Histologic and biologic response of tumours to irradiation

Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL)


The introduction of radiotherapy was not preceded by any detailed investigation of the biologic effect of the rays on the tumours and the host. At the end of the last century, when the Swedes Sjögren and Stenbeck successfully treated a recurrent cutaneous squamous epithelioma, very little was known about the biology of tumours or the biologic effect of irradiation. The fundamental experimental observations made during the first decade of the twentieth century were concerned mainly with the effect of irradiation of normal cells and tissues such as rabbits testes, plant roots, sea-urchin eggs, fungi, etc. Observations made in different fields were soon correlated, and as early as 1906 Bergonie and Tribondeau were able to formulate their well-known law, which gradually achieved great importance in radiotherapy. The results of treatment were judged with greater caution and more attention was given to the late results. The evaluation of the effects has been supplemented by detailed histologic and cytologic investigations, but knowledge of the cancericidal effect of ionising radiation is still incomplete. This is obvious from modern surveys of the radiobiology of tumours ( Ellinger, 1957; Koller, 1959; Read, 1958; Upton, 1958; Zollinger, 1960). This gap in our knowledge is largely due to the complex biologic nature of tumours, which complicates interpretation of their response to ionising radiation. This complexity is readily recognised in the investigation of tumours from genetic, histopathologic and clinical points of view, but it cannot be observed with certainty in studies of the individual cells.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberti, W., and G. Politzbr: Über den Einfluß der Röntgenstrahlen auf die Zellteilung. Arch. mikr. Anat. 100, 83–109 (1923).Google Scholar
  2. Algire, G.H.: Vascular reactions of normal and malignant tissues in vivo. Observations on vascular reactions in destruction of tumour homografts. J. nat. Cancer Inst. 15, 483–491 (1954).PubMedGoogle Scholar
  3. Alpers, B.J., and H.K. Pancoast: The effect of irradiation on normal and neoplastic brain tissue. Amer. J. Cancer 17, 7–24 (1933).Google Scholar
  4. Amos, D.B.: Serologic differences between comparable diploid and tetraploid lines of three mouse ascites tumors. Ann. N.Y. Acad. Sci. 63, 706–710 (1956).PubMedGoogle Scholar
  5. Andersen, S.R.: Investigation into differentiation and other morphologic changes in malignant tumours following therapeutic irradiation with X-rays and radium. Copenhagen: Einar Munksgaard 1949.Google Scholar
  6. Arnold, A., and P. Bailey: Alterations in glial cells following irradiation in primates. Arch. Path. 57, 383–391 (1954).Google Scholar
  7. Bagg, H.J.: Effect of roentgen rays on tumours in animals treated by prolonged continuous exposure of entire body. Amer. J. Roentgenol. 40, 418–426 (1938).Google Scholar
  8. Bailey, P.: Further notes on cerebellar medulloblastomas: The effect of roentgen radiation. Amer. J. Path. 6, 125–135 (1930).PubMedGoogle Scholar
  9. Baldwin, R.W.: Immunity to transplantated tumours: The effect of tumour extracts on the growth of homologous tumour in rats. Brit. J. Cancer 9, 646–651 (1955).PubMedGoogle Scholar
  10. Barron, E.S.G.: The effect of ionizing radiation on the activity of enzymes. Biological applications of nuclear physics. Brookhaven Conference Report: BNL-C-4, 1948.Google Scholar
  11. Baumann-Schenker, R.: Über Strahlenveränderungen bei malignen Tumoren. Z. Krebsforsch. 45, 178–196 (1937).Google Scholar
  12. Bayreuter, K.: The chromosomalcsontitution of methylcholanthene induced sarcomas and their variants induced and tested in isogenie resistant strains. Acta Un. int. Cancr. 16, 5–8 (1960).Google Scholar
  13. Beare, J.M.: Molluscum sebaceum. Brit. J. Surg. 41, 167–172 (1953).PubMedGoogle Scholar
  14. Becker, J., H. Ebner u. K.-H. Kärcher: Neue Möglichkeiten zum Studium der klinischen Strahlenwirkung. Strahlentherapie 109, 364–373 (1959).Google Scholar
  15. Bender, M.A.: X-ray induced chromosome aberrations in normal diploid human cells. Science 126, 974–975 (1957).PubMedGoogle Scholar
  16. Berg, N.O.: A histological study of masked lipids. Acta path. microbiol. scand., Suppl. 90 (1951).Google Scholar
  17. Berg, N.O., and M. Lindgren: Time-dose relationship and morphology of radiation lesions in the brain of rabbits. Acta radiol. (Stockh.), Suppl. 167 (1958).Google Scholar
  18. Berg, N.O., and M. Lindgren: To be published in Acta radiol. (Stockh.) 1961.Google Scholar
  19. Berger, J.: Der zytologische Abstrich nach Röntgen-und Radiumbestrahlung. Oncologia (Basel) 7, 127–130 (1954).Google Scholar
  20. Bergman, S.: Simple method for culture of cells on glass plates. Acta path. microbiol. scand. 47 (fasc. 3), 233–236 (1959).PubMedGoogle Scholar
  21. Bergonié, J., et L. Tribondeau: Interprétation de quelques résultats de la radiothérapie et essai de fixation d’une technique rationelle. C.R. Soc. Biol. (Paris) 143, 983–998 (1906).Google Scholar
  22. Berven, E.G.: Malignant tumours of the tonsill. Acta radiol. (Stockh.), Suppl. 11 (1931).Google Scholar
  23. Bielschowsky, F., and E.S. Horning: Aspects of endocrine carcinogenesis. Brit. med. Bull. 14, 106–115 (1958).PubMedGoogle Scholar
  24. Bloom, M.A.: Acquired radioresistance of the crypt epithelium of duodenum. Radiology 55, 104–114 (1950).PubMedGoogle Scholar
  25. Bloom, W., R.E. Zirkle, and R.B. Uretz: Irradiation of parts of cells. III. Effects of chromosomal and extrachromosomal irradiation on chromosome movements. Ann. N.Y. Acad. Sci. 59, 503–513 (1955).PubMedGoogle Scholar
