Advertisement

Der Internist pp 397-413 | Cite as

Die Rolle adrenerger alpha-und beta-Rezeptoren in der Pathogenese von Hypertonie und Herzerkrankungen

  • O.-E. Brodde
Chapter

Zusammenfassung

Das in den späten 40er Jahren aufgestellte Konzept der α- und β-Adrenorezeptoren wurde in den letzten Jahren durch zahlreiche neu hinzugekommene, sowohl auf experimentellem Weg als auch durch klinische Beobachtung gewonnene Erkenntnisse erheblich erweitert. Dies betrifft auch viele Einzelbefunde im Hinblick auf die Entwicklung von Hypertonie und Herzinsuffizienz, die in der vorliegenden Arbeit eine Zusammenschau erfahren. Als Einführung in das Thema wird die Einteilung der Adrenozeptoren in Subtypen, der direkte Nachweis mittels Ra-dioligand-Bindungsstudien, die Kopplungsmechanismen des Adrenozeptor-Effektor-Systems und die Regulation der Adrenozeptoren vorangestellt.

Schlüsselwörter

alpha-Adrenozeptoren beta-Adrenozeptoren Rezeptor Regulation Essentielle Hypertonie Herzinsuffizienz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Dale HH (1906) On some physiological actions of ergot. J Physiol (London) 34:163–206Google Scholar
  2. 2.
    Dale HH (1913) On the action of exotoxin; with special reference to the existence of sympathetic vasodilators. J Physiol (London) 46:291–300Google Scholar
  3. 3.
    Ahlquist RP (1948) A study of the ad-renotropic receptors. Am J Physiol 153:586–600PubMedGoogle Scholar
  4. 4.
    Furchgott RF (1972) The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In: Blaschko H, Muscholl E (eds) Handbook of Experimental Pharmacology Vol 33: Catecholamines Springer, Berlin Heidelberg New York pp 283–335Google Scholar
  5. 5.
    Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598PubMedGoogle Scholar
  6. 6.
    Lands AM, Luduena FP, Buzzo HJ (1967) Differentiation of receptors responsive to isoproterenol. Life Sci 6:2241–2249PubMedGoogle Scholar
  7. 7.
    Paterson JW, Woolcock AJ, Shenfield GM (1979) Bronchodilator drugs. Am Rev Resp Dis 120:1149–1188PubMedGoogle Scholar
  8. 8.
    Daly MJ, Levy GP (1979) The subclassification of β-adrenoceptors. Evidence in support of the dual β-adrenoceptor hypothesis. In: Kalsner S (ed) Trends in autonomic pharmacology, Vol 1 Urban und Schwarzenberg, Baltimore, pp 347–382Google Scholar
  9. 9.
    Minneman KP, Pittman RN, Molinoff PB (1981) β-Adrenergic receptor subtypes: properties, distribution and regulation. Annu Rev Neurosci 4:419–461PubMedGoogle Scholar
  10. 10.
    Stiles GL, Caron MG, Lefkowitz RJ (1984) β-Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 64:661–743PubMedGoogle Scholar
  11. 11.
    Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362Google Scholar
  12. 12.
    Starke K (1987) Presynaptic α-Autore-ceptors. Rev Physiol Biochem Pharmacol 107:73–146PubMedGoogle Scholar
  13. 13.
    Berthelsen S, Pettinger WA (1977) A functional basis for classification of α-adrenergic receptors. Life Sci 21:595–606PubMedGoogle Scholar
  14. 14.
    Starke K (1981) α-Adrenoceptor sub-classification. Rev Physiol Biochem Pharmacol 88:199–236PubMedGoogle Scholar
  15. 15.
    Van Zwieten PA, Timmermans PBMWM (1983) Cardiovascular a2-receptors. J Mol Cell Cardiol 15:717–733PubMedGoogle Scholar
  16. 16.
    Lefkowitz RJ (1978) Identification and regulation of alpha- and beta-adrenergic receptors. Fed Proc 37:123–129PubMedGoogle Scholar
  17. 17.
    Hoffman BB, Lefkowitz RJ (1980) Radioligand binding studies of adrenergic receptors: new insights into molecular and physiological regulation. Annu Rev Pharmacol Toxicol 20:581–608PubMedGoogle Scholar
  18. 18.
