of cytochrome c. All three substances reduce the activity of NADH-cytochrome c-reductase. On the other hand, only α-HCH, increases aldehyde oxidase activity in the hyaloplasm.

     
  2. 2.

    Phenobarbital and α-HCH both enhance the rate of demethylation of aminopyrine considerably more than they increase the concentration of cytochrome P450. Similarly, benzpyrene produces an increase in the rate of hydroxylation of acetanilide that is higher than the increase in concentration of P450

     
  3. 3.

    CFT 1201 inhibits acetanilide-oxidation in vivo, but not in vitro.

     
  4. 4.

    Phenobarbital induces microsomal enzymes more strongly than does α-HCH, whereas this latter compound—as earlier observations have shown—stimulates liver cell proliferation much more than phénobarbital.

     

Key-Words

Enzyme Induction Drug Metabolism Microsomal Redox Enzymes Chlorinated Hydrocarbons. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alvares, A.P., G. R. Schilling, and R. Kuntzman: Differences in the kinetics of benzpyrene hydroxylation by hepatic drug-metabolizing enzymes from phenobarbital and 3-methylcholanthrene-treated rats. Biochem. biophys. Res. Commun. 30, 558 (1968).CrossRefGoogle Scholar
  2. Anders, M.W., A.P. Alvares, and G.J. Mannering: Inhibition of drug metabolism. II. Metabolism of 2-diethylaminoethyl-2,2-diphenylvalerate HC1 (SKF 525-A). Molec. Pharmacol. 2, 328 (1966a).Google Scholar
  3. —, and G.J. Mannering: Metabolism of SKF 525-A and Lilly 18947 by normal and induced hepatic microsomes. Fed. Proc. 23, 537 (1964).Google Scholar
  4. —: Inhibition of drug metabolism. IV. Induction of drug metabolism by 2-diethyl-aminoethyl-2,2-diphenylvalerate HC1 (SKF 525-A) and 2,4-dichloro-6-phenyl-phenoxyethyldiethylamine HBr (Lilly 18947) and the effect of induction on the inhibitory properties of SKF 525-A type compounds. Molec. Pharmacol. 2, 341 (1966).Google Scholar
  5. Burger, P.L., and P.B. Herdson: Phenobarbital-induced fine structural changes in rat liver. Amer. J. Path. 48, 793 (1966).PubMedGoogle Scholar
  6. Conney, A.H., C. Davison, R. Gastel, and J.J. Burns: Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J. Pharmacol. exp. Ther. 130, 1 (1960).PubMedGoogle Scholar
  7. — J. R. Gilette, J.K. Inscoe, E.C. Trams, and H.S. Posner: Induced synthesis of liver microsomal enzymes which metabolize foreign compounds. Science 130, 1478 (1959).PubMedCrossRefGoogle Scholar
  8. Cooper, D.Y., S. Levin, S. Narasimhulu, O. Rosenthal, and R.W. Estabrook: Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems. Science 147, 400 (1965).PubMedCrossRefGoogle Scholar
  9. Dallner, G.: Studies on the structural and enzymic organization of the membranous elements of liver microsomes. Acta path. microbiol. scand., Suppl. 166 (1963).Google Scholar
  10. —: P. Siekevitz, and G.E. Palade: Synthesis of microsomal membranes and their enzymic constituents in developing rat liver. Biochem. biophys. Res. Commun. 20, 135 (1965).PubMedCrossRefGoogle Scholar
  11. Daly, J.W., G. Guroff, D.M. Jerina, S. Udenfriend, and B. Witkop: Intramolecular migrations of aryl substituents during enzymatic hydroxylation. Hoppe-Seylers Z. physiol. Chem. 349, 1600 (1968).PubMedGoogle Scholar
  12. Ernster, L., and S. Orrenius: Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed. Proc. 24, 1190 (1965).PubMedGoogle Scholar
  13. Gilette, J.R.: Metabolism of drugs and other foreign compounds by enzymatic mechanisms. Progr. Drug Res. 6, 11 (1963).Google Scholar
  14. —, and H.A. Sasame: Mechanisms of inhibition of drug-metabolizing enzyme systems in liver microsomes by β-diethylaminoethyl diphenylpropylacetate (SKF 525-A): Effect of TPNH and oxygen. Fed. Proc. 23, 537 (1964).Google Scholar
  15. Golberg, L.: Liver enlargement produced by drugs: its significance. Proc. Eur. Soc. for Study Drug Toxicity VII, 171 (1966).Google Scholar
  16. Koransky, W., S. Magour, H.J. Merker, I. Schlicht, and R. Schulte Hermann: Influence of inducing substances on growth of liver and microsomal electron transport systems. Proc. 3rd Internat. Pharmacol. Meeting 4, 55 (1966).Google Scholar
  17. Krisch, K., u. H.J. Staudinger: Untersuchungen zur enzymatischen Hydroxy-lierung. Biochem. Z. 334, 312 (1961).PubMedGoogle Scholar
  18. Kunz, W., G. Schaude, W. Schmid u. M. Siess: Lebervergrößerung durch Fremdstoffe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 470 (1966).CrossRefGoogle Scholar
  19. Mannering, G.J.: Significance of stimulation and inhibition of drug metabolism in pharmacological testing. In A. Burger (ed.): Pharmacological Testing Methods, p. 51. New York 1967.Google Scholar