  26. Borak, J.: Die Beziehungen zwischen Strahlenempfindlichkeit maligner Tumoren und ihrer Muttergewebe. Strahlentherapie 44, 601–654 (1932).Google Scholar
  27. Braun, H.: Elektronoptische Untersuchungen an Zellen des Dünndarmepithels nach Röntgenbestrahlung. Exp. Cell Res. 20, 267–276 (1960).Google Scholar
  28. Brinkmann, R.: Symposium on the immediate and low level effects of ionizing radiations, Venezia 1959. Ref. F. Devik. Nord. Med. 62, 1557 (1959).Google Scholar
  29. Brody, B.S., and W.J. German: Medulloblastoma of the cerebellum: A report of fifteen cases. Yale J. Biol. Med. 6, 20–29 (1933/34).Google Scholar
  30. Buono, P. del: Die Wirkung der Röntgenstrahlen auf die Zelle. Strahlentherapie 67, 83–99 (1940).Google Scholar
  31. Caspari, W.: Betrachtungen über das Krebsproblem, besonders vom Standpunkte der Immunität. Z. Krebsforsch. 19, 74–100 (1923).Google Scholar
  32. Casperson, T., E. Klein, and N.R. Ringertz: Cytochemical studies on some effects of X-radiation on three as cites tumours. Cancer Res. 18, 857–862 (1958).Google Scholar
  33. Casperson, T., and L. Santesson: Studies on protein metabolism in the cells of epithelial tumours. Acta radiol. (Stockh.), Suppl. 46 (1942).Google Scholar
  34. Chambers, H., G. Scott, and S. Russ: Experiments upon immunity to tumour growth. Lancet 1, 212–216 (1922).Google Scholar
  35. Chase, H.B.: Radiation damage to cells dependent on their tissue environment. Brit. J. Radiol. 31, 65–69 (1958).PubMedGoogle Scholar
  36. Clemmesen, J.: The influence of X-radiation on the development of immunity to heterologous transplantation of tumour. Copenhagen: Einar Munksgaard 1938.Google Scholar
  37. Cohen, A., and L. Cohen: Radiobiology of the C3H mouse mammary carcinoma: Effect of immunogenetic factors on the radiosensitivity of the tumour treated in situ. Brit. J. Cancer 8, 303–312 (1954).PubMedGoogle Scholar
  38. Collins, V.P., R.K. Loeffler, and H. Tivey: Observations on growth rates of human tumors. Amer. J. Roentgenol. 76, 988–1000 (1956).PubMedGoogle Scholar
  39. Coman, D.R.: Mechanisms responsible for the origin and distribution of blood-borne tumor metastases: A review. Cancer Res. 13, 397–404 (1953).PubMedGoogle Scholar
  40. Coman, D.R.: Cellular adhesiveness in relation to the invasiveness of cancer: Electron microscopy of liver perfused with a cheleting agent. Cancer Res. 14, 519–521 (1954).PubMedGoogle Scholar
  41. Coman, D.R., and T.F. Anderson: A structural difference between the surface of normal and carcinomatous epidermal cells. Cancer Res. 15, 541–543 (1955).PubMedGoogle Scholar
  42. Conger, A.D.: Radiation effects on ascites tumor chromosomes. Ann. N.Y. Acad. Sci. 63, 929–937 (1956a).PubMedGoogle Scholar
  43. Conger, A.D.: The effect of oxygen on the radiosensitivity of mammalian cells. Radiology 66, 63–69 (1956b).PubMedGoogle Scholar
  44. Conger, A.D., and H.J. Luippold: Studies on the mechanisms of acquired radioresistance in cancer. Cancer Res. 17, 897–903 (1957).PubMedGoogle Scholar
  45. Contamin, M.: Rayons X et cancer experiméntal de la souris. Bull. Ass. franc. Cancer 3, 160 (1910).Google Scholar
  46. Crabtree, H.G., and W. Cramer: Action of radium on cancer cells. Sci. Rep. Cancer Res. Fd (Lond.) 11, 89–117 (1934).Google Scholar
  47. Cramer, W.: Experimental observations on therapeutic action of radium. Sci. Rep. Cancer Res. Fd (Lond.) 10, 95–123 (1932).Google Scholar
  48. Cramer, W.: The therapeutic action of radium on spontaneous mammary carcinomata of the mouse. Sci. Rep. Cancer Res. Fd (Lond.) 11, 127–246 (1934).Google Scholar
  49. Davis, L., J. Martin, S.L. Goldstein, and M. Ashkenazy: A study of 211 patients with verified glioblastoma multiforme. J. Neurosurg. 6, 33–44 (1949).PubMedGoogle Scholar
  50. Deery, E.M.: Remarks on the effects of roentgen therapy upon the gliomas. Bull. neurol. Inst. N.Y. 4, 572–587 (1935/36).Google Scholar
  51. Delbet, P.: Essais de thérapeutiques des cancers inoperables. Bull. Ass. franc. Cancer 7, 176–193 (1914).Google Scholar
  52. Devik, F.: A study of the local roentgen reaction on the skin of mice with special reference to the vascular effects. Acta radiol. (Stockh.), Suppl. 119 (1955).Google Scholar
  53. Devik, F.: Modification of the X-ray reaction in the skin of mice by shilding of minute areas of the skin. Advances in radiobiology (G. de Hevesy, A. Forssberg, and J.D. Abbatt), p. 226–229. Edinburgh and London: Oliver & Boyd 1957.Google Scholar
  54. Devik, F., and S. Osnes: Induction of hyperplasia in the epidermis after roentgen irradiation. Acta path. microbiol. scand. 43, 113–117 (1958).PubMedGoogle Scholar
  55. Dittrich, W., G. Höhne, and G. Schubert: Development of a radioresistant strain of Ehrlich carcinoma in mice. Progress in radiobiology (J.S. Mitchell, B.E. Holmes and C.L. Smith), p. 381–385. Edinburgh and London: Oliver & Boyd 1956.Google Scholar
  56. Domagk, G.: Gewebsveränderungen nach Röntgenbestrahlungen. Ergebn. inn. Med. Kinderheilk. 33, 1–62 (1928).Google Scholar
  57. Domonici, H., et J. Barcat: Des modifications histologiques déterminées par le rayonnement du radium. Arch. Élect. méd. 15, 835–843 (1907).Google Scholar
  58. Duryee, W.R.: Nature of radiation injury to amphibian cell nuclei. J. nat. Cancer Inst. 10, 735–795 (1949).PubMedGoogle Scholar
  59. Dustin, A.P.: Nouvelle contribution à l’étude radio-biologique des épitheliomas du col utérin soumis à la télécuriethérapie. Les courbes de pycnoses, de mitoses normales et de mitoses atypiques. Cancer (Brux.) 4, 387–430 (1927).Google Scholar
  60. Dustin, A.P.: Les réactions cytologiques et histologiques déclenchées dans les tumeurs malignes par les radiations. Cancer (Brux.) 7, 41–49 (1930).Google Scholar
