Advertisement

Leukozytendepletion

  • H. Lefèvre
  • G. Walther-Wenke
  • J. Burkhard
Chapter

Zusammenfassung

Erythrozytenkonzentrate, Thrombozytenkonzentrate und Frischplasmapräparate aus Einzelspenden enthalten Leukozyten, die eine Reihe unerwünschter Wirkungen auslösen können. Moderne Filtrations- und Hämapheresetechniken erlauben eine Reduktion der Restleukozyten auf unter 1×106 pro Präparat. Die Einhaltung kontrollierter Bedingungen ist am besten durch die standardisierte Prestorage-Filtration in der Blutbank zu erreichen. Es handelt sich um eine effektive Methode, um zytokin- und leukozytenvermittelte febrile Transfusionsreaktionen (FNHTR) zu verhindern, einer primären Immunisierung gegen Leukozyten- und Histokompabilitätsantigene vorzubeugen, die Übertragung leukozytenassoziierter Viren, insbesondere Cytomegalievirus (CMV), zu vermeiden und präparationsbedingte bakterielle Septikämien im Einzelfall auszuschließen. Darüber hinaus gibt es Hinweise, daß sich durch Leukozytendepletion die postoperative Infektionshäufigkeit, die Tumorrezidivrate und die Mortalität nach kardiochirurgischen Eingriffen senken läßt. Die indikationsbezogene Anwendung leukozytendepletierter Blutkomponenten ist etabliert. Für eine generelle Filtration aller leukozytenhaltiger Blutkomponenten haben sich einige europäische Länder bereits entschieden. Für Deutschland befürworten die Autoren unter Berücksichtigung der rechtlichen Anforderung nach dem Arzneimittelgesetz und nach Abwägung von Kosten-Nutzen-Aspekten eine generelle Leukozytendepletion.

Leucocyte-depletion

Summary

Red cells, platelet concentrates and fresh frozen plasma of a single donation contain leucocytes, causing a lot of side effects. Modern filtration- and apheresis-techniques lead to a reduction of residual leucocyte counts of <1×106 per unit. The best method to achieve controlled and validated conditions is the blood bank performed standardised prestorage-filtration. This is an effective method, to prevent cytokine-mediated and leucocyte-mediated febrile nonhaemolytic transfusion reactions (FNHTR), to prevent a primary immunisation to leucocyte- and histocompatibility-antigens, to avoid transmission of viral infections by blood transfusion, e.g. Cytomegalovirus (CMV) and to exclude in special cases bacterial septicaemia. In addition, there are references to reduce the postoperative infections, the rate of recurrence of a tumor and the postoperative complications in patients undergoing cardiac surgery. The use of leucocyte-depleted blood components for special indications is meanwhile established. Some European countries have made a decision for a general filtration of all blood components containing leucocytes. The authors recommend the general leucocyte-depletion of blood components considering the German medical law (AMG) and cost/benefit ratio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bordin JO, Heddle NM et al. (1994) Biologic effects of leukocytes present in transfused cellular blood products. Blood 84: 1703–1721.PubMedGoogle Scholar
  2. 2.
    Roelcke D (1996) Nichtinfektiöse unerwünschte Wirkungen. In Mueller-Eckhardt (Hrsg) Transfusionsmedizin. Springer, Berlin Heidelberg New York, pp 525–548.Google Scholar
  3. 3.
    Stack G, Baril L (1995) Cytokine generation in stored, white cell-reduced, and bacterially contaminated units of red cells. Transfusion 35:199–203.PubMedGoogle Scholar
  4. 4.
    Aye MT, Palmer DS et al. (1995) Effect of filtration of platelet concentrates on the accumulation of cytokines and platelet release factors during storage. Transfusion 35:117–124.PubMedGoogle Scholar
  5. 5.
    Stack G, Snyder EL (1995) Leukodepletion to prevent transfusion reactions: effects on cytokines and other biologic response modifiers. In: Sweeny J, Heaton A (Hrsg) Clinical Benefits of Leukodepleted Blood Products. Springer, Heidelberg.Google Scholar
  6. 6.