    Brodde O-E (1988) β-Adrenoreceptors. In: Williams M, Glennon RA, Timmermans PBMWM (eds) Receptor pharmacology and function Marcel Dekker, New York, pp 207–255Google Scholar
  19. 19.
    Brodde O-E (1987) Cardiac beta-adrenergic receptors. ISI Atlas of science: Pharmacology 1:107–112Google Scholar
  20. 20.
    Kent RS, DeLean A, Lefkowitz RJ (1980) A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol 14:17–23Google Scholar
  21. 21.
    Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ (1971) The glucagon-sensi-tive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem 246:1877–1882PubMedGoogle Scholar
  22. 22.
    Jakobs KH, Saur W, Schultz G (1976) Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J Cycl Nucleotide Res 2:381–392Google Scholar
  23. 23.
    Pfeuffer T, Helmreich EJM (1975) Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnuc-leotide analogues and separation of a nucleotide binding protein. J Biol Chem 250:867–876PubMedGoogle Scholar
  24. 24.
    Birnbaumer L, Codina J, Mattera R, Cerione RA, Hildebrandt JD, Sunyer T, Rojas FJ, Caron MG, Lefkowitz RJ, Iyengar R (1985) Structural basis of adenylate cyclase stimulation and inhibition by distinct guanine nucleotide regulatory proteins. In: Cohen P, Houslay MD (eds) Molecular aspects of cellular regulation, Vol 4: Molecular mechanisms of transmembrane signalling Elsevier, Amsterdam, pp 131–182Google Scholar
  25. 25.
    Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220:345–360PubMedGoogle Scholar
  26. 26.
    Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312:315–321Google Scholar
  27. 27.
    Schultz G, Rosenthal W (1985) Prinzipien der transmembranären Signalumsetzung bei der Wirkung von Hormonen und Neurotransmittern. Arzneim-Forsch 35:1879–1885Google Scholar
  28. 28.
    Litosch I, Fain JN (1986) Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sci 39:187–194PubMedGoogle Scholar
  29. 29.
    Harden TK (1983) Agonist-induced de-sensitization of the β-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35:5–32PubMedGoogle Scholar
  30. 30.
    Lefkowitz RJ, Caron MG (1985) Adrenergic receptors: molecular mechanisms of clinically relevant regulation. Clin Res 33:395–405PubMedGoogle Scholar
  31. 31.
    Lefkowitz RJ, Caron MG (1986) Regulation of adrenergic receptor function by phosphorylation. J Mol Cell Cardiol 18:885–895PubMedGoogle Scholar
  32. 32.
    Leeb-Lundberg LMF, Cotecchia S, DeBlasi A, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic receptor function by phosphorylation. I. Agonist-promoted desensitization and phosphorylation of α 1-adrenergic receptors coupled to inositol phospholipid metabolism in DDT1 MF-2 smooth muscle cells. J Biol Chem 262:3098–3105PubMedGoogle Scholar
  33. 33.
    Williams LT, Snyderman R, Lefkowitz RJ (1976) Identification of beta-adrenergic receptors in human lymphocytes by (—)-3H-alprenolol binding. J Clin Invest 57:149–155PubMedCentralPubMedGoogle Scholar
  34. 34.
    Brodde O-E, Engel G, Hoyer D, Bock KD, Weber F (1981) The β-adrenergic receptor in human lymphocytes: sub-classification by the use of a new radioligand, (±)- 125 iodocyanopindolol. Life Sci 29:2189–2198PubMedGoogle Scholar
  35. 35.
    Newman KD, Williams LT, Bishopric NH, Lefkowitz RJ (1978) Identification of alpha-adrenergic receptors in human platelets by 3H-dihydroergo-cryptine binding. J Clin Invest 61:395–402PubMedCentralPubMedGoogle Scholar
  36. 36.
    Brodde O-E, Hardung A, Ebel H, Bock KD (1982) GTP regulates binding of agonists to α 2-adrenergic receptors in human platelets. Arch Int Pharmacodyn Ther 258:193–207PubMedGoogle Scholar
  37. 37.
    Brodde O-E, Michel MC, Nohlen M, Wang XL, Zerkowski H-R (1988) The relevance of determination of lymphocyte β-adrenoceptors as index for β-adrenoceptors in other human tissues. (Abstract) Br J Pharmacol 93[Suppl]: 27Google Scholar
  38. 38.