  61. Earle, W.R., E.L. Schilling, T.H. Stark, N.P. Strauss, M.F. Brown, and E. Shelton: Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. nat. Cancer Inst. 4, 165–212 (1943).Google Scholar
  62. Eicke, W.-J.: Bindegewebige Substitution eines Oligodendroglioms nach Röntgenbestrahlung. Dtsch. Z. Nervenheilk. 160, 273–288 (1952).Google Scholar
  63. Elkind, M.E.: Cellular aspects of tumor therapy. Radiology 74, 529–541 (1960).PubMedGoogle Scholar
  64. Ellinger, F.: Die Histamin-Hypothese der biologischen Strahlenwirkung. Schweiz. med. Wschr. 81, 61–65 (1951).PubMedGoogle Scholar
  65. Ellinger, F.: Medical radiation biology. Springfield (Ill.): Ch. C. Thomas 1957.Google Scholar
  66. Englmann, K.: Die mikroskopischen Veränderungen an der Tumorzelle und den gesunden Geweben des Menschen nach Strahlenbehandlung. In: H. Holfelder, Die Röntgen-Tiefentherapie. Leipzig: Georg Thieme 1938.Google Scholar
  67. Eppel, A., u. R. Seyss: Histologische Untersuchungen bei vorbestrahlten Mammatumoren. Radiologia Austrica 10, 277–285 (1960).Google Scholar
  68. Essen, C.F. v., and H.S. Kaplan: Further studies on metastasis of a transplantable mouse mammary carcinoma after roentgen irradiation. J. nat. Cancer Inst. 12, 883–892 (1952).Google Scholar
  69. Ewing, J.: Factors determinating radioresistance in tumors. Radiology 14, 189–190 (1930).Google Scholar
  70. Ewing, J.: Adaptation as a factor in the cure of cancer by radiation. Amer. J. Roentgenol. 39, 165–168 (1938).Google Scholar
  71. Ferroux, R., C. Regaud u. N. Samssonow: Über die Erhöhung der Radioresistenz durch wiederholte Behandlung mit kleinen Röntgenstrahlendosen. Strahlentherapie 57, 12–19 (1936).Google Scholar
  72. Firor, W.M., and G.O. Gey: Observations on conversion of normal into malignant cells. Ann. Surg. 121, 700–703 (1945).PubMedGoogle Scholar
  73. Fisher, B., and E.R. Fisher: Experimental evidence in support of dormant tumor cell. Science 130, 918–919 (1959).PubMedGoogle Scholar
  74. Fogg, L.C., and S. Warren: A comparison of the cytoplasmic changes induced in the Walker rat carcinoma 256 by different types and dosages of radiation. Amer. J. Cancer 31, 567–577 (1937).Google Scholar
  75. Foley, E.J.: Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res. 13, 835–837 (1953).PubMedGoogle Scholar
  76. Forssberg, A.G.: The action of roentgen rays on the enzyme catalase. Acta radiol. (Stockh.) 27, 281–293 (1946).Google Scholar
  77. Foulds, L.: The experimental study of tumor progression. A review. Cancer Res. 14, 327–339 (1954).Google Scholar
  78. Friedewald, W.F., and R.S. Anderson: The effects of roentgen rays on cell-virus associations. J. exp. Med. 78, 285–303 (1943).PubMedCentralPubMedGoogle Scholar
  79. Friedman, M.: The relation of tissue recovery and the healing process to the periodicity of radiation effects. Radiology 33, 633–643 (1939).Google Scholar
  80. Friedman, N.B., and E. Drutz: The effect of chemotherapy and irradiation on the differentiation of experimental tumours. Cancer (Philad.) 11, 1060–1069 (1958).Google Scholar
  81. Fritz-Niggli, H.: Die Chromosomen im menschlichen Mamma-Karzinom. Acta Un. int. Cancr. 12, 623–637 (1956).PubMedGoogle Scholar
  82. Furth, J.: Conditioned and autonomous neoplasma: A review. Cancer Res. 13, 477–492 (1953).PubMedGoogle Scholar
  83. Furth, J.: Experimental pituitary tumors. Recent Progr. Hormone Res. 11, 221–249 (1955).Google Scholar
  84. Furth, J.: Discussion of problems related to hormonal factors in initiating and maintaining tumor growth. Cancer Res. 17, 454–463 (1957).PubMedGoogle Scholar
  85. Furth, J., A. Tuggle, and R. Breedis: Quantitative studies on the effect of X-rays on neoplastic cells. Proc. Soc. exp. Biol. (N.Y.) 38, 490–492 (1938).Google Scholar
  86. Gardner, W.U.: Hormones and carcinogenesis. Canad. Cancer Conf. 2, 207–241 (1957).PubMedGoogle Scholar
  87. Glücksmann, A.: The relation of radiosensitivity and radiocurability to the histology of tumour tissue. Brit. J. Radiol. 21, 559–566 (1948).PubMedGoogle Scholar
  88. Glücksmann, A.: The role of the tumor bed in the treatment of squamous-cell cancers by irradiation. J. Obstet. Gynaec. Brit. Emp. 57, 322–327 (1950).PubMedGoogle Scholar
  89. Glücksmann, A.: The response of human tissues to radiation with special reference to differentiation. Brit. J. Radiol. 25, 38–43 (1952).PubMedGoogle Scholar
  90. Glücksmann, A.: Biological levels of the radiosensitivity of somatic cells. Brit. J. Radiol. 27, 660–678 (1954).PubMedGoogle Scholar
  91. Glücksmann, A.: The influence of systematic factors on the differentiation and radiocurability of cervical cancers. Brit. J. Radiol. 29, 483–487 (1956a).PubMedGoogle Scholar
  92. Glücksmann, A., and C.P. Cherry: Incidence, histology and response to radiation of mixed carcinomas (adeno-acanthomas) of the uterine cervix. Cancer (Philad.) 9, 971–979 (1956b).Google Scholar
  93. Glücksmann, A., and F.G. Spear: The quantitative and qualitative histological investigation of biopsy material from patients treated by radiation for carcinoma of the cervix uteri. Brit. J. Radiol. 18, 313–322 (1945).Google Scholar
  94. Goldberg, H.C.: Area factor in roentgen irradiation. Arch. Derm. Syph. (Chic.) 49, 346–347 (1944).Google Scholar
  95. Gopal-Ayengar, A.R.: Cytology of primary, transplanted and ascites tumours in mice, rats and hamsters. 7th Internat. Congr. Cell. Biol. Excerpta med. (Amst.), Sect. I, 8, 435 (1954).Google Scholar
  96. Gorer, P.A.: Studies in antibody response of mice to tumour inoculation. Brit. J. Cancer 4, 372–379 (1950).PubMedGoogle Scholar
  97. Gorer, P.A.: Some recent work on tumor immunity. Advanc. Cancer Res. 4, 146–186 (1956).Google Scholar