    Heddle NM, Klama LN et al. (1993) A prospective study to identify the risk factors associated with acute reactions to platelet and red cell transfusions. Transfusion 33: 794–797.PubMedGoogle Scholar
  7. 7.
    Heddle N N, Kelton J (1996) Febrile nonhemolytic transfusion reactions. In: Popovsky MA (Hrsg) Transfusion Reactions. AABB Press, Bethesda, Maryland, pp 45–80.Google Scholar
  8. 8.
    Fisher M, Chapman JR et al. (1985) Alloimmunisation to HLA Antigens following Transfusions with Leucocyte-Poor and Purified Platelet Suspensions. Vox Sang 49:331–335.PubMedGoogle Scholar
  9. 9.
    Barz D (1998) Die Übertragung von in-line filtrierten Erythrozytenkonzentraten ist eine Voraussetzung zur Senkung von transfusionsbedingten Risiken und zur Verwirklichung der Qualitätssicherung bei der Theapie mit Blutprodukten. Infusions-ther Transfusionsmed 25(S1):40.Google Scholar
  10. 10.
    Novotny VMJ, van Doom R et al. (1995) Occurrence of allogeneic HLA and non-HLA antibodies after transfusion of prestorage filtred platelets and red blood cells: A Prospective Study. Blood 85:1736–1741.PubMedGoogle Scholar
  11. 11.
    Andreu G (1992) Should all platelet ceoncentrates issued be leukocyte-poor? International Forum. Vox Sang 62:60–61.Google Scholar
  12. 12.
    Popovsky MA, Chaplin HC et al. (1992) Transfusion-related acute lung injury: a neglected, serious complication of hemotherapy. Transfusion 32:589–592.PubMedGoogle Scholar
  13. 13.
    Bux J, Hoch J et al. (1994) Transfusionsassoziierte akute Lungeninsuffizienz. Dtsch med Wschr 119:19–24.PubMedGoogle Scholar
  14. 14.
    Popovsky MA, Moore SB (1985) Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion 25:573–577.PubMedGoogle Scholar
  15. 15.
    Linden JV, Pisciotto PT (1992) Transfusion-associated graft-versus-host disease and blood irradiation. Transfusion Medicine Reviews 6:116–123.PubMedGoogle Scholar
  16. 16.
    Akahoshi M, Takanashi M et al. (1992) A case of transfusion-associated graft-versus-host disease not prevented by white cell-reduction filters. Transfusion 32:169–172.PubMedGoogle Scholar
  17. 17.
    Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten. Vorstand und Wissenschaftlicher Beirat der Bundesärztekammer (Hrsg.) Deutscher Ärzteverlag; 1995.Google Scholar
  18. 18.
    Opelz G, Terasaki PJ (1978) Improvement of kidney-graft survival with increased numbers of blood transfusions. N Engl J Med 299:799–803.PubMedGoogle Scholar
  19. 19.
    Eckstein R (1996) Immunmodulatorische Wirkung von Bluttransfusionen bei Organtransplantation und in der Onkologie. In: Mueller-Eckhardt (Hrsg) Transfusionsmedizin. Springer, Berlin Heidelberg New York, pp 449–453.Google Scholar
  20. 20.
    Jensen LS (1998) Clinical importance of leukocyte depletion in surgical patients. Infusionsther Transfusionsmed 25:288–294.Google Scholar
  21. 21.
    Caspari G, Gerlich W et al. (1996) Durch Blut übertragbare Infektionskrankheiten. In: Müller-Eckhardt (Hrsg) Transfusionsmedizin. Springer, Berlin Heidelberg New York, pp 547–584.Google Scholar
  22. 22.
    Hillyer CD, Emmens RK et al. (1994) Methods for the reduction of transfusion-transmitted cytomegalovirus infection: filtration versus the use of seronegative donor units. Transfusion 34:929–934.PubMedGoogle Scholar
  23. 23.
    Bowden RA, Slichter SJ et al. (1995) A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant. Blood 86:3598–3603.PubMedGoogle Scholar
  24. 24.
    Böck M, Peschke H (1996) Die CMV-negative Blutkonserve: Wie wichtig ist sie wirklich? Ärzteblatt Sachsen-Anhalt 7:44–48.Google Scholar
  25. 25.
