Advertisement

Hämatopoetische Stammzellen

Zulassung und Qualitätskontrollen
  • Helga Marie Huber
  • M. Heiden
  • R. Seitz
Chapter

Zusammenfassung

Präparationen hämatopoetischer Stammzellen bieten prinzipiell eine unendliche Vielfalt klinischer Anwendungsmöglichkeiten und Zukunftsperspektiven. Sie sind die Basis für Stammzelltransplantationen, d.h. für die Wiederherstellung der Hämatopoese nach hochdosierter zytotoxischer Therapie und bilden die Grundlage der Behandlung immunologischer Mangelsyndrome sowie erblicher Stoffwechselkrankheiten. Weiterhin könnten sie in der Zukunft ein Transportvehikel für die Gentherapie darstellen. Stammzellen können vom Knochenmark, vom peripheren Blut oder aus Nabelschnurblut gewonnen werden. Der vorliegende Artikel vermittelt einen Überblick über die Biologie der Stammzellen über, Verfahren ihrer Gewinnung, die gesetzliche Grundlage für die Herstellung von Stammzellpräparationen sowie über die Grundzüge der Anforderungen für deren Zulassung. Nach der deutschen Rechtslage sind Stammzellen dann zulassungspflichtige Arzneimittel, wenn sie nicht für eine bestimmte erkrankte Person hergestellt werden, sondern im voraus produziert und — bis zu ihrem Gebrauch — in sogenannten Zellbanken gelagert werden.