  98. Gorer, P.A.: Some reactions of H-2 antibodies in vitro and in vivo. Ann. N.Y. Acad. Sci. 73, 707–721 (1958).PubMedGoogle Scholar
  99. Gosh, H.: Active cellular lysis, a phenomenon of growth processes and its role in the formation of different epithelial patterns as shown in mammary carcinomas in mice. Brit. J. Cancer 13, 200–207 (1959).Google Scholar
  100. Graham, R.M.: The effect of radiation on vaginal cells in cervical carcinoma. Surg. Gynec. Obstet. 84, 153–173 (1947).PubMedGoogle Scholar
  101. Graham, R.M., and J.B. Graham: Cytological prognosis in cancer of the uterine cervix treated radiologically. Cancer (Philad.) 8, 59–70 (1955).Google Scholar
  102. Gray, L.H., A.D. Conger, M. Eberth, S. Hornsby, and O.C.A. Scott: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Brit. J. Cancer 26, 636–648 (1953).Google Scholar
  103. Haaland, M.: Om organismens reaktioner mot pathologisk cellevekst. Norsk Mag. Laegevidensk. 7, 1047–1066 (1909).Google Scholar
  104. Halberstaedter, L., G. Goldhaber, and L. Doljanski: Comparative studies on the radiosensitivity of normal and malignant cells in culture. Cancer Res. 2, 28–31 (1942).Google Scholar
  105. Hall, J.W., and M. Friedman: Histologic changes in squamous cell carcinoma of the mouth and oropharynx produced by fractionated roentgen irradiation. Radiology 50, 318–350 (1948).PubMedGoogle Scholar
  106. Halley, E.P., and P.J. Melnick: Pre-operative irradiation in carcinoma of the breast. Radiology 35, 430–437 (1940).Google Scholar
  107. Hamperl, H., u. K.W. Kalkhoff: Zur Kenntnis des Molluscum pseudocarcinomatosum. Hautarzt 5, 440–447 (1954).PubMedGoogle Scholar
  108. Hamperl, H., u. G. Schwarz: Zur genaueren Kenntnis der Röntgenwirkung auf Krebsgeschwülste. Strahlentherapie 24, 607–659 (1927).Google Scholar
  109. Hansen-Melander, E., S. Kullander, and Y. Melander: Chromosome analysis of a human ovarian cystocarcinoma in the ascites form. J. nat. Cancer Inst. 16, 1067–1081 (1956).PubMedGoogle Scholar
  110. Hartmann, H.: Das Basaliom, seine Spielformen, diagnostische Abgrenzung und Dignität. Virchows Arch. path. Anat. 330, 577–593 (1957).Google Scholar
  111. Hauschka, T.S.: Distinct clonal derivates of the Krebs-2 mouse ascites carcinoma established through transplantation of single cells. Proc. Amer. Ass. Cancer Res. 1, 24–36 (1953).Google Scholar
  112. Hauschka, T.S.: Cell population studies in mouse ascites tumors. Trans. N.Y. Acad. Sci. (II) 16, 64–73 (1953).Google Scholar
  113. Hauschka, T.S.: Correlation of chromosomal and physiologic changes in tumors. J. cell. comp. Physiol. 52, Suppl. 1, 197–233 (1958).Google Scholar
  114. Hauschka, T.S., B.J. Kvedar, S.T. Grinnel, and D.B. Amos: Immunoselection of polyploids from predominantly diploid cell populations. Ann. N.Y. Acad. Sci. 63, 683–705 (1956).PubMedGoogle Scholar
  115. Hauschka, T.S., and A. Levan: Cytologie and functional characterization of single cell clones isolated from Krebs-2 and Ehrlich ascites tumors. J. nat. Cancer Inst. 21, 77–135 (1958).PubMedGoogle Scholar
  116. Hauschka, T.S., J.T. Mitchell, and M. Reinhard: Influence of heteroploidy on radiation sensitivity of tumours. Proc. Amer. Ass. Cancer Res. 3, 26 (1959).Google Scholar
  117. Henshaw, P.S., and L.H. Meyer: Influence of irradiation-killed cells on tumor growth. J. nat. Cancer Inst. 4, 305–307 (1943).Google Scholar
  118. Hewitt, H.B., and C.W. Wilson: A survival curve for mammalian leukaemia cells irradiated in vivo. Brit. J. Cancer 13, 69–75 (1959).PubMedGoogle Scholar
  119. Hilton, G., and L.E. Glynn: A case of bone sarcoma treated by radiotherapy. Brit. J. Radiol. 19, 198–202 (1946).PubMedGoogle Scholar
  120. Hofmann, D.: Phasenkontrastuntersuchungen über Strahlenwirkung und Strahlenschutzwirkung im Tumorascites der Maus. Strahlentherapie 95, 209–214 (1954).PubMedGoogle Scholar
  121. Holt, M.W., S.C. Sommers, and S. Warren: Intranuclear changes resulting from exposure to ionizing radiation. Lab. Invest. 2, 408–418 (1953).PubMedGoogle Scholar
  122. Hopwood, F.W., and M.A. Donaldson: A remarkable sequel to an attempt to determine the X-ray lethal dose for tissue cultures growing in vitro. Brit. J. Radiol. 3, 69–73 (1930).Google Scholar
  123. Ising, U.: Effect of heterologous transplantation on chromosomes of ascites tumours. Acta path. microbiol. scand., Suppl. 127, 1–102 (1958).Google Scholar
  124. Ising, U.: Chromosomal pattern in some mouse ascites tumours after deep freezing. Exp. Cell Res. 19, 475–488 (1960).PubMedGoogle Scholar
  125. Ising, U., and A. Levan: The chromosomes of two highly malignant human tumours. Acta path. microbiol. scand. 40, 13–40 (1957).PubMedGoogle Scholar
  126. Jolles, B.: The reciprocal vicinity effect of irradiated tissues on a diffusible substance in irradiated tissues. Brit. J. Radiol. 23, 18–24 (1950).PubMedGoogle Scholar
  127. Jolles, B.: X-ray sieve therapy in cancer. A connective tissue problem. London: H.K. Lewis 1953.Google Scholar
  128. Jolles, B., and R.G. Mitchell: Optimal skin tolerance dose levels. Brit. J. Radiol. 20, 405–409 (1947).PubMedGoogle Scholar
  129. Jüngling, O., u. H. Langendorff: Kann der Mithosenrythmus Bedeutung gewinnen für die Dosierung bei Krebs? Quantitative Untersuchungen über das Verhalten der Mitosen bei bestrahlten Krebsen. Strahlentherapie 69, 181–230 (1941).Google Scholar
  130. Kaae, S.: Metastatic frequency of spontaneous mammary carcinoma in mice following biopsy and following local roentgen irradiation. Cancer Res. 13, 744–747 (1953).PubMedGoogle Scholar
  131. Kaplan, H.S., and E.D. Murphy: The effect of local irradiation on the biological behaviour of a transplantable mouse carcinoma. I. Increased frequence of pulmonary metastasis. J. nat. Cancer Inst. 9, 407–413 (1948/49).Google Scholar