    Sandler SG, Fang CT et al. (1991) Human T-cell lymphotropic virus type I and II in transfusion medicine. Transfusion Medicine Reviews 5:93–107.PubMedGoogle Scholar
  26. 26.
    Zucker-Franklin D, Pancake BA (1998) White cell reduction by filtration may significantly decrease human T-lymphotropic virus type 1 Tax sequences and Tax-encoded proteins in blood used for transfusion. Transfusion 38:317–318.PubMedGoogle Scholar
  27. 27.
    Arbeitskreis Blut des Bundesministerium für Gesundheit (1998) HTLV-Papier. Bundesgesundhbl 41:512–517.Google Scholar
  28. 28.
    Blackbourn DJ, Ambroziak J et al. (1997) Infectious human herpesvirus 8 in a healthy North American Blood. Lancet 349:609–611.PubMedGoogle Scholar
  29. 29.
    Allain JP (1997) Screening blood donors for markers of new viruses. Lancet 349: 584–585.PubMedGoogle Scholar
  30. 30.
    Arbeitskreis „Blutî des Bundesministeriums für Gesundheit (1998) Creutzfeldt-Jakob-Erkrankung (CJK) bzw. humane übertragbare (transmissible) spongiforme Enzephalopathien (TSE); Bekanntmachung des Robert Koch-Instutes. Bundesgesundhbl 41: 78–83.Google Scholar
  31. 31.
    Bruce ME, Will RG et al. (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389: 498–501.PubMedGoogle Scholar
  32. 32.
    Hill AF, Desbruslais M et al. (1997) The same prion strain causes vCJD and BSE. Nature 389M: 448–450.Google Scholar
  33. 33.
    Almond J, Pattison J (1997) Human BSE. Nature 389:437–438.PubMedGoogle Scholar
  34. 34.
    Klein AA, Frigg R et al. (1997) A crucial role for B cells in neuroinvasive scrapie. Nature 390: 687–690.PubMedGoogle Scholar
  35. 35.
    Brown P (1997) B lymphocytes and neuroinvasion. Nature 390:662–663.PubMedGoogle Scholar
  36. 36.
    Pollclinico S, Orsala-Malpighi (1997) Process controll of filtred red blood cell: which counting method?: Transfusion Medicine 7: 217–219.Google Scholar
  37. 37.
    Blood Products Advisory Committee of FDA (1998) BPAC recommends use of universal leukoreduction. National Office, USA; September 21, 1998Google Scholar
  38. 38.
    Neumeister B, Koerner K (1997) Fatal yersinia enterocolitica septicemia after transfusion of red cells — case report and review of the literature. Infusions ther Tranfusionsmed 24:14–19.Google Scholar
  39. 39.
    Högman CF, Gong J et al. (1991) White cells protect donor blood against bacterial contamination. Transfusion 31:620–626.PubMedGoogle Scholar
  40. 40.
    Högmann CF, Engstrand L (1998) Serious bacterial complications from blood components — how do they occur? Transfusion Medicine 8:1–3.Google Scholar
  41. 41.
    Hoppe PA (1992) Interim measures for detection of bacterially contaminated red cell components. Transfusion 32:199–201.PubMedGoogle Scholar
  42. 42.
    Goldman M, Delage G (1995) The Role of Leukodepletion in the Controll of Transfusion-Transmitted Disease. Transfusion Medicine Reviews 9:9–19.PubMedGoogle Scholar
  43. 43.
    Buchholz DH, Aubuchon JP et al. (1994) Effects of white cell reduction on the resistance of blood components to bacterial multiplication. Transfusion 34:852–857.PubMedGoogle Scholar
  44. 44.
    Blajchman MA (1994) Transfusion-associated bacterial sepsis: the phoenix rises yet again. Transfusion 34:940–941.PubMedGoogle Scholar
  45. 45.
    Lefrère JJ, Mariotti M et al. (1997) Transfusional risk of HHV-8 infection. Lancet 350:217.PubMedGoogle Scholar
  46. 46.
    Morel P, Hervè P (1998) Surveillance of Blood Transfusion Safety: Contribution of the Hemovigilance Strategy in France. Transfusion Medicine Reviews 12:109–127.PubMedGoogle Scholar
  47. 47.