  20. Margoliash, E.: The Chromatographic behaviour of cytochrome c on cation exchangers. Biochem. J. 56, 535 (1954).PubMedGoogle Scholar
  21. Mayer, G., V. Ullrich, and H.J. Staudinger: Possible involvement of cytochrome b5 in L-kynurenine-3-hydroxylase of rat liver mitochondria. Hoppe-Seylers Z. physiol. Chem. 349, 459 (1968).PubMedCrossRefGoogle Scholar
  22. Merker, H.J., u. R. Schulte Hermann: In Vorbereitung.Google Scholar
  23. Mitoma, Ch., H.S. Posner, H.C. Reitz, and S. Udenfriend: Enzymatic hydroxy-lation of aromatic compounds. Arch. Biochem. 61, 431 (1956).PubMedCrossRefGoogle Scholar
  24. Nash, T.: The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416 (1953).PubMedGoogle Scholar
  25. Orrentus, S.: On the mechanism of drug hydroxylation in rat liver microsomes. J. Cell Biol. 26, 713 (1965 a).CrossRefGoogle Scholar
  26. —: Further studies on the induction of the drug-hydroxylating enzyme system of liver microsomes. J. Cell Biol. 26, 725 (1965b).CrossRefGoogle Scholar
  27. Rajagopalan, K.V., I. Fridovich, and P. Handler: Hepatic aldehyde oxidase. J. biol. Chem. 237, 922 (1962).PubMedGoogle Scholar
  28. Remmer, H.: Drugs as activators of drug enzymes. I. Intern. Pharmacol. Meeting, Vol. VI, p. 235 (1962).Google Scholar
  29. —: Drug-induced formation of smooth endoplasmic reticulum and of drug metabolizing enzymes. Excerpta Med. Int. Congr. Ser. 81, Vol. IV. Proc. Eur. Soc. for the Study of Drug Tox. 57 (1964).Google Scholar
  30. —: Induction of microsomal hydroxylase: involvement of a second factor besides cytochrome P450. Hoppe-Seylers Z. physiol. Chem. 349, 1621 (1968).PubMedGoogle Scholar
  31. — J. Schenkman, R.W. Estabrook, H. Sasame, J. Gilette, S. Narasimhulu, D.Y. Cooper, and P. Rosenthal: Drug interaction with hepatic microsomal cytochrome. Molec. Pharmacol. 2, 187 (1966).Google Scholar
  32. Rogers, L.A., and J.R. Fouts: Some of the interactions of SKF 525-A with hepatic microsomes. J. Pharmacol. exp. Ther. 146, 286 (1964).PubMedGoogle Scholar
  33. Rümke, Ch. L., u. J. Bout: Die Beeinflussung der Hexobarbital-Narkose durch vorher verabfolgte Pharmaka. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 240, 218 (1960).CrossRefGoogle Scholar
  34. Schellenberg, K.A., and L. Hellerman: Oxidation of reduced diphosphopyridine nucleotide. J. biol. Chem. 231, 547 (1958).PubMedGoogle Scholar
  35. Schenkman, J.B., J.A. Ball, and R.W. Estabrook: On the use of nicotinamide in assays for microsomal mixed-function oxidase activity. Biochem. Pharmacol. 16, 1071 (1967 a).PubMedCrossRefGoogle Scholar
  36. —: H. Remmer, and R.W. Estabrook: Spectral studies of drug interaction with hepatic microsomal cytochrome. Molec. Pharmacol. 3, 113 (1967 b).Google Scholar
  37. Schlicht, L, W. Koransky, S. Magour u. R. Schulte Hermann: Größe und DNS-Synthese der Leber unter dem Einfluß körperfremder Stoffe. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 261, 26 (1968).CrossRefGoogle Scholar
  38. Schulte Hermann, R.: Einfluß körperfremder Stoffe auf Enzyme des Arzneimittel-Stoffwechsels und auf Wachstumsprozesse der Leber. Diss., Freie Universität Berlin 1968.Google Scholar
  39. — I. Schlicht, S. Magour u. W. Koransky: Leberwachstum und mikrosomale Redoxenzyme unter dem Einfluß induzierender Substanzen. Naunyn-Schmiede-bergs Arch. Pharmak. exp. Path. 255, 72 (1966).CrossRefGoogle Scholar
  40. — R. Thom, I. Schlicht u. W. Koransky: Zahl und Ploidiegrad der Zellkerne der Leber unter dem Einfluß körperfremder Stoffe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 42 (1968).CrossRefGoogle Scholar
  41. Serrone, D.M., and J.M. Fujimoto: The effect of certain inhibitors in producing shortening of hexobarbital action. Biochem. Pharmacol. 11, 609 (1962).PubMedCrossRefGoogle Scholar
  42. Siekevitz, P.: Origin and functional nature of microsomes. Fed. Proc. 24, 1153 (1965).PubMedGoogle Scholar
  43. Sladek, N.E., and G.J. Mannering: Evidence for a new P-450 hemoprotein in hepatic microsomes from methylcholanthrene treated rats. Biochem. biophys. Res. Commun. 24, 668 (1966)PubMedCrossRefGoogle Scholar
  44. Stitzel, R.E., M.W. Anders, and G.J. Mannering: Inhibition of drug metabolism. III. Inhibition of hexobarbital metabolism in the intact rat and in the isolated perfused liver by 2-diethylaminoethyl-2,2-diphenyl-valerate HC1 (SKF525-A) and its N-deethylated derivatives. Molec. Pharmacol. 2, 335 (1966).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • W. Koransky
    • 1
    • 2
  • S. Magour
    • 1
    • 2
  • G. Noack
    • 1
    • 2
  • R. Schulte Hermann
    • 1
    • 2
  1. 1.Pharmakologisches InstitutFreien Universität BerlinDeutschland
  2. 2.Institut für Toxikologie und PharmakologieMarburgDeutschland

Personalised recommendations