  132. Kjellgren, O.: The radiation reaction in the vaginal smear and its prognostic significance. Acta radiol. (Stockh.), Suppl. 168, 1–170 (1958).Google Scholar
  133. Klein, E., and G. Klein: Mechanism of induced change in transplantation specificity of a mouse tumor passed through hybrid hosts. Transplant. Bull. 3, 136–142 (1956).Google Scholar
  134. Klein, E., and L. Révész: Permanent modification (mutation?) of a histocompatibility gene in a heterozygous tumour. J. nat. Cancer Inst. 19, 95–114 (1957).PubMedGoogle Scholar
  135. Klein, G.: The usefulness and limitations of tumor transplantation in cancer research. Cancer Res. 19, 343–358 (1959).PubMedGoogle Scholar
  136. Klein, G., and A. Forssberg: Studies on the effect of X-rays on the biochemistry and cellular composition of ascites tumors. Exp. Cell Res. 6, 211–220 (1954).PubMedGoogle Scholar
  137. Kohn, H. L, and J.E. Fogh: Some prompt and delayed effects of X-rays on growth of human amnion cells (strain FL) in tissue culture. J. nat. Cancer Inst. 23, 293–304 (1959).PubMedGoogle Scholar
  138. Koller, P.C.: Abnormal mitosis in tumours. Brit. J. Cancer 1, 38–47 (1947a).PubMedGoogle Scholar
  139. Koller, P.C.: The effect of radiation in the normal and malignant cell in man. Brit. J. Radiol., Suppl. 1, 84–98 (1947b).Google Scholar
  140. Koller, P.C.: Cytological variability in human carcinomatosis. Ann. N.Y. Acad. Sci. 63, 793–817 (1956b).PubMedGoogle Scholar
  141. Koller, P.C.: The role and importance of mutation, variation and adaptation in malignant growth. Acta genet. (Basel) 6, 283–290 (1956b).Google Scholar
  142. Koller, P.C.: Biological basis of radiotherapy. In: Cancer, III (R.W. Raven), p.28–53. London: Butterworth & Co. 1959.Google Scholar
  143. Koller, P.C., and D.W. Smithers: Cytological analysis of the response of malignant tumours to irradiation as an approach to a biological basis of dosage in radiotherapy. Brit. J. Radiol. 19, 98–100 (1946).Google Scholar
  144. Krebs, C.: The effect of roentgen irradiation on the interrelation between malignant tumors and their host. Acta radiol. (Stockh.), Suppl. 8, 1–133 (1929).Google Scholar
  145. Krontowski, A.A.: Zur Analyse der Röntgen-strahlenwirkung auf den Embryo und die embryonalen Gewebe. Strahlentherapie 21, 12–30 (1925).Google Scholar
  146. Laborde, S.: Zur Frage der erworbenen Radioresistentz bei Epithelgeschwülsten. Strahlentherapie 56, 466–477 (1936).Google Scholar
  147. Lacassagne, A.: Action directe et action indirecte des radiations sur les tissues cancéreux. Radio-physiol. et Radiothér. 1, 401–416 (1929).Google Scholar
  148. Lacassagne, A., et G. Gricouroff: Action des radiations ionisantes sur l’organisme. Paris: Masson & Cie. 1956.Google Scholar
  149. Lacassagne, A., et O. Monod: Les caryocinèses atypiques provoquées dans les cellules cancéreuses par les rayons X et gamma et leur rôle dans la régression des tumeurs malignes irradiées. Arch. franç. Path. Gén. exp. 1, 1–32 (1922).Google Scholar
  150. Langendorff, H.: Das Verhalten der Salamandercornea nach einzeitiger und fraktionierter Röntgenbestrahlung. Strahlentherapie 72, 505–526 (1943).Google Scholar
  151. Lasnitzki, I.: A quantitative analysis of the effect of gamma radiation on malignant cells in vitro and in vivo. Brit. J. Radiol. 18, 214–220 (1945).Google Scholar
  152. Lasnitzki, I.: A quantitative analysis of the direct and indirect action of X radiation on malignant cells. Brit. J. Radiol. 20, 240–247 (1947).PubMedGoogle Scholar
  153. Lasnitzki, I.: Cancer cells in tissue culture. In: Cancer, III (ed. R.V. Raven), p. 42–72. London: Butterworth & Co. 1958.Google Scholar
  154. Lassueure, A.: Aperçue critique sur la radiothérapie et la photothérapie. Rev. méd. Suisse rom. 24, 159–173 (1904).Google Scholar
  155. Levan, A.: Chromosomes in cancer tissue. Ann. N.Y. Acad. Sci. 63, 774–792 (1956).PubMedGoogle Scholar
  156. Levan, A., and J.J. Biesele: Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells. Ann. N.Y. Acad. Sci. 71, 1022–1053 (1958).PubMedGoogle Scholar
  157. Lindgren, M.: On tolerance of brain tissue and sensitivity of brain tumours to irradiation. Acta radiol. (Stockh.), Suppl. 170, 1–73 (1958).Google Scholar
  158. Linell, F., and B. Månsson: Molluscum pseudocarcinomatosum. Acta radiol. (Stockh.) 48, 123–140 (1957).Google Scholar
  159. Lorenz, W.: Problem und Ergebnisse der Strahlenbiologie in ihrer Bedeutung für die Krebsbehandlung. Strahlentherapie 96, 196–200 (1955).Google Scholar
  160. Lücke, W.W., and A. Sarachek: X-ray inactivation of polyploid Saccharomyces. Nature (Lond.) 171, 1014–1015 (1953).Google Scholar
  161. Ludford, R.J.: Cytological changes after irradiation of malignant growth. Sci. Rep. Cancer Res. Fd (Lond.) 10, 125–168 (1932).Google Scholar
  162. Lüscher, M.: Die Regeneration in der Zoologie. In: Handbuch der allgemeinen Pathologie (Büchner, Letterer und Roulet), Bd. IV/1, S. 411. Berlin: Springer 1955.Google Scholar
  163. Lumb, G.: Changes in carcinoma of the breast following irradiation. Brit. J. Surg. 38, 82–93 (1950).PubMedGoogle Scholar
  164. Luther, W.: Untersuchungen über die Wirkungen von einzeitigen Röntgenbestrahlungen auf ein Impfkarzinom der Ratte. Strahlentherapie 72, 679 (1942/43).Google Scholar
  165. Mackee, G.M., A. Mutscheller, and A.C. Cipollaro: The area factor in roentgen irradiation. Arch. Derm. Syph. (Chic.) 47, 657–664 (1943).Google Scholar
  166. Maisin, H.: Contribution à l’étude du syndroma médullaire après irradiation. Bruxelles: Arscia 1959.Google Scholar
  167. Marino, S.: The chromosome cytology of the ascites tumors of rats with special reference to the concept of the stemline cell. Rev. Cytol. 6, 26–84 (1957).Google Scholar