    Birchard K (1998) Three countries to start leucocyte depletion of donated blood. Lancet 351:1112.Google Scholar
  48. 48.
    Guide to the preparation, use on quality assurance of blood components. Council of Europe Publishing.4. Edition;1998.Google Scholar
  49. 49.
    Department of Health, London, Press Release Friday 17th July 1998: Government accepts advice on leucodepletion from spongiform encephalopathy advisory committee.Google Scholar
  50. 50.
    TRAP-Studie (1997) Leukocyte reduction and ultraviolet B irradiation of platelets to Prevent alloimmunization and refractoriness to platelet transfusions. New Engl J Med. 337:1861–1869.Google Scholar
  51. 51.
    British Committee for Standards in Haematology (1998) Guidelines on the clinical use of leucocyte-depleted blood components. Transfusion Medicine 8:59–71.Google Scholar
  52. 52.
    Sirchia G, Rebulla P (1997) Evidence-based medicine: the case for white cell reduction. Transfusion 37:543–549.PubMedGoogle Scholar
  53. 53.
    Murphy MF, Stevens W (1998) Universal Leucocyte Depletion of Blood Components — Con. Infusionsther Transfusionsmed 25: 305–311.Google Scholar
  54. 54.
    Schramm, W, Szucs T (1998) Klinisch-ökonomische Aspekte der Leukozyten-Filterung: Evidenz und Forschungsansätze. Symposium der DRK-Blutspendedienste: Filtration von Blutprodukten; Dresden 25. April 1997.Google Scholar
  55. 55.
    Council of Europe (1998) Bureau of the committee of experts on blood transfusion and immunohaematology. Leucodepletion for UK blood for transfusion. Strasbourg, 27 July 1998, Restricted SP-HM: 16.Google Scholar
  56. 56.
    Warden J (1998) Blood supplies to be treated to reduce CJD risk. BMJ 317:232.PubMedGoogle Scholar
  57. 57.
    EPFA Europan plasma fractionation association. Ep-98101 Doc. 22. Sept. 1998.Google Scholar
  58. 58.
    Blood Weekly September 7&14 1998.Google Scholar
  59. 59.
    Watering van de LMG, Hermans J et al. (1998) Beneficial Effects of Leukocyte Depletion of Transfused Blood on Postoperative Complications in Patients Undergoing Cardiac Sugery. Circulation 97:562–568.PubMedGoogle Scholar
  60. 60.
    Jensen LS, Kistmeyer-Nillsen P et al. (1996) Randomised comparison of leucocyte-depleted versus buffy coat-poor blood transfusion and complication after colorectal surgery: a prospective study. Lancet 348: 841–845.PubMedGoogle Scholar
  61. 61.
    Blajchman MA (1997) Allogeneic blood transfusion, immunomodulation, and postoperative bacterial infection: Do we have the answer yet? Transfusion 37: 121–125.PubMedGoogle Scholar
  62. 62.
    Houbiers JG, van de Velde CJ et al. (1997) Transfusion of red cells is associated with increased incidence of bacterial infection after colorectal surgery: a prospective study. Transfusion 37:126–134.PubMedGoogle Scholar
  63. 63.
    Arbeitskreis „Bluf des Bundesministeriums für Gesundheit. Filtration von zellulären Blutpräparaten. Im Druck.Google Scholar
  64. 64.
    Dodd RY (1994) Adverse Consequences of Blood Transfusion: Quantitative Risk Estimates. In: Nance ST (Hrsg) Blood Supply: Risks, Perceptions and Prospects for the Future. AABB Press, Bethesda, Maryland, pp 13–14.Google Scholar
  65. 65.
    Bux J (1996) Herstellung von Blutkomponenten. In: Mueller-Eckhardt (Hrsg) Transfusionsmedizin. Springer, Berlin Heidelberg New York, pp 229–244.Google Scholar
  66. 66.
    Moog R, Höffkes HG et al. (1996) Comparison of Two Different Techniques for Harvesting Peripheral Blood Progenitor Cells (PBPC): Reduced Volume PBPC Collection versus Discouninuous Flow System. Infusionsther Transfusionsmed 23:204–208.Google Scholar
  67. 67.