    Motulsky HJ, Insel PA (1982) Adrenergic receptors in man. Direct identification, physiologic regulation, and clinical alterations. N Engl J Med 307:18–29PubMedGoogle Scholar
  39. 39.
    Brodde O-E, Beckeringh JJ, Michel MC (1987) Human heart β-adrenoceptors: a fair comparison with lymphocyte β-adrenoceptors? Trends Pharmacol Sci 8:403–407Google Scholar
  40. 40.
    Brodde O-E, Wang XL (1988) Beta-ad-renoceptor changes in blood lymphocytes and altered drug responsiveness. Ann Clin Res (im Druck)Google Scholar
  41. 41.
    Glaubiger G, Lefkowitz RJ (1977) Elevated beta-adrenergic receptor number after chronic propranolol treatment. Biochem Biophys Res Commun 78:720–725PubMedGoogle Scholar
  42. 42.
    Aarons RD, Molinoff PB (1982) Changes in the density of beta adrenergic receptors in rat lymphocytes, heart and lung after chronic treatment with propranolol. J Pharmacol Exp Ther 221:439–443PubMedGoogle Scholar
  43. 43.
    Aarons RD, Nies AS, Gal J, Hegstrand LR, Molinoff PB (1980) Elevation of β-adrenergic receptor density in human lymphocytes after propranolol administration. J Clin Invest 65:949–957PubMedCentralPubMedGoogle Scholar
  44. 44.
    Fraser J, Nadeau J, Robertson D, Wood AJJ (1981) Regulation of human leukocyte beta-receptor by endogenous catecholamines. Relationship of leukocyte beta-receptor density to the cardiac sensitivity to isoproterenol. J Clin Invest 67:1777–1784PubMedCentralPubMedGoogle Scholar
  45. 45.
    Brodde O-E, Daul A, Stuka N, O’Hara N, Borchard U (1985) Effects of β-ad-renoceptor antagonist administration on β 2-adrenoceptor density in human lymphocytes. The role of the “intrinsic sympathomimetic activity”. Naunyn-Schmiedeberg’s Arch Pharmacol 328:417–422Google Scholar
  46. 46.
    Whyte K, Jones CR, Howie CA, Deighton N, Sumner DJ, Reid JL (1987) Haemodynamic, metabolic and lymphocyte beta2-adrenoceptor changes following chronic beta-adreno-ceptor antagonism. Eur J Clin Pharmacol 32:237–243PubMedGoogle Scholar
  47. 47.
    Prichard BNC, Tomlinson B, Walden RJ, Bhattacharjee P (1983) The β-adrenergic blockade withdrawal phenomenon. J Cardiovasc Pharmacol 5 [Suppl 1]:S56–S62Google Scholar
  48. 48.
    Frishman WH (1987) Beta-adrenergic blocker withdrawal. Am J Cardiol 59:26F-32FGoogle Scholar
  49. 49.
    Molinoff PB, Aarons RD (1983) Effects of drugs on β-adrenergic receptors on human lymphocytes. J Cardiovasc Pharmacol 5 [Suppl 1]:S63–S67Google Scholar
  50. 50.
    Brodde O-E, Schemuth R, Brinkmann M, Wang XL, Daul A, Borchard U (1986) β-Adrenoceptor antagonists (non-selective as well as β 1 -selective) with partial agonistic activity decrease β 2-adrenoceptor density in human lymphocytes. Evidence for a β 2-agonistic component of the partial agonistic activity. Naunyn-Schmiedeberg’s Arch Pharmacol 333:130–138Google Scholar
  51. 51.
    Giudicelli Y, Lacasa D, Agli B, Leneveu A (1984) Comparison of changes in the characteristics of β-adrenoceptors and responsiveness of human circulating lymphocytes during chronic and after chronic administration of pindolol and propranolol. Eur J Clin Pharmacol 26:7–12PubMedGoogle Scholar
  52. 52.
    Hedberg A, Gerber JG, Nies AS, Wolfe BB, Molinoff PB (1986) Effects of pindolol and propranolol on β-adrenergic receptors on human lymphocytes. J Pharmacol Exp Ther 239:117–123PubMedGoogle Scholar
  53. 53.
