Advertisement

Der Internist pp 414-419 | Cite as

Störungen der Rezeptorfunktion als pathogenetisches Prinzip bei der Myasthenia gravis

  • Klaus V. Toyka
Chapter

Zusammenfassung

Experimentelle Untersuchungen der letzten Jahre sicherten bei der Myasthenia gravis die Erkenntnis einer postsynaptischen Rezeptorstörung, die aufgrund pathogener zirkulierender Auto-antikörper zustande kommt. In diese Zusammenhänge wird Einblick vermittelt unter Berücksichtigung folgender Gesichtspunkte: die Myasthenia gravis als natürlich vorkommende Autoimmunerkrankung, die pathogène Bedeutung von Antikörpern gegen nikotinische Azetylcholinrezeptoren, der Mechanismus der Antikörperinduzierten Rezeptorstörung, Autoantikörper und Schweregrad der Erkrankung, monoklonale Antikörper gegen Azetylcholinrezeptor, Ätiologie der Autoimmunantwort gegen Azetylcholinrezeptor, die Rolle des Thymus für die Erkrankung sowie die Therapiemöglichkeiten.

Schlüsselwörter

Myasthenia gravis Autoimmunerkrankung Azetylcholinrezeptor Immuntherapie 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Acuto O, Reinherz EL (1985) The human T-cell receptor; structure and function. N Engl J Med 312:1100PubMedCrossRefGoogle Scholar
  2. 2.
    Aharonov A, Abramsky O, Tarrab-Hazdai R, Fuchs S (1975) Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet II: 340CrossRefGoogle Scholar
  3. 3.
    Almon RR, Andrew CG, Appel SH (1974) Serum globulin in myasthenia gravis: inhibition of alpha-bungarotoxin binding to acetylcholine receptors. Science 186:55PubMedCrossRefGoogle Scholar
  4. 4.
    Bell J, Rassenti L, Smoot S, Smith K, Newby C, Hohlfeld R, Toyka KV, McDevitt H, Steinman L (1986) HLA-DQ beta-chain polymorphism linked to myasthenia gravis. Lancet 1:1058PubMedCrossRefGoogle Scholar
  5. 5.
    Besinger UA, Toyka KV, Hömberg V, Heininger K, Hohlfeld R, Fateh-Moghadam A (1983) Myasthenia gravis: Long-term correlation of binding and bunga-rotoxin blocking antibodies against acetylcholine receptors with changes in disease severity. Neurology (Cleveland) 33:1316CrossRefGoogle Scholar
  6. 6.
    Cleveland WL, Wassermann NH, Saran-garajan R, Penn AS, Erlanger BF (1983) Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto-antiidiotypic mechanism. Nature 305:56PubMedCrossRefGoogle Scholar
  7. 7.
    Cull-Candy SG, Miledi R, Trautmann A (1979) End-plate currents and acetylcholine noise at normal and myasthenic human end-plates. J Physiol (Lond) 287:247Google Scholar
  8. 8.
    Drachman DB (1981) The biology of myasthenia gravis. Am Rev Neurosci 4:195CrossRefGoogle Scholar
  9. 9.
    Drachman DB, Adams RN, Josifek LF, Self SG (1982) Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N Engl J Med 307:769PubMedCrossRefGoogle Scholar
  10. 10.
    Dau PC (1984) Plasmapheresis. Therapeutic or experimental procedure. Arch Neurol 41:647PubMedCrossRefGoogle Scholar
  11. 11.
    Dudel J, Birnberger KL, Toyka KV, Schlegel C, Besinger UA (1979) Effects of myasthenic immunoglobulins and of prednisolone on spontaneous miniature end-plate potentials in mouse diaphragms. Exp Neurol 66:365PubMedCrossRefGoogle Scholar
  12. 12.
    Engel AG (1984) Myasthenia gravis and myasthenic syndromes. Ann Neurol 16:519PubMedCrossRefGoogle Scholar
  13. 13.
    Fambrough DM, Drachman DB, Saty-murti S (1973) Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science 182:293PubMedCrossRefGoogle Scholar
  14. 14.
    Gomez CM, Richman DP (1983) Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc Natl Acad Sci USA 80:4089PubMedCrossRefGoogle Scholar
  15. 15.
    Grob D (1963) Therapy of myasthenia gravis. In: Koelle GB (ed) Cholinestera-ses and anticholinesterase agents. Handbook of experimental Pharmacology, Vol 15. Springer, Berlin Heidelberg New York, p 1029Google Scholar
  16. 16.
    Heilbronn E, Mattsson C (1974) The nicotinic cholinergic receptor protein: improved purification method, preliminary aminoacid composition, and observed autoimmune response. J Neurochem 22:315PubMedCrossRefGoogle Scholar
  17. 17.
    Hohlfeld R, Toyka KV, Heininger K, Grosse-Wilde H, Kalies I (1984) Autoimmune human T lymphocytes specific for acetylcholine receptor. Nature 310:244PubMedCrossRefGoogle Scholar
  18. 18.
    Hohlfeld R, Toyka KV (1985) Strategies for the modulation of neuroimmunologi-cal disease at the level of autoreactive T lymphocytes. J Neuroimmunol 9:193PubMedCrossRefGoogle Scholar
  19. 19.
    Hohlfeld R, Toyka KV, Tzartos S, Carson W, Conti-Tronconi B (1987) Epitopes on the alpha-subunit of torpedos acetylcholine receptor stimulate human T lymphocytes in myasthenia gravis. Proc Natl Acad Sci (USA) 84:5379CrossRefGoogle Scholar