    Müller N (1997) Preparation of Single Donor Platelet Concentrates with Blood Cell Separators. Clin Lab 43:541–546.Google Scholar
  68. 68.
    Moog R, Müller N (1996) Thrombazytapherese mit dem Fresenius AS TEC 204 Blutzellseparator (Abstract). Infusinther Transfusionsmed 23(Suppl 3): 22.Google Scholar
  69. 69.
    Zingsem J, Glaser A et al. (1996) Preparation of white cell-reduced platelet concentrates using a new cytapheresis System Infusionsther Transfusionsmed 23:24.Google Scholar
  70. 70.
    Zingsem J, Zimmermann R et al. (1996) First experiences with the new cell separator Fresenius AS. TEC 204. Infusionsther Transfusionsmed 23:24.Google Scholar
  71. 71.
    Ambruso D, Hlavinka D et al. (1995) Evaluation of an apheresis system for production of leukocyte-reduced platelets. Infusionsther Transfusionsmed 22,2:46.Google Scholar
  72. 72.
    Schramek G, Kalb R (1995) Low WBC-plateletpheresis with the fresenius AS 104. Infusionsther Transfusionsmed 22:48.Google Scholar
  73. 73.
    Zingsem J, Zimmermann R et al. (1997) Comparison of COBE white cell-reduction and standard plateletpheresis protocols in the same donors. Transfusion 37:1045–1049.PubMedGoogle Scholar
  74. 74.
    Richtlinien zur Blutgruppenbestimmung und Bluttransfusion (Hämotherapie). Wissenschaftlicher Beirat der Bundesärztekammer (Hrsg) Paul-Ehrlich-Institut; 1996:63.Google Scholar
  75. 75.
    Steneker I, Pietersz RNI et al. (1995) Mechanisms of Leukodepletion by Filtration. In: Sweeny J, Heaton A (Hrsg) Clinical Benefits of Leukodepleted Blood Products. Springer, Berlin Heidelberg New York, pp 1995.Google Scholar
  76. 76.
    Dumont LJ, Dzik WH et al. (1996) Practical guidelines for process validation and process controll of white cell-reduced blood components: report of the Biomedical Excellence for Safer Transfusion (BEST) Working Party of the International Society of Blood Transfusion (ISBT). Transfusion 36:11–20.PubMedGoogle Scholar
  77. 77.
    Jung F, Seyfert UT (1998) Efficacy of Various Blood Bank Filters for Leukocyte Depletion of Red Blood Cell Concentrates. Infusionsther Transfusionsmed 25:312–316.Google Scholar
  78. 78.
    Dzik S (1997) Principles of Counting Low Numbers of Leukocytes in Leukoreduced Blood Components. Transfusion Medicine Reviews 11:44–55.PubMedGoogle Scholar
  79. 79.
    Riggert J, Simson G et al. (1995) Prestorage Leukocyte Depletion with In-Line Filtration of Whole Blood in Comparison with Blood Component Leukocyte Depletion. Vox Sang 69:201–205.PubMedGoogle Scholar
  80. 80.
    Riggert J, Schwartz DWM et al. (1997) Prestorage inline filtration of whole blood for obtaining white cell-reduced blood components. Transfusion 37:1039–1044.PubMedGoogle Scholar
  81. 81.
    Rapaille A, Moore C et al. (1997) Prestorage Leukocyte Reduction with In-Line Filtration of Whole Blood: Evaluation of Red Cells and Plasma Storage. Vox Sang 73:28–35.PubMedGoogle Scholar
  82. 82.
    Masse M (1998) Whole blood in-line filtration: comparative multicenter study of 925 filtrations performed with 5 in-line filters. VoxSang 74(Suppl 1):1271.Google Scholar
  83. 83.
    Schütz R, Jsic R et al. (1998) S/D-treated FFP from prestorage inline filtered whole blood. Vox Sang 74:1299.Google Scholar
  84. 84.
    Pietersz RNI, Reesink HW et al. (1989) Storage of leukocyte-poor red cell concentrates: filtration in a closed system using a sterile connection device. Vox Sang 57:29–36.PubMedGoogle Scholar
  85. 85.