    Walden RJ, Bhattacharjee P, Tomlinson B, Cashin J, Graham BR, Prichard BNC (1982) The effect of intrinsic sympathomimetic activity on β-receptor responsiveness after β-adrenoceptor blockade withdrawal. Br J Clin Pharmacol 13 [Suppl 2]:359S–364SGoogle Scholar
  54. 54.
    Michel MC, Pingsmann A, Beckeringh JJ, Zerkowski H-R, Doetsch N, Brodde O-E (1988) Selective regulation of β 1- and β 2-adrenoceptors in the human heart by chronic β-adrenoceptor antagonist treatment. Br J Pharmacol (im Druck)Google Scholar
  55. 55.
    Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62:347–504PubMedGoogle Scholar
  56. 56.
    Weber MA, Drayer JIM (1982) The sympathetic nervous system in primary hypertension. Mineral Electrolyte Me-tab 7:57–66Google Scholar
  57. 57.
    De Champlain J (1978) The contribution of the sympathetic nervous system to arterial hypertension. Canad J Physiol Pharmacol 56:341–353Google Scholar
  58. 58.
    Goldstein DS (1983) Plasma catecholamines and essential hypertension. An analytical review. Hypertension 5:86 – 99Google Scholar
  59. 59.
    Philipp Th (1987) Sympathetic nervous activity in essential hypertension: activity and reactivity. J Cardiovasc Pharmacol 10 [Suppl 4]: S31–S35Google Scholar
  60. 60.
    Fitzgerald DJ, Doyle V, O’Brien ET, Kelly JG, O’Malley K (1983) Beta-ad-renoceptor density and responsiveness in borderline hypertension. J Hyper-tens 1 [Suppl 2]:260–262Google Scholar
  61. 61.
    Brodde O-E, Prywarra A, Daul A, Anlauf M, Bock KD (1984) Correlation between lymphocyte β 2-adrenoceptor density and mean arterial blood pressure: elevated β-adrenoceptors in essential hypertension. J Cardiovasc Pharmacol 6:678–682PubMedGoogle Scholar
  62. 62.
    Brodde O-E, Michel MC, Beckeringh JJ (1987) Alterations of β-adrenoceptor function in essential hypertension. J Cardiovasc Pharmacol 10 [Suppl 4]: S50–S54Google Scholar
  63. 63.
    Bruschi G, Orlandini G, Pavarani C, Spaggiari M, Tacinelli L, Cavatorta A (1984) Lymphocytic beta-adrenoceptor abnormality in primary hypertension. IRCS Med Sci 12:461–462Google Scholar
  64. 64.
    Middeke M, Remien J, Holzgreve H (1984) The influence of sex, age, blood pressure and physical stress on β 2-adrenoceptor density in mononuclear cells. J Hypertens 2:261–264PubMedGoogle Scholar
  65. 65.
    Feldman RD (1987) β-Adrenergic receptor alterations in hypertension -physiological and molecular correlates. Can J Physiol Pharmacol 65:1666–1672PubMedGoogle Scholar
  66. 66.
    Brodde O-E, Daul A, Wellstein A, Palm D, Michel MC, Beckeringh JJ (1988) Differentiation of β 1 and β 2 -adrenoceptor-mediated effects in humans. Am J Physiol 254:199–206Google Scholar
  67. 67.
    Yamada S, Ishima T, Tomita T, Hayashi M, Okada T, Hayashi E (1984) Alteration in cardiac alpha and beta adrenoceptors during the development of spontaneous hypertension. J Pharmacol Exp Ther 228:454–460PubMedGoogle Scholar
  68. 68.
    Michel MC, Wang XL, Schlicker E, Göthert M, Beckeringh JJ, Brodde O-E (1987) Increased β 2-adrenoceptor density in heart, kidney and lung of spontaneously hypertensive rats. J Auton Pharmacol 7:41–51PubMedGoogle Scholar
  69. 69.
    Jennings G, Bobik A, Esler M, Körner P (1981) Contribution of cardiovascular reflexes to differences in β-adrenoceptor-mediated responses in essential hypertension. Clin Sci 61:177s-180sGoogle Scholar
  70. 70.