  20. 20.
    Hohlfeld R, Toyka KV, Miner LL, Walgrave SL, Conti-Tronconi BM (1988) Amphipathic segment of the nicotinic receptor alpha-submit contains epitopes recognized by T-lymphocytes in myasthenia gravis. J Clin Invest (im Druck)Google Scholar
  21. 21.
    Heininger K, Toyka KV, Gaczowski A, Hartung HP, Borberg H, Grabensee B (1986) Selective removal of pathogenic factors in neurologic disease. Plasma Therapy 7:351Google Scholar
  22. 22.
    Lee CY (1972) Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann Rev Pharmacol 12:265PubMedCrossRefGoogle Scholar
  23. 23.
    Lennon VA, Seybold ME, Lindstrom JM, Cochraine C, Ulevitch R (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 146:973CrossRefGoogle Scholar
  24. 24.
    Lennon VA, Lambert EH (1981) Monoclonal antibodies to acetylcholine receptors: evidence for a dominant idiotype and requirement of complement for pathogenicity. Ann NY Acad Sci 377:77PubMedCrossRefGoogle Scholar
  25. 24a.
    Mertens HG, Hertel G, Reuther P, Ricker K (1981) Effect of immunosuppressive drugs (Azathioprine). Ann NY Acad Sci 377:691PubMedCrossRefGoogle Scholar
  26. 25.
    Mishina M, Kurosaki T, Tobimatsu T, Morimoto Y, Noda M, Yamamoto T, Terao M, Lindstrom J, Takahashi T, Kuno M, Numa S (1984) Expression of functional acetylcholine receptor from cloned DNAs. Nature 307:604PubMedCrossRefGoogle Scholar
  27. 26.
    Newsom-Davis J (1982) Autoimmune diseases of neuromuscular transmission. Clin Immunol Allergy 2:405Google Scholar
  28. 27.
    Patrick J, Lindstrom JM (1973) Autoimmune respone to acetylcholine receptor. Science 180:871PubMedCrossRefGoogle Scholar
  29. 28.
    Satyamurti S, Drachman SB, Sloane F (1975) Blockade of acetylcholine receptors: a model of myasthenia gravis. Science 187:955PubMedCrossRefGoogle Scholar
  30. 29.
    Stanley EF, Drachman DB (1978) Effect of myasthenic immunoglobulin acetylcholine receptors on intact neuromuscular junctions. Science 200:1285PubMedCrossRefGoogle Scholar
  31. 30.
    Sterz R, Hohlfeld R, Rajki K, Kaul M, Heininger K, Peper K, Toyka KV (1986) Effector mechanisms in myasthenia gravis: endplate function after passive transfer of IgG, Fab, and F(ab)2-hybrids. Muscle Nerve 9:306PubMedCrossRefGoogle Scholar
  32. 31.
    Tindall RSA, Rollins JA, Phillips JT, Greenlee RG, Wells L, Belendiuk G (1987) Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. N Engl J Med 316:719PubMedCrossRefGoogle Scholar
  33. 32.
    Toyka KV, Drachman DB, Griffin DE, Pestronk A, Winkelstein JA, Fischbeck KH, Kao I (1977) Myasthenia gravis: study of humoral immune mechanisms by passive transfer to mice. N Engl J Med 296:125PubMedCrossRefGoogle Scholar
  34. 33.
    Toyka KV, Birnberger KL, Anzil AP, Schlegel C, Besinger UA, Struppler A (1978) Myasthenia gravis: further electrophysiological and ultrastructural analysis of the transmission failure in the mouse passive transfer model. J Neurol Neurosurg Psychiat 41:746PubMedCrossRefGoogle Scholar
  35. 34.
    Toyka KV, Heininger K (1986) Acetyl-cholin-Rezeptor-Antikörper in der Diagnostik der Myasthenia gravis. Untersuchung bei 406 gesicherten Fällen. Dtsch Med Wochenschr 111:1435PubMedCrossRefGoogle Scholar
  36. 35.
    Toyka KV (1987) Klinische Neuroimmunologie — Pathophysiologie, Diagnostik, Therapie. VCH, Weinheim (im Druck)Google Scholar
  37. 36.
    Toyka KV, Hohlfeld R, Heininger K (1988) Myasthenia gravis: New therapeutic strategies. In: de Baets M, Ooster-huis H, Toyka KV (eds) Myasthenia gravis and the acetylcholine receptor, Monographs in Allergy. Karger, Basel (im Druck)Google Scholar
  38. 37.
    Tzartos SJ, Lindstrom J (1980) Monoclonal antibodies used to probe acetylcholine receptor structure: localisation of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA 77:755PubMedCrossRefGoogle Scholar
  39. 38.
    Tzartos SJ, Seybold ME, Lindstrom JM (1982) Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc Natl Acad Sci USA 79:188–192PubMedCrossRefGoogle Scholar
  40. 39.
    Vincent A (1980) Immunology of acetylcholine receptors in relation to mayas-thenia gravis. Physiol Rev 60:757Google Scholar
  41. 40.
    Waiters D, Maelicke A (1983) Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry 22:1811CrossRefGoogle Scholar
  42. 41.
    Wekerle H, Hohlfeld R, Ketelsen UP, Kalden JR, Kalies I (1981) Thymic myo-genesis, T-lymphocytes and the pathogenesis of myasthenia gravis. Ann NY Acad Sci 377:455PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Klaus V. Toyka
    • 1
  1. 1.Neurologische KlinikUniversität DüsseldorfDüsseldorf 1Deutschland

Personalised recommendations