  168. Marinelli, L.D., and A.M. Brues: Radiation and cancer. Experimental studies: The physiopathology of cancer (Homburger and Fishman), p. 664–684. New York: Hoeber-Harper 1953.Google Scholar
  169. Marquardt, H.: Aktuelle Probleme der Strahlenschädigung von Zellen im Organismus. Atompraxis 2, 240–248 (1956).Google Scholar
  170. Marshak, A.: Effects of X-rays and neutrons on mouse lymphoma chromosomes in different stages of nuclear cycle. Radiology 39, 621–626 (1942).Google Scholar
  171. Medawer, P.B.: Cellular inheritance and transformation. Biol. Rev. 22, 360–389 (1947).Google Scholar
  172. Melnick, P.J., and A. Bachem: The tissue factor in irradiation of malignant tumors. Arch. Path. 23, 757–792 (1937).Google Scholar
  173. Merrill, J.A.: Cytohistologic evaluation of radiation response in carcinoma of the cervix. Progress in radiation therapy (F. Buschke), p. 144–179. New York: Grune & Stratton 1958.Google Scholar
  174. Merwin, R., G.H. Algire, and H.S. Kaplan: Transparent-chamber observations of the response of a transplantable mouse mammary tumor to local roentgen irradiation. J. nat. Cancer Inst. 11, 593–623 (1950).PubMedGoogle Scholar
  175. Mitchell, J.S.: Disturbance of nucleic acid metabolism produced by therapeutic doses of X and gamma radiations. Brit. J. exp. Path. 23, 309–313 (1942).Google Scholar
  176. Mitchell, J.S.: Experimental radiotherapeutics. Schweiz. med. Wschr. 76, 883–889 (1946).PubMedGoogle Scholar
  177. Mitra, S., and P.K. De: Differentiation and radiation effects on cancer cells. Brit. J. Cancer 8, 107–111 (1954).PubMedGoogle Scholar
  178. Montgomery, P. O’B., and S. Warren: Mechanisms in acquired radioresistance of cancer. Radiology 60, 421–424 (1953).PubMedGoogle Scholar
  179. Moppett, W.: The differential action of X-rays on tissue, growth and vitality. Part III. The biological reaction to X-radiation in relation to the area of tissue irradiated. Proc. roy. Soc. B 107, 302–307 (1931).Google Scholar
  180. Mottram, J.C.: Experiments on the radiation of tumours. Brit. med. J. 1, 275–289 (1927).PubMedGoogle Scholar
  181. Mottram, J.C., and S. Russ: Observations and experiments on the susceptibility and immunity of rats towards Jensens rat sarcoma. Proc. roy. Soc. B 90, 1–17 (1919).Google Scholar
  182. Nagai, S., H. Matsuda, K. Akita, and T. Kasue: Earlier morphologic changes of tissue cells caused by X-ray irradiation. Studies with methyl-greenpyronine. Med. J. Osaka Univ. 5, 749–765 (1954).Google Scholar
  183. Nice, C.M.: Development and transplantation of locally radioresistant mouse lymphoma. Amer. J. Roentgenol. 78, 831–836 (1957).PubMedGoogle Scholar
  184. Nice, C.M., and J. Kuntz: Relation of tumor size to radio-resistance. Radiology 68, 555–557 (1957).PubMedGoogle Scholar
  185. Nielsen, A.M.: Cytological changes in vaginal smears in radium and roentgen irradiation of utérin carcinoma and their prognostic significance. Acta radiol. (Stockh.) 37, 479–486 (1952).Google Scholar
  186. Nielsen, J.: Über Coutards Röntgenbehandlung maligner Tumoren. Ideologie, Prinzipien, praktische Anwendung. Strahlentherapie 53, 25–53 (1935).Google Scholar
  187. Nodl, F.: Die erosive Reaktion als Leitsymptom bei Strahlenbehandlung der Hautkrebse. Strahlentherapie 98, 79–93 (1955).PubMedGoogle Scholar
  188. Nogier, Th., et C. Regaud: Décroissance de la radiosensibilité des tumeurs malignes traités par des doses successives et convenablement espacées des rayns X: auto-immunisation contre les rayons. C.R. Acad. Sci. (Paris) 158, 1711–1714 (1914).Google Scholar
  189. Olch, P.D. Eck, R.V., and R.R. Smith: An experimental study of external irradiation on a “primary” tumor and its distant metastasis. Cancer (Philad.) 12, 23–26 (1959).Google Scholar
  190. Oughterson, A.Q., R. Tenant, and E.A. Lawrence: Tumor response and stroma reaction following X-ray of transplantable tumor in inbread strains of mice. Yale J. Biol. Med. 12, 419–425 (1940).PubMedCentralPubMedGoogle Scholar
  191. Patt, H.M.: Protective mechanisms in ionizing radiation injury. Physiol. Rev. 33, 35–76 (1953).PubMedGoogle Scholar
  192. Pennybaker, J., and D.S. Rüssel: Necrosis of the brain due to radiation therapy. J. Neurol. Neurosurg. Psychiat. 11, 183–189 (1948).Google Scholar
  193. Peters, K.: Stoffwechselbeziehungen zwischen bestrahltem und unbestrahltem Gewebe in ihrem Einfluß auf die Mitosenhäufigkeit in vitro. Z. Zellforsch. 39, 203–211 (1953).PubMedGoogle Scholar
  194. Peters, K.: Über die Bedeutung des Mediums für die Wirkung sekundärer Strahlenprodukte auf die Mitosehäufigkeit in halbbestrahlten Gewebekulturen. Z. Zellforsch. 40, 510–518 (1954).PubMedGoogle Scholar
  195. Pomerat, C.M.: Cellular changes induced by radiation. Ann. N.Y. Acad. Sci. 71, 1143–1155 (1958).PubMedGoogle Scholar
  196. Prehn, R.T., and J.M. Main: Immunity to methylcholantrene-induced sarcomas. J. nat. Cancer Inst. 18, 769–778 (1957).PubMedGoogle Scholar
  197. Price-Jones, C., and J.C. Mottram: A contribution to the study of in vitro plasma cultures of mouse carcinoma and rat sarcoma. Arch. Middx Hosp. 33, 21–34 (1914).Google Scholar
  198. Propst, A.: Morphologische Befunde nach Bewegungsbestrahlung des Oesophaguskarzinoms. Strahlentherapie 103, 224–248 (1957).PubMedGoogle Scholar
  199. Prym, P.: Die therapeutischen Röntgenbestrahlungen vom pathologisch-anatomischen Standpunkt. In: Handbuch der Röntgentherapie. Leipzig: W. Klinkhardt 1924.Google Scholar
  200. Puck, T.T.: The genetic of somatic mammalian cells. Advances in biological and medical physics (J.H. Lawrence and C.A. Tobias), vol. 5, p. 75–101. New York: Academic Press 1957.Google Scholar
  201. Puck, T.T.: Growth and genetics of somatic mammalian cells in vitro. J. cell. comp. Physiol. 52 Suppl. I, 287–311 (1958a).Google Scholar