    Brodde O-E, Stuka N, Demuth V, Fesel R, Bergerhausen J, Daul A, Bock KD (1985) Alpha- und beta-adreno-ceptors in circulating blood cells of essential hypertensive patients: increased receptor density and responsiveness. Clin Exp Hypertens A7:1135–1150Google Scholar
  71. 71.
    Kafka MS, Lake CR, Gullner H-G, Tallman JF, Bartter FC, Fujita T (1979) Adrenergic receptor function is different in male and female patients with essential hypertension. Clin Exp Hypertens 1:613–627PubMedGoogle Scholar
  72. 72.
    Boon NA, Elliot JM, Davies CL, Conway FJ, Grahame-Smith DG, Sleight P (1983) Platelet α-adrenoceptors in borderline and established essential hypertension. Clin Sci 65:297–298Google Scholar
  73. 73.
    Motulsky HJ, O’Connor DT, Insel PA (1983) Platelet α 2-adrenergic receptors in treated and untreated essential hypertension. Clin Sci 64:265–272PubMedGoogle Scholar
  74. 74.
    Jones CR, Elliott HL, Deighton N, Howie CA, Reid JL (1985) Alpha-ad-renoceptor number and function in platelets from treated and untreated patients with essential hypertension and age- and sex-matched controls. J Hypertens 3 [Suppl 3]:S153–S156Google Scholar
  75. 75.
    Amann FW, Bolli P, Kiowski W, Bühler FR (1981) Enhanced alpha-ad-renoceptor-mediated vasoconstriction in essential hypertension. Hypertension 3 [Suppl I]: 1–119–1–123Google Scholar
  76. 76.
    Bolli P, Erne P, Block LH, Ji BH, Kiowski W, Bühler FR (1984) Adrenaline induces vasoconstriction through postjunctional α 2-adrenoceptor stimulation which is enhanced in essential hypertension. J Hypertens 2 [Suppl 3]: S115–S118Google Scholar
  77. 77.
    Jie K, Van Brummelen P, Vermeij P, Timmermans PBMWM, Van Zwieten PA (1986) β 1- and β 2-adrenoceptor mediated vasoconstriction in the forearm of normotensive and hypertensive subjects. J Cardiovasc Pharmacol 8:190–196PubMedGoogle Scholar
  78. 78.
    Folkow B, Karlström G (1987) Vascular reactivity in hypertension: importance of structural influences. J Cardiovasc Pharmacol 10 [Suppl 4]:S25–S30Google Scholar
  79. 79.
    Van Zwieten PA, Jie K, Van Brummelen P (1987) Postsynaptic β 1- and β 2-adrenoceptor changes in hypertension. J Cardiovasc Pharmacol 10 [Suppl4]: S68–S75Google Scholar
  80. 80.
    Rosendorff C, Susanni E, Hurwitz ML, Ross FP (1985) Adrenergic receptors in hypertension: radioligand binding studies. J Hypertens 3:571–581PubMedGoogle Scholar
  81. 81.
    Sanchez A, Pettinger WA (1981) Dietary sodium regulation of blood pressure and renal α 1 - and α 2-receptors in WKY and SH rats. Life Sci 29:2795–2802PubMedGoogle Scholar
  82. 82.
    Pettinger WA, Sanchez A, Saavedra J, Haywood JR, Gandler T, Rodes T (1982) Altered renal alpha2-adrenergic receptor regulation in genetically hypertensive rats. Hypertension 4 [Suppl II]:II-188-II-192PubMedGoogle Scholar
  83. 83.
    Sanchez A, Vidal MJ, Martinez-Sierra R, Saiz J (1986) Ontogeny of renal alpha-1 and alpha-2 adrenoceptors in the spontaneously hypertensive rat. J Pharmacol Exp Ther 237:972–979PubMedGoogle Scholar
  84. 84.
    Kanczik R, Michel MC, Khamssi M, Knorr A, Brodde O-E (1987) α- und β-Adrenozeptoren bei Hypertonie: Kardiale and renale α 1-Adrenozepto-ren in Tiermodellen der erworbenen Hypertonie (Abstract). Hochdruck 7:40–42Google Scholar
  85. 85.
    Pettinger WA, Gandler T, Sanchez A, Saavedra JM (1982) Dietary sodium and renal α 2-adrenergic receptors in Dahl hypertensive rats. Clin Exp Hypertens A4:819–828Google Scholar
  86. 86.