Haematopoietic stem cell preparations

Marketing authorisation and quality control

Summary

In principle, haematopoietic stem cell preparations offer a paramount array of clinical opportunities and future perspectives. They are the basis for stem cell transplantation, e.g. for rescue of haematopoiesis after high dose cytotoxic therapy, for treatment of immunologic deficiencies and congenital metabolic disorders, and, in the future, a vehicle for gene therapy. Stem cells may be obtained from bone marrow, peripheral blood, or umbilical cord blood. This article provides an overview of the biology of stem cells, procedures for their collection, the legal basis for the manufacture of stem cell preparations, and essential requirements for their marketing authorisation. According to German legislation, stem cell preparations are medicinal products necessitating a marketing authorisation, if they are not produced for a certain ill person, but manufactured beforehand and banked until needed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Metcalf D, Moore MAS (1971) Haemotopoietic cells. Amsterdam: North Holland, pp 362–447.Google Scholar
  2. 2.
    Dexter TM, Coutinho LH, Spooncer E, et al. (1990) Stromal cells in hemopoiesis. In: Bock G, March J (eds) Molecular control of hemopoiesis. Wiley and Sons, Sussex, UK, pp 76–86.Google Scholar
  3. 3.
    Abramson S, Miller RG, Philips RA (1997) The identification in adult marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med 145: 1567–1579.CrossRefGoogle Scholar
  4. 4.
    Philips R (1991) Hematopoietic stem cells: concepts, assays, and controversies. Sem Immunol 3:337–347.Google Scholar
  5. 5.
    Morrison S, Uchida N, Weissman I (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Thomas ED (1982) The role of marrow transplantation in the eradication of malignant disease. Cancer 49:1963–1969.PubMedCrossRefGoogle Scholar
  7. 7.
    Bortin MM, Horowitz MM, Rimm AA (1992) Increasing utilization of allogeneic bone marrow transplantation. Results of the 1988–1990 survey. Ann Intern Med 116: 505–512.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas ED (1991) Frontiers in bone marrow transplantation. Blood Cells 17:259–267.PubMedGoogle Scholar
  9. 9.
    Marmont AM (1993) New frontiers for allogeneic bone marrow transplantation. Bone Marrow Transplant 11:3–10.PubMedGoogle Scholar
  10. 10.
    Übersicht in: Lu L, Shen RN, Broxmeyer HE (1996) Stem cells from bone marrow, umbilical cord blood and peripheral blood for clinical application: current status and future application. Critical Reviews in: Oncology/Hematology 22:61–78.Google Scholar
  11. 11.
    Baumann I, Testa NG, Lange C, et al. (1993) Haemopoietic cells mobilised into the circulation by lenograstim as alternative to bone marrow for allogeneic transplants. Lancet 341:369–372.PubMedCrossRefGoogle Scholar
  12. 12.
    Williams SF, Bitran JD, Richards JM, et al. (1990) Peripheral blood-derived stem cell collections for use in autologous transplantation after high dose chemotherapy: an alternative approach. Bone Marrow Transplant 5:129–133.PubMedGoogle Scholar
  13. 13.
    Kotasek D, Shepherd KM, Sage RE, et al. (1992) Factors affecting blood stem cell collections following high-dose cyclophosphamide mobilization in lymphoma, myeloma and solid tumors. Bone Marrow Transplant 9:11–17.PubMedGoogle Scholar
  14. 14.
    Sheridan WP, Begley CG, Juttner CA, et al. (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339:640–644.PubMedCrossRefGoogle Scholar
  15. 15.
    Kanz L, Brugger W, Mertelsmann R (1992) Mobilization of peripheral blood progenitor cells by hemopoietic growth factors following standard dose chemotherapy. Bone Marrow Transplant 10:6–10.Google Scholar
  16. 16.
    Kritz A, Crown JP, Motzer RJ, et al. (1993) Beneficial impact of peripheral blood progenitor cells in patients with metastatic breast cancer treated with high-dose chemotherapy plus granulocyte-macrophage colony-stimulating factor. A randomized trial. Cancer 71:2515–2521.PubMedCrossRefGoogle Scholar
  17. 17.
    Teshima T, Inaba S, Harada M, et al. (1992) Cytotoxic drug and cytotoxic drug/G-CSF mobilization of peripheral blood stem cells and their use for autografting. Bone Marrow Transplant 10:215–220.PubMedGoogle Scholar
  18. 18.
    Übersicht in: Gale RP, Henon P, Juttner C (1992) Blood stem cell transplants come of age. Bone Marrow Transplant 9:151–155.PubMedGoogle Scholar
  19. 19.
    Chao NJ, Schriber JR, Grimes K, et al. (1993) Granulocyte colony-stimulating factor „mobilized“peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 81:2031–2033.PubMedGoogle Scholar
  20. 20.