  202. Puck, T.T.: Action of radiation on mammalian cells. III. Relationship between reproductive death and induction of chromosome anomalies by X-irradiation of euploid human cells in vitro. Proc. nat. Acad. Sci. (Wash.) 44, 772–780 (1958b).Google Scholar
  203. Puck, T.T., and P.I. Marcus: Action of X-rays on single mammalian cells. J. exp. Med. 103, 653–666 (1956).PubMedCentralPubMedGoogle Scholar
  204. Puck, T.T., and S.J. Cieciura: Clonal growth of mammalian cells in vitro. Growth characteristics of colonies from single HeLa cells with and without a feeder layer. J. exp. Med. 103, 273–284 (1956).PubMedCentralPubMedGoogle Scholar
  205. Puck, T.T., D. Morkovin, P.I. Marcus, and S.J. Cieciura: Action of X-rays on mammalian cells. II. Survival curves from normal human tissues. J. exp. Med. 106, 485–500 (1957).PubMedCentralPubMedGoogle Scholar
  206. Read, J.: Aspects of radiation damage likely to be involved in tumour regression. I. Radiation damage to individual cells. Brit. J. Radiol. 31, 60–65 (1958).PubMedGoogle Scholar
  207. Regaud, C.: Sur la radio-immunisation des tissues cancéreux et sur le mécanism de l’action des rayons X et des rayons de radium sur les cellules et tissues vivant en général. Bull. Acad. Méd. (Paris) 91, 604–607 (1924).Google Scholar
  208. Regaud, C., et T. Nogier: Histoire clinique, histologique et radiologique d’un myxosarcome traité par les rayons X.J. Radiol. Électrol. 2, 135–152 (1916).Google Scholar
  209. Révész, L.: Effect of X irradiation on the growth of the Ehrlich ascites tumor. J. nat. Cancer Inst. 15, 1691–1701 (1955).PubMedGoogle Scholar
  210. Révész, L.: Effect of lethally damaged tumor cells upon the development of admixed viable cells. J. nat. Cancer Inst. 20, 1157–1186 (1958).PubMedGoogle Scholar
  211. Révész, L.: Model experiments on some factors involved in the growth of radiation-damaged tumors. Nord. Med. 25, 836–839 (1958b).Google Scholar
  212. — To be published 1960.Google Scholar
  213. Ringertz, N., E. Klein, and L. Révész: Growth of small compatible tumor implants in presence of admixed radiation-killed or incompatible tumor cells. Cancer 12, 697–707 (1959).PubMedGoogle Scholar
  214. Ringertz, N., and J.H. Tola: Medulloblastoma. J. Neuropath. exp. Neurol. 9, 354–371 (1950).PubMedGoogle Scholar
  215. Roussy, G., et S. Laborde: Réactions locales et générales de l’organisme au cours du traitement des cancers du col de l’utérus par les rayons X et Y. Bull. Ass. franç. Cancer 11, 431-444, 586–593 (1922).Google Scholar
  216. Runge, H., H.J. Ebner u. W. Lindenschmidt: Vorzüge der kombinierten Alcianblau-Perjodsäure-Schiff-Reaktion für die gynäkologische Histopathologie. Dtsch. med. Wschr. 81, 1525–1529 (1956).PubMedGoogle Scholar
  217. Russ, S.: Experimental studies upon the lethal doses of X-rays and radium for human and other tumors. Brit. J. Radiol. 29, 275–292 (1924).Google Scholar
  218. Rüssel, B.R.G.: The nature of resistance to the inoculation of cancer. Sci. Rep. Cancer Res. Fd (Lond.) 3, 341–358 (1908).Google Scholar
  219. Sachs, L., and R. Gallily: The chromosomes and transplantability of tumors, II Chromosome duplication and loss of strain specificity in solid tumors. J. nat. Cancer Inst. 16, 803–841 (1956).PubMedGoogle Scholar
  220. Sanford, K.K., W.R. Earle, E.L. Schilling, E. Duchesne, and E. Shelton: A transformation of normal to malignant tissue in vitro. Cancer Res. 9, 558 (1949).Google Scholar
  221. Sault, L.A. du: The time-dose relationship in radiotherapy. Progress in radiation therapy (F. Buschke), p. 100–114. New York: Grune & Stratton 1958.Google Scholar
  222. Scanlon, P.W.: The effect of mitotic suppression and recovery after irradiation on time-dose relationships and the application of this effect to clinical radiation therapy. Amer. J. Roentgenol. 81, 433–455 (1959).PubMedGoogle Scholar
  223. Scarff, R.W., and P.S. Andrews: The histological aspects of tumour radiosensitivity. Brit. J. Radiol. 29, 478–482 (1956).PubMedGoogle Scholar
  224. Scherbaum, O., and E. Zeuthen: Induction of synchronous cell division in mass cultures of Tetrahymina Piriformis. Exp. Cell Res. 6, 221–227 (1954).PubMedGoogle Scholar
  225. Scherer, E., u. H.-J. Fiebelkorn: Über die Darstellbarkeit der Nukleinsäuren des Zellkernes und ihre Bedeutung für Diagnose und Prognose maligner Bluterkrankungen. Folia haemat. (Lpz.) 72, 143–148 (1953).Google Scholar
  226. Scherer, E., u. D. Ringleb: Beobachtungen an den Mitochondrien der Mäuseaszites-Tumorzellen unter Einwirkung von Röntgenstrahlen. Strahlentherapie 90, 34–40 (1953).PubMedGoogle Scholar
  227. Scherer, E., u. W. Vogell: Elektronenoptische Untersuchungen zur Strahlenwirkung auf Leber, Milz und Niere. Strahlentherapie 106, 202–211 (1958).PubMedGoogle Scholar
  228. Schober, R.: Mesenchymale Gewebsreaktionen am vorbestrahlten Mamma-Karzinom. Strahlentherapie 98, 366–381 (1958).Google Scholar
  229. Scholz, W.: Experimentelle Untersuchungen über die Einwirkung von Röntgenstrahlen auf das reife Gehirn. Zbl. ges. Neurol. Psychiat. 150, 765–785 (1934).Google Scholar
  230. Schrek, R.: Radiation effects on lymphocytes. The lymphocyte and lymphocytic tissue (J.W. Rebuch), p. 125–145. New York: Paul B. Hoeber 1960.Google Scholar
  231. Schubert, G.: Die Strahlenresistenz in Biologie und Medizin. Z. Krebsforsch. 60, 216–233 (1954).PubMedGoogle Scholar
  232. Schubert, M. v.: Biologische Röntgenstrahlenwirkung, ihre Erforschung mittels der Gewebeexplantationsmethode. Strahlentherapie 26, 425–471 (1927).Google Scholar
  233. Schürmann, P., u. H.E. Macmahon: Die maligne Nephrosklerose, zugleich ein Beitrag zur Frage der Bedeutung der Blutgewebsschranke. Virchows Arch. path. Anat. 291, 47–218 (1933).Google Scholar