    Diop L, Parini A, Dausse JP, Ben-Ishay D (1984) Cerebral and renal α-adrenoceptors in Sabra hypertensive and normotensive rats: effects of high-sodium diet. J Cardiovasc Pharmacol 6:S742–S747Google Scholar
  87. 87.
    Yamada S, Yamamura HI, Roeske WR (1980) Alterations in central and peripheral adrenergic receptors in deoxy-corticosterone/salt hypertensive rats. Life Sci 27:2405–2416PubMedGoogle Scholar
  88. 88.
    Fukuda K, Kuchii M, Hano T, Mohara O, Miyamoto Y, Nishio I, Masuyama Y (1983) Changes in renal α 2-adreno-ceptors in experimental hypertension in rats. Jap Circ J 47:1221–1226PubMedGoogle Scholar
  89. 89.
    Saiz J, Torres A, Martinez-Sierra R, Sanchez A (1986) Altered renal α-adrenoceptor regulation in DOCA-salt rats: chronic effects of α 1.- and α 2-re-ceptor blockers. Eur J Pharmacol 121:161–166PubMedGoogle Scholar
  90. 90.
    Summers RJ (1984) Renal α-adreno-ceptors. Fed Proc 43:2917–2922PubMedGoogle Scholar
  91. 91.
    Keeton TK, Campbell WB (1980) The pharmacologic alteration of renin release. Pharmacol Rev 32:81–227PubMedGoogle Scholar
  92. 92.
    Pettinger WA (1987) Renal α 2-adrenergic receptors and hypertension. Hypertension 9:3–6PubMedGoogle Scholar
  93. 93.
    Fritschka E, Kribben A, Haller H, Hoyer J, Thiede H-M, Distler A, Philipp Th (1987) Familial aggregation of altered adrenoceptor density and free intracellular calcium in patients with essential hypertension. J Cardiovasc Pharmacol 10 [Suppl 4]:S122–S125Google Scholar
  94. 94.
    Michel MC, Galai O, Wang XL, Beckeringh JJ, Bock KD, Brodde O-E (1987) α 2- und β 2-Adrenozeptoren bei normotonen Kindern essentieller Hypertoniker und: ein Modell zur Pathogenese der genetisch determinierten essentiellen Hypertonie (Abstract). Hochdruck 7:34–35Google Scholar
  95. 95.
    Yamori Y (1983) Physiopathology of the various strains of spontaneously hypertensive rats. In: Genest J, Kuchel O, Hamet P, Cantin M (eds) Hypertension McGraw-Hill, Montreal, pp 556–581Google Scholar
  96. 96.
    de Wardener HE, MacGregor GA (1980) Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial blood pressure: its possible role in essential hypertension. Kidney Int 18:1–9PubMedGoogle Scholar
  97. 97.
    Blaustein MP, Ashida T, Hamlyn JM (1987) Sodium metabolism and hypertension: how are they linked? Klin Wo-chenschr 65 [Suppl VIII]: 21–32Google Scholar
  98. 98.
    Haddy FJ, Overbeck HW (1976) The role of humoral agents in volume expanded hypertension. Life Sci 19:935–947PubMedGoogle Scholar
  99. 99.
    Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol 232: C165–173Google Scholar
  100. 100.
    Sugiyama T, Yoshizumi M, Takahu F, Urabe H, Tsukakoshi M, Kasuya T, Yazaki Y (1986) The elevation of the cytoplasmic calcium ions in vascular smooth muscle cells in SHR — measurement of the free calcium ions in single living cells by lasermicrofluorospectro-metry. Biochem Biophys Res Communs 141:340–345Google Scholar
  101. 101.
    Bruschi G, Bruschi MW, Caroppo M, Orlandini G, Spaggiari M, Cavatorta A (1985) Cytoplasmatic free [Ca2+] is inreased in the platelets of spontaneously hypertensive rats and essential hypertensive patients. Clin Sci 68:179–184PubMedGoogle Scholar
  102. 102.
    Erne P, Bolli P, Bürgisser E, Bühler FR (1984) Correlation of platelet calcium with blood pressure. Effects of antihypertensive therapy. N Engl J Med 310:1084–1088PubMedGoogle Scholar
  103. 103.