    Broxmeyer HE, Douglas DW, Hangoc G, et al. (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86:3838–3832.CrossRefGoogle Scholar
  21. 21.
    Gluckman E, Broxmeyer HE, Auerbach A, et al. (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178.PubMedCrossRefGoogle Scholar
  22. 22.
    Wagner JE, Kernan NA, Steinbach M, et al. (1995) Allogeneic sibling cord blood transplantation in forty-four children with malignant and non-malignant disease. Lancet 346:214–219.PubMedCrossRefGoogle Scholar
  23. 23.
    Kurtzberg J, Laughlin M, Graham ML, et al. (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. New Engl J Med 335:157–166.PubMedCrossRefGoogle Scholar
  24. 24.
    Broxmeyer HE, Hangoc G, Cooper S (1992) Clinical and biological aspects of human umbilical cord blood as a source of transplantable hematopoietic stem and progenitor cells. Bone Marrow Transpl 9:7–10.Google Scholar
  25. 25.
    Wagner JE, Rosenthal J, Sweetman R, et al. (1995) Successful transplantation of HLA-matched and HLO-mismatched umbilical cord blood from unrelated donors: anlaysis of engraftment and acute graft-versus-host disease. Blood 88:795–802.Google Scholar
  26. 26.
    Gluckmann E, Rocha V, Boyer-Chammard A, et al. (1997) Outcome of cord blood transplantation from related and unrelated donors. New Engl J Med 337:373–381.CrossRefGoogle Scholar
  27. 27.
    Broxmeyer HE, Hangoc G, Cooper S, et al. (1992) Growth charcteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 89:4109–4113.PubMedCrossRefGoogle Scholar
  28. 28.
    Hows JM, Bradley BA, Marsh JCW, et al. (1992) Growth of human umbilical cord blood in long-term haemopoietic cultures. Lancet 340:73–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Stiehm ER, Sztein MB, Steeg PS, et al. (1984) Deficient DR antigen expression on human cord blood monocytes: reversal with lymphokines. Clin Immunol Immunopathol 30:430–436.PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor S, Bryson YJ (1985) Impaired production of %-interferon by newborn cells in vitro is due to functionally immature macrophage. J Immunol 134:1493–1497.PubMedGoogle Scholar
  31. 31.
    Anderson U, Bird AG, Britton S, et al. (1981) Humoral and cellular immunity in human studied at the cell level from birth to two years of age. Immunol Rev 57:5–38.CrossRefGoogle Scholar
  32. 32.
    Foa R, Giubellino MC, Fierro MT, et al. (1984) Immature T lymphocytes in human cord blood identified by monoclonal antibodies: a model for the study of the differentiation pathway of T cells in humans. Cell Immunol 89:194–201.PubMedCrossRefGoogle Scholar
  33. 33.
    Gabbianelli M, Broccoli G, Cianetti L, et al. (1990) HLA expression in hematopoietic development. Class I and II antigens are induced in the definitive erythroid lineage and differentially modulated by fet al liver cytokines. J Immunol 144:3354–3360.PubMedGoogle Scholar
  34. 34.
    Gale RP (1992) Fet al liver transplants. Bone Marrow Transplant 9:118–120.PubMedGoogle Scholar
  35. 35.
    Touraine JL, Roncarlo MG, Royo C, et al. (1987) Fet al tissue transplantation, bone marrow transplantation and prospective gene therapy in severe immunodeficiencies and enzyme deficiencies. Thymus 10:75–87.PubMedGoogle Scholar
  36. 36.
    Gluckman E, Devergie A, Thierry D, et al. (1992) Clinical applications of stem cell transfusion from cord blood and rationale for cord blood banking. Bone Marrow Transplant 9: 114–117.PubMedGoogle Scholar
  37. 37.
    Gluckman E, Wagner J, Hows J et al. (1993) Cord blood banking for hematopoietic stem cell transplantation: an international cord blood transplant registry. Bone Marrow Transplant 11:199–200.PubMedGoogle Scholar
  38. 38.
    Rubinstein R, Rosenfield RE, Adamson JW, et al. (1993) Stored placental blood for unrelated bone marrow reconstitution. Blood 81: 1679–1690.PubMedGoogle Scholar
  39. 39.
    Silberstein LE, Jefferles LC (1996) Placentalblood banking — a new frontier in transfusion medicine. N Engl J Med 335:199–201.PubMedCrossRefGoogle Scholar
  40. 40.
    Krause DS, Fackler MJ, Civin CI, et al. (1996) CD34: structure, biology, and clinical utility. Blood 87:1–13.PubMedGoogle Scholar
  41. 41.
    Andrews R, Singer J, Bernstein I (1989) Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of CD33 and CD34 antigen by light scatter. J Exp Med 169:1721.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones RJ, et al. (1996) Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 88:487–491.PubMedGoogle Scholar
  43. 43.
    Goodell MA, Brose K, Paradis G, et al. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806.PubMedCrossRefGoogle Scholar
  44. 44.
    Osawa M, Hanada K, Hamada H, et al. (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245.PubMedCrossRefGoogle Scholar