    Brecher ME, Pineda AA et al. (1991) Prestorage leukocyte depletion: effect on leukocyte and platelet metabolites, erythrocyte lysis, metabolism, and in vivo survival. Seminars in Hematology 28; No. 3, Suppl 5:3–9.Google Scholar
  86. 86.
    Müller-Steinhardt M, Janetzko K et al. (1997) Impact of various red cell concentrate preparation methods on the eficiency of prestorage white cell filtration and on red cells during storage for 42 days. Transfusion 37:1137–1142.PubMedGoogle Scholar
  87. 87.
    Heaton WAL, Holme S et al. (1994) Effects of 3-5 log 10 pre-storage leucocyte depletion on red cell storage and metabolism. British Journal of Haematology 87:363–368.PubMedGoogle Scholar
  88. 88.
    Wegener S, Schlaack P et al. (1997) Inline-Filtration von Erythrozytenkonzentraten mit dem Leucoflex LCR4T/B-System. Infusions-ther Transfusionsmed 34:48–52.Google Scholar
  89. 89.
    Zeiler TA, Kretschmer V (1997) Automated blood component collection with the MCS 3p cell separator: evaluation of three protocols for buffy coat-poor and white cell-reduced packed red cells and plasma. Transfusion 37:791–797.PubMedGoogle Scholar
  90. 90.
    Moog R, Kalb R et al. (1997) Herstellung leukozytendepletierte Thrombozytapherese-präparate mittels geschlossener Einmalsysteme mit einem Inline-Filter für den Zellseparator AS 104. Beitr Infusionsther Transfusionsmed 34:114–117.PubMedGoogle Scholar
  91. 91.
    Klüter H, Klinger M et al. (1994) Einfluß der Leukozytenkontamination auf die Lager-barkeit von Thrombozytenkonzentraten aus gepooltem Buffy coat. Beitr Infusions-ther Transfusionsmed 32:61–65.Google Scholar
  92. 92.
    Richter E, Lindner M et al. (1995) Effective leucocyte depletion of platelet concentrates by filtration without flow reduction. Infusionsther Transfusionsmed 22(Suppl 1): 19–20.Google Scholar
  93. 93.
    Christensen LD, Dickmeiss E (1994) In vitro evaluation of a new filter for leucocyte depletion of platelet concentrate during component preparation. Vox Sang 67: 267–271.PubMedGoogle Scholar
  94. 94.
    Hetland G, Mollnes TE et al. (1998) Effect of filtration and storage of platelet concentrates on the production of the chemotaxins C5a, interleukin 8, tumor necrosis factor a, and leukotriene B4. Transfusion 38: 16–23.PubMedGoogle Scholar
  95. 95.
    Sowemimo-Coker SO, Kim A et al. (1998) White cell subsets in apheresis and filtered platelet concentrates. Transfusion 38: 650–657.PubMedGoogle Scholar
  96. 96.
    Christensen LL, Grunnet N et al. (1998) Comparison of the level of cytokine mRNA in buffy coat-derived platelet concentrates prepared with or without white cell reduction by filtration. Transfusion 38:236–241.PubMedGoogle Scholar
  97. 97.
    Humbert JR, Fermin CD et al. (1991) Early damage to granulocytes during storage. Seminars in Hematology 28 No 3, Suppl. 5:10–13.Google Scholar
  98. 98.
    Frewin DB, Dyer SM et al. (1991) A comparative study of the effect of three methods of leukocyte removal on plasma histamine levels in stored human blood. Seminars in Hematology 28: No 3; Suppl. 5:18–21.PubMedGoogle Scholar
  99. 99.
    Riedner C, Heim MU et al. (1990) Possibility to improve preservation of whole blood by leukocyte-depletion before storage. Vox Sang 59:78–82.PubMedGoogle Scholar
  100. 100.
    Tofotè U, Matthes G (1995) Leukozytendepletierte Erythrozytenkonzentrate, neue Parameter für die Qualitätskontrolle. mta 10:623–627.Google Scholar
  101. 101.
    Andreu G (1991) Early leukocyte depletion of cellular blood components reduces red blood cell and platelet storage lesions. Seminars in Hematology; 28; 3, Suppl. 5:22–25.PubMedGoogle Scholar
  102. 102.