    Struyker-Boudier HAJ, Vervoort-Peters LHTM, Rousch MJM, Smits JFM, Thijssen HHW (1986) Beta-ad-renoceptors in kidney tubules of spontaneously hypertensive rats. Life Sci 38:137–145PubMedGoogle Scholar
  104. 104.
    Yamada S, Ishima T, Tomita T, Hayas-hi M, Hayashi E (1982) Increased renal β-adrenoceptors in stroke-prone spontaneously hypertensive rats. Eur J Pharmacol 83:149–150PubMedGoogle Scholar
  105. 105.
    Michel MC, Siegl H, Larson DF, Markstein R, Khamssi M, Brodde O-E (1987) Effects of cyclosporin A on blood pressure and β-adrenoceptor density in spontaneously hypertensive rats. J Hypertens 5 [Suppl 5]: 215–217Google Scholar
  106. 106.
    Mindermann G, Kanczik R, Michel MC, Khamssi M, Hiemke C, Brodde O-E (1987) α- und β-Adrenozeptoren in der Hypertonie: Kardiale und renale β-Adrenozeptor-Subtypen in Tiermodellen der erworbenen Hypertonie (Abstract). Hochdruck 7:42Google Scholar
  107. 107.
    Middeke M, Remien J, Kirzinger S, Holzgreve H (1985) Adrenergic hypo-sensitivity during long-term diuretic therapy — a possible explanation for the antihypertensive effect of diuretics? Eur J Pharmacol 109:401–403PubMedGoogle Scholar
  108. 108.
    Francis GS (1985) Neurohumoral mechanisms involved in congestive heart failure. Am J Cardiol 1985:15A-21AGoogle Scholar
  109. 109.
    Hirsch AT, Dzau VJ, Creager MA (1987) Baroreceptor function in congestive heart failure: effect on neurohumoral activation and regional vascular resistance. Circulation 75 [Suppl IV]: IV-36-IV-48Google Scholar
  110. 110.
    Francis GS, Cohn JN (1986) The autonomic nervous system in congestive heart failure. Annu Rev Med 37:235–247PubMedGoogle Scholar
  111. 111.
    Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide of prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823PubMedGoogle Scholar
  112. 112.
    Bristow MR, Kantrowitz NE, Ginsburg R, Fowler MR (1985) β-Adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 17 [Suppl 2]: 41–52PubMedGoogle Scholar
  113. 113.
    Gaffney TE, Braunwald E (1963) Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure. Am J Med 34:320–326PubMedGoogle Scholar
  114. 114.
    Bristow MR, Ginsburg R, Minobe W, Cubiccotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and β-adrenergic receptor density in failing human heart. N Engl J Med 307:205–211PubMedGoogle Scholar
  115. 115.
    Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986) α 1 and α 2-adrenergic-receptor subpopulations in non-failing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective α 1 -receptor down-regulation in heart failure. Circ Res 59:297–309PubMedGoogle Scholar
  116. 116.
    Brodde O-E, Schüler S, Kretsch R, Brinkmann M, Borst HG, Hetzer R, Reidemeister J Chr, Warnecke H, Zer-kowski H-R (1986) Regional distribution of β-adrenoceptors in the human heart: coexistence of functional α 1- and α 2-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol 8:1235–1242PubMedGoogle Scholar
  117. 117.
    Michel MC, Zerkowski H-R, Brodde O-E (1987) Reduced number and sensitivity of β-adrenoceptors in hearts of patients with mitral valve lesions (Abstract). Pharmacologist 29:170Google Scholar
  118. 118.
    Erdmann E (1988) The effectiveness of inotropic agents in isolated cardiac preparations from the human heart. Klin Wochenschr 66:1–6PubMedGoogle Scholar
  119. 119.
    Brown L, Lorenz B, Erdmann E (1986) Reduced positive inotropic effects in diseased human ventricular myocardium. Cardiovasc Pharmacol 20:516–520Google Scholar
  120. 120.
    Ginsburg R, Bristow MR, Billingham ME, Stinson EB, Schroeder JS, Harrison DC (1983) Study of the normal and failing isolated human heart: decreased response of failing heart to isoproterenol. Am Heart J 106:535–540PubMedGoogle Scholar
  121. 121.
    Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR (1986) Assessment of the β-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74:1290–1302PubMedGoogle Scholar
  122. 122.