  234. Sheek, M.R., R.M. des Armier, B.P. Sagik, and W.E. Magee: Biochemical changes during formation and growth of giant cells from irradiated He La cells. Exp. Cell Res. 19, 549–558 (1960).PubMedGoogle Scholar
  235. Snellman, B.: Attempt to develop reduced radio-sensitivity in Jensen rat sarcoma by means of roentgen irradiation. Acta radiol. (Stockh.) 16, 545–556 (1935).Google Scholar
  236. Sparrow, A.H., M.J. Moses, and R. Steele: Radiation genetics: Symposium; Cytological and cytochemical approach to understanding of radiation damage in dividing cells. Brit. J. Radiol. 25, 182–188 (1952).PubMedGoogle Scholar
  237. Strangeways, T.S.P., and H.B. Fell: Study of the direct and indirect action of X-rays upon the tissues of embryonic fowl. Proc. roy. Soc. B 102, 9–29 (1927).Google Scholar
  238. Sylvén, B., and H. Malmgren: The histological distribution of proteinase and peptidase activity in solid tumor transplants. Acta radiol. (Stockh.), Suppl. 154, 1–124 (1957).Google Scholar
  239. Täthi, E.: Studies on the effect of X-radiation on 24-hour variation in the mitotic activity in human malignant tumours. Acta path. microbiol. scand., Suppl. 117, 1–61 (1956).Google Scholar
  240. Tarlov, I.M.: Effect of roentgenotherapy ongliomas. Arch. Neurol. Psychiat. (Chic.) 38, 513–536 (1937).Google Scholar
  241. Thomlinson, R.H., and L.H. Gray: The histologic structure of some human lung cancers and the possible implications for radiotherapy. Brit. J. Cancer 9, 539–549 (1955).PubMedGoogle Scholar
  242. Trowell, O.A.: The sensitivity of lymphocytes to ionizing radiation. J. Path. Bact. 64, 687–704 (1952).PubMedGoogle Scholar
  243. Trowell, O.A.: The effect of environment factors on the radio-sensitivity of lymph nodes cultured in vitro. Brit. J. Radiol. 26, 302–309 (1953).PubMedGoogle Scholar
  244. Umiker, W., E. Lampe, R. Rapp, H. Latourette, and D. Boblitt: Irradiation effects on malignant cells in smears from oral cancers. Cancer (Philad.) 12, 614–619 (1959).Google Scholar
  245. Upton, A.C.: The radiobiology of the cancer cell. Fed. Proc. 17, 698–713 (1958).PubMedGoogle Scholar
  246. Vermund, H., K.W. Stentrom, D.G. Mosser, and E.A. Johnson: Effect of roentgen irradiation on the tumor bed. II. The inhibiting action of different dose levels of local pretransplantation roentgen irradiation on the growth of mouse mammary carcinoma. Radiat. Res. 5, 354–364 (1956).PubMedGoogle Scholar
  247. Vogler, E.: Die Gefäße und die Durchblutung maligner Tumoren vor und nach Strahlentherapie. Radiologia Austrica 10, 156–162 (1958).Google Scholar
  248. Walter, H.E.: Krebsmetastasen. Basel: Benno Schwabe & Co. 1948.Google Scholar
  249. Warren, S.: The physiological effects of radiant energy. Ann. Rev. Physiol. 7, 61–74 (1945).Google Scholar
  250. Warren, S.: Mechanisms of radiation effects against malignant tumors. J. Amer. med. Ass. 133, 462–463 (1947).Google Scholar
  251. Warren, S., M. Holt, and S. Sommers: Some cytologic and histochemic studies of radiation reaction. Amer. J. clin. Path. 22, 411–417 (1952).Google Scholar
  252. Whitfield, J.F., and R.H. Rixon: Radiation resistant derivatives of L strain mouse cells. Exp. Cell Res. 19, 531–538 (1960).PubMedGoogle Scholar
  253. Willis, R.A.: The spread of tumours in the human body. St. Louis: C.V. Mosby 1952.Google Scholar
  254. Windholz, F.: Problems of acquired radioresistance of cancer: Adaptation of tumor cells. Radiology 48, 398–404 (1947).PubMedGoogle Scholar
  255. Woglom, W.H.: Immunity to transplantable tumors. Cancer Rev. 4, 129–214 (1929).Google Scholar
  256. Wolff, K.: Über die vakuolige Degeneration der röntgenbestrahlten Karzinomzellen. Strahlentherapie 68, 688–693 (1940).Google Scholar
  257. Wood, F.C., and F. Prime: Lethal dose of roentgen rays for cancer cells. J. Amer. med. Ass. 74, 308–309 (1920).Google Scholar
  258. Yamamoto, T.: Experimental study on effect of X-ray on metastasis of malignant tumor, especially in bones. Jap. J. Obstet. Gynec. 19, 559–569 (1936).Google Scholar
  259. Yoshida, T.: Studies on an ascites (reticulo-endothelial cell?) sarcoma of the rat. J. nat. Cancer Inst. 12, 947–969 (1952).PubMedGoogle Scholar
  260. Young, J.S.: The invasive growth of malignant tumours: an experimental interpretation based on elastic-jelly models. J. Path. Bact. 77, 321–339 (1959).PubMedGoogle Scholar
  261. Zeldman, I.: Metastasis: A review of recent advances. Cancer Res. 17, 157–162 (1957).Google Scholar
  262. Zeit, H., u. K. Fendel: Frühveränderungen an radiumbestrahlten Mäuseascites — Tumoren. Z. Krebsforsch. 59, 516–526 (1953).Google Scholar
  263. Zeman, W.: Strahlenschäden an Gehirn und Rückenmark. Handbuch der speziellen Pathologie (Henke-Lubarsch), Bd. 13/111, S. 340-355. Berlin: Springer 1955.Google Scholar
  264. Zimmer, T.S.: Late irradiation changes. A cytological study of cervical and vaginal smears. Cancer (Philad.) 12, 193–196 (1959).Google Scholar
  265. Zirkle, R.E.: Relationships between chemical and biological effects of ionizing radiations. Radiology 52, 846–855 (1949).PubMedGoogle Scholar
  266. Zirkle, R.E.: Partial cell irradiation. Advances in Biol. Med. Physics, p. 103–146. New York: Academic Press 1957.Google Scholar
  267. Zollinger, H.U.: Radio-Histologie und Radio-Histopathologie. Handbuch der allgemeinen Pathologie (F. Büchner, E. Letterer und F. Roulet), Bd. 10/1, S. 127–287. Berlin: Springer 1960.Google Scholar
  268. Zuppinger, A.: Betrachtungen über den Wirkungsmechanismus kurzwelliger Strahlungen. Bull. Schweiz. Akad. med. Wiss. 12, 320–335 (1956)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  1. 1.Institute of PathologyUniversity of LundSweden

Personalised recommendations