  45. 45.
    Zanjani ED, Almeida-Porada G, Livingston AG, et al. (1998) Human bone marrow CD34-negative cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34-positive cells. Exp Hematol 26:353–360.PubMedGoogle Scholar
  46. 46.
    Bhatia M, Bonnet D, Murdoch B, et al. (1998) A newly discovered class of human hematopoetic cells with SCID-repopulating activity. Nature Medicine 4:1038–1047.PubMedCrossRefGoogle Scholar
  47. 47.
    Williams DA (1993) Ex vivo expansion of hematopoietic stem and progenitor cells — Robbing Peter to pay Paul? Blood 81: 3169–3172.PubMedGoogle Scholar
  48. 48.
    Ruggieri L, Heimfeld S, Broxmeyer HE (1994) Cytokine-dependent ex-vivo expansion of early subsets of CD34 cord blood myeloid progenitors is greatly enhanced by cord blood plasma, but expansion of the more mature subsets of progenitors is favored. Blood Cells 20:436–454.PubMedGoogle Scholar
  49. 49.
    Xiao M, Broxmeyer HE, Horie M, et al. (1994) Extensive proliferative capacity of single isolated CD34 human cord blood cells in suspension culture. Blood Cells 20:455–467.PubMedGoogle Scholar
  50. 50.
    Williams DA (1990) Expression of introduced genetic sequences in hematopoietic cells following retroviral-mediated gene transfer. Hum Gen Therap 1:229–239.CrossRefGoogle Scholar
  51. 51.
    Karlsson S (1991) Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood 78:2481–2492.PubMedGoogle Scholar
  52. 52.
    Al-Lebban ZS, Henry JM, Jones JB, et al. (1990) Increased efficiency of gene transfer with retroviral vectors in neonatal hematopoietic progenitor cells. Exp Hematol 18: 180–186.PubMedGoogle Scholar
  53. 53.
    Gesetz über den Verkehr mit Arzneimitteln (Arzneimittelgesetz). BgBI. IS. 2445 vom 24. August 1976 in der geltenden Fassung.Google Scholar
  54. 54.
    Gesetz zur Regelung des Transfusionswesens (Transfusionsgesetz — TFG). BGBI. IS. 1752 vom 6Juli 1998.Google Scholar
  55. 55.
    Betriebsverordnung für pharmazeutische Unternehmer (PharmBetrV). BgBI. IS. 546 vom 8. März 1985 in der geltenden Fassung.Google Scholar
  56. 56.
    Recommendation No R (95) 15 on the preparation, use and quality assurance of blood components. Council of Europe, 5. Ausgabe, 1998.Google Scholar
  57. 57.
    Empfehlung des Rates über die Eignung von Blut-und Plasmaspendern und das Screening von Blutspenden in der Europäischen Gemeinschaft. Amtsblatt der Europäischen Gemeinschaften, L203, S. 14-26 vom 21.7.1998.Google Scholar
  58. 58.
    Kommission der Europäischen Gemeinschaften (1990) Leitfaden einer guten Herstellungspraxis für Arzneimittel, mit ergänzenden Leitlinien. In: Die Regelung der Arzneimittel in der Europäischen Gemeinschaft, Band IV, Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaften.Google Scholar
  59. 59.
    Richtlinie der Kommission zur Festlegung der Grundsätze und Leitlinien der Guten Herstellungspraxis (GMP) für zur Anwendung beim Menschen bestimmten Arzneimittel. (91/356/WEWG) vom 13.06.1991.Google Scholar
  60. 60.
    Richtlinien zur Blutgruppenbestimmung und Bluttransfusion (Hämotherapie). Aufgestellt vom Wissenschaftlichen Beirat der Bundesärztekammer und vom Paul-Ehrlich-In-stitut. Bundesgesundhbl 1996; 39:468-489.Google Scholar
  61. 61.
    Richtlinien für die allogene Knochenmarktransplantation mit nichtverwandten Spendern. Aufgestellt vom Wissenschaftlichen Beirat der Bundesärztekammer. Dt Ärztebl 1994;91:A761-766.Google Scholar
  62. 62.
    Richtlinien zur Transplantation peripherer Blutstammzellen. Aufgestellt vom Wissenschaftlichen Beirat der Bundesärztekammer unter Mitwirkung des Paul-Ehrlich-Institutes. Dt Ärztebl 1997; 94: A1584-1592.Google Scholar
  63. 63.
    Richtlinien zur Transplantation von Stammzellen aus Nabelschnurblut (CB=Cord Blood). Aufgestellt vom Wissenschaftlichen Beirat der Bundesärztekammer und vom Paul-Ehrlich-Institut (in Vorbereitung).Google Scholar
  64. 64.
    Richtlinien zum Gentransfer in menschliche Körperzellen. Richtlinien des ständigen Arbeitskreises „Biomedizinische Ethik und Technologiefolgenabschätzung“ beim Wissenschaftlichen Beirat der Bundesärztekammer. Dt Ärztebl 1995; 92: B583-588.Google Scholar
  65. 65.
    Proposed approach to regulation of cellular and tissue-based products. Docket No. 97N-0068,28.02.1997.Google Scholar
  66. 66.
    Guidance for human somatic cell therapy and gene therapy. März 1998.Google Scholar
  67. 68.
    Mittl.98/C229/03 der Kommission des Europäischen Rates.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Helga Marie Huber
    • 1
  • M. Heiden
    • 1
  • R. Seitz
    • 1
  1. 1.Paul-Ehrlich-InstitutAbteilung Hämatologie und TransfusionsmedizinLangenDeutschland

Personalised recommendations