    Gille E, Lemoine H, Ehle B, Kaumann AJ (1985) The affinity of (-)-propranolol for β 1- and β 2-adrenoceptors in human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (—)-nor-adrenaline and (-)-adrenaline. Naun-yn-Schmiedeberg’s Arch Pharmacol 331:60–70Google Scholar
  123. 123.
    Brodde O-E (1986) Bisoprolol (EMD 33512), a highly selective β 1-adrenoceptor antagonist: in vitro and in vivo studies. J Cardiovasc Pharmacol 8 [Suppl 11]:S29–S35Google Scholar
  124. 124.
    Kaumann AJ, Lemoine H (1987) β 2 -Adrenoceptor-mediated positive inotropic effect of adrenaline in human ventricular myocardium. Quantitative discrepancies with binding and adenylate cyclase stimulation. Naunyn-Schmiedeberg’s Arch Pharmacol 335:403–411Google Scholar
  125. 125.
    Zerkowski H-R, Ikezono K, Rohm N, Reidemeister JChr, Brodde O-E (1986) Human myocardial β-adrenoceptors: demonstration of both β 1 - and β 2-adrenoceptors mediating contractile responses to β-agonists on the isolated right atrium. Naunyn Schmiedeberg’s Arch Pharmacol 332:142–147Google Scholar
  126. 126.
    Snavely MD, Motulsky HJ, Moustafa E, Mahan LC, Insel PA (1982) β-Adrenergic receptor subtypes in rat renal cortex. Selective regulation of β 1 -adrenergic receptors by pheochromocytoma.Circ Res 51:504–513PubMedGoogle Scholar
  127. 127.
    Tsujimoto G, Manger WM, Hoffman BB (1984) Desensitization of β-adren-ergic receptors by pheochromocytoma. Endocrinology 114:1272–1278PubMedGoogle Scholar
  128. 128.
    Wagner J, Brodde O-E (1978) On the presence and distribution of α-adreno-ceptors in the heart of various mammalian species. Naunyn-Schmiedeberg’s Arch Pharmacol 302:239–254Google Scholar
  129. 129.
    Schümann HJ (1980) Are there α-adrenoceptors in the mammalian heart? Trends Pharmacol Sci 1:195–197Google Scholar
  130. 130.
    Brückner R, Mügge A, Scholz H (1985) Existence and functional role of alpha1-adrenoceptors in the mammalian heart. J Mol Cell Cardiol 17:639–645PubMedGoogle Scholar
  131. 131.
    Schümann HJ, Wagner J, Knorr A, Reidemeister JChr, Sadony V, Schramm G (1978) Demonstration in human atrial preparations of α-adrenoceptors mediating positive inotropic effects. Naunyn-Schmiedeberg’s Arch Pharmacol 302:333–336Google Scholar
  132. 132.
    Brückner R, Meyer W, Mügge A, Schmitz W, Scholz H (1984) α-Adrenoceptor-mediated positive inotropic effect of phenylephrine in isolated human ventricular myocardium. Eur J Pharmacol 99:345–347PubMedGoogle Scholar
  133. 133.
    Aass H, Skomedal T, Osnes J-B, Fjeld NB, Klingen G, Langslet A, Svennevig S, Semb G (1986) Noradrenaline evokes an α-adrenoceptor-mediated inotropic effect in human ventricular myocardium. Acta Pharmacol Toxicol 58:88–90Google Scholar
  134. 134.
    Schmitz W, Scholz H, Erdmann E (1987) Effects of α- and β-adrenergic agonists, phosphodiesterase inhibitors and adenosine on isolated human heart muscle preparations. Trends Pharmacol Sci 8:447–450Google Scholar
  135. 135.
    Scholz H (1984) Inotropic drugs and their mechanisms of action. J Am Coll Cardiol 4:387–397Google Scholar
  136. 136.
    Weiss RJ, Tobes M, Wertz CE, Smith CB (1983) Platelet alpha2-adrenoceptors in chronic congestive heart failure. Am J Cardiol 52:101–105PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • O.-E. Brodde
    • 1
  1. 1.Abteilung für Nieren- und Hochdruckkranke Biochemisches Forschungslabor Medizinische Klinik und PoliklinikUniversität EssenEssen 1Deutschland

Personalised recommendations