    Müller-Steinhardt M, Kirchner H et al. (1998) Impact of storage at 22°C and citrate anticoagulation on the cytokine secretion of mononuclear leukocytes. Vox Sang 75: 12–17.PubMedGoogle Scholar
  103. 103.
    Kim D, Eastlund T et al. (1998) „Red Eyes“ and arthralgias following transfusion of prestorage leukocytereduced red blood cells. Transfusion 38 (Supplement):435.Google Scholar
  104. 104.
    Popovsky MA (1996) Quality of blood components filtered before storage and at the bedside: implications for transfusion practice. Tranfusion 36:470–474.Google Scholar
  105. 105.
    Sirchia G, Rebulla P et al. (1996) Optimal conditions for white cell reduction in red cells by filtration at the patient’s bedside. Transfusion 36:322–327.PubMedGoogle Scholar
  106. 106.
    Alcorta I, Pereira A et al. (1996) Influence of the red blood cell preparation method on the efficacy of a leukocyte reduction filter. Vox Sang 71:78–83.PubMedGoogle Scholar
  107. 107.
    Sprogöe-Jakobsen U, Saetre AM et al. (1995) Preparation of white cell-reduced red cells by filtration: comparison of a bedside filter and two blood bank filter systems. Transfusion 35:421–426.PubMedGoogle Scholar
  108. 108.
    Kretschmer V (1995) Filtration von Blutnützlich oder notwendig? Infusionsther Transfusionsmed 22:5–8.PubMedGoogle Scholar
  109. 109.
    Ledent E, Berlin G (1994) Inadequate white cell reduction by bedside filtration of red cell concentrates. Transfusion 34:765–768.PubMedGoogle Scholar
  110. 110.
    Williamson LM, Wimperiz JZ et al. (1994) Bedside filtration of blood products in the preservation of HLA alloimmunization — a prospective study. Blood 83:3028–3029.PubMedGoogle Scholar
  111. 111.
    Yenicesu, Jeczan I et al. (1998) Hypotensive reactions during platelet transfusions (letter). Transfusion 38:410.PubMedGoogle Scholar
  112. 112.
    Sweeney JD, Dupuis M et al. (1998) Hypotonsive reactions to red cell filtred at the bedside, but not to those filtred before storage, in patients taking ACE inhibitors (letter). Transfusion 38:410–411.PubMedGoogle Scholar
  113. 113.
    Abe H, Ikebuchi K et al. (1998) Hypotensive reactions with a white cell-reduction filter: activation of kalikrein-kinin casade in a patient (letter). Transfusion 38:411–412.PubMedGoogle Scholar
  114. 114.
    Belloni M, Alghisi A et al. (1998) Hypotensive reactions associated with white cell-reduced apheresis platelet concentrates in patients not receiving ACE inhibitors (letter). Transfusion 38:412–413.PubMedGoogle Scholar
  115. 115.
    Shiba M, Tadokoro K et al. (1997) Activation of the contact system by filtration of platelet concentrates with a negatively charged white cell-removal filter and measurement of venous blood brady-kinin level in patients who received filtred platelets. Transfusion 37:457–462.PubMedGoogle Scholar
  116. 116.
    Hild M, Söderström T et al. (1998) Kinetics of bradykinin levels during and after leucocyte filtration of platelet concentrates. Vox Sang 75:18–25.PubMedGoogle Scholar
  117. 117.
    Shimizu T, Nagae M et al. (1998) Membrane adsorptive properties of a new polyuret-hane leukocyte reduction filter in comparison with those of a negatively charged polyester filter (letter). Vox Sang: 75-76.Google Scholar
  118. 118.
    Engelfriet CP, Reesink HW (1998) The use and quality control of leukocyte-depleted cell concentrates. Vox Sang 75:82–92.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • H. Lefèvre
    • 1
  • G. Walther-Wenke
    • 2
  • J. Burkhard
    • 3
  1. 1.DRK-InstitutHagenDeutschland
  2. 2.DRK BlutspendedienstMünsterDeutschland
  3. 3.DRK BlutspendedienstBreitscheidDeutschland

Personalised recommendations