Advertisement

Glycopeptid-resistente Enterokokken in deutschen Krankenhäusern 1998

  • Ingo Klare
  • C. Konstabel
  • D. Badstübner
  • G. Werner
  • W. Witte
Chapter

Zusammenfassung

Es wurden 92 Stämme Glycopeptid-resistenter Enterokokken (GRE) von 80 Patienten aus 31 Krankenhäusern in elf Bundesländern analysiert. GRE wurden vorrangig in den intensivmedizinischen Bereichen (allgemeine, chirurgische, internistische, pädiatrische, onkologische ITS-Stationen), aber auch in Nephrologie/Dialyse- oder Neurologie/Orthopädie-Abteilungen isoliert. Dabei war die Dominanz von VanA-E. faecium-Stämmen zu beobachten (n=81; 88,0%), weiterhin wurden Stämme von E. faecalis (VanA; n=4; 4,4%), E. faecium (VanB; n=1; 1,1%) sowie E. gallinarum (VanC1; n=6;6,5%) gefunden. Die 81 VanA-Stämme von E. faecium zeigten folgende Resistenzquoten gegen weitere Antibiotika: Erythromycin, Ciprofloxacin (jeweils 93,8%), Ampicillin, Oxytetracyclin (je 88,9%), Rifampicin (79,0%), Trimethoprim/Sulfamerazin (61,7%), Chloramphenicol (18,9%), Fusidinsäure (12,3%), Quinupristin/Dalfopristin (7,4%);Gentamicin (46,9%) und Streptomycin (37,0%), auch kombiniert mit Ampicillinresistenz (9,9-35,8%). Bei einigen dieser VanA-Stämme war die Resistenz gegen Teicoplanin in-vitro nicht vollständig exprimiert. Gleiche Makrorestriktionsmuster von E. faecium-Ausbruchsstämmen (VanA-Typ) aus Krankenhäusern in verschiedenen Bundesländern deuteten auf eine intra- und interhospitale Verbreitung eines definierten GRE-Stammes. Analysen der Plasmid- und Plasmidrestriktionsmuster dieser Isolate zeigten jedoch deutliche Unterschiede. Dies bedeutet, daß E. faecium-Isolate mit gleichem Makrorestriktionsmuster nicht unbedingt identisch sein müssen.

Schlüsselwörter

Enterokokken Glycopeptidresistenz Ausbrüche Genotypisierung 

Glycopeptide-resistantenterococci in German hospitals in 1998

Summary

Ninety-two strains of glycopeptide-resistant enterococci (GRE) from 80 patients of 31 hospitals in 11 federal states were analyzed. They were primarily isolated in intensive care units (general, surgical, internistic, pediatric, oncological ones), but also in nephrologic/dialysis or neurologic/orthopaedic wards. A dominance of Van A type E. faecium strains was observed (n=81; 88.0%). In addition, strains of E. faecalis (VanA; n=4; 4.4%), E. faecium (VanB; n=1; 1.1%), and E. gallinarum (VanC1, n=6; 6.5%) were found. The 81 VanA strains of E. faecium possessed the following resistances to other antibiotics: erythromycin, ciprofloxacin (both 93.8%), ampicillin, oxytetracycline (both 88.9%), rifampicin (79.0%), trimethoprim/sulfameracin (61.7%), chloramphenicol (18.9%), fusidic acid (12.3%), quinupristin/dalfopristin (7.4%);gentamicin (46.9%) and streptomycin (37.0%), also together with ampicillin resistance (9.9–35.8%). In some of these VanA type strains resistance to teicoplanin cannot be completely expressed in-vitro. Macrorestriction analysis of E. faecium outbreak isolates (VanA type) from hospitals in different federal states indicated an intra- and inter-hospital spread of a defined strain. However, heterogeneous plasmid and plasmid restriction patterns showed that these strains were not completely identical.

Key words

Enterococci Glycopeptide resistance Outbreaks Genotyping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Leclercq R, Derlot E, Duval J, Courvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161.PubMedCrossRefGoogle Scholar
  2. 2.
    Uttley AHC, Collins CH, Naidoo J, George RC (1988) Vancomycin-resistant enterococci. Lancet 1:57–58.PubMedCrossRefGoogle Scholar
  3. 3.
    Centers for Disease Control and Prevention (1993) Nosocomial enterococci resistant to vancomycin — United States, 1989–1993. Morbid Mortal Wkl Rep 42:597–599.Google Scholar
  4. 4.
    Martone WJ (1998) Spread of vancomycinresistant enterococci: Why did it happen in the United States? Infect Control Hosp Epidemiol 19:539–545.PubMedCrossRefGoogle Scholar
  5. 5.
    Kresken M, Hafner D (1988) Prävalenz der Antibiotikaresistenz bei klinisch wichtigen Infektionserregern in Mitteleuropa. Bericht über die Ergebnisse einer multizentrischen Studie der Arbeitsgemeinschaft „Resistenz“ in der Paul-Ehrlich-Gesellschaft für Chemotherapie aus dem Jahre 1995. Chemotherapiejournal 5:225–230.Google Scholar
  6. 6.
    Wallrauch C, Eisner E, Milatovic D, Cremer J, Braveny I (1997) Antibiotikaresistenz der Enterokokken in Deutschland. Med Klinik 92:464–468.CrossRefGoogle Scholar
  7. 7.
    Aarestrup FM (1995) Occurrence of glycopeptide resistance among Enterococcus faecium isolates from ecological and conventional poultry farms. Microb Drug Resist 1:255–257.PubMedCrossRefGoogle Scholar
  8. 8.
    Aarestrup FM, Ahrens P, Madsen M, Pallesen LV, Poulsen RL, Westh H (1996) Glycopeptide susceptibility among Danish Enterococcus faecium and Enterococcus faecalis isolates of animal and human origin and PCR identification of genes within the vanA cluster. Antimicrob Agents Chemother 40:1938–1940.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Klare I, Heier H, Claus H, Reissbrodt R, Witte W (1995a) vanA-meàiated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Lett 125:165–172.PubMedCrossRefGoogle Scholar
  10. 10.
    Klare I, Heier H, Claus H, Böhme G, Marin S, Seitmann G, Hakenbeck R, Atanassova V, Witte W. (1995) Enterococcus faecium strains with wnA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and faecal samples of humans in the community. Microb Drug Resist 1:265–272.PubMedCrossRefGoogle Scholar
  11. 11.
    Klare I, Badstübner D, Konstabel C, Böhme G, Claus H, Witte W (1999) Decreased incidence of vanA type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples in humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb Drug Resist 5:45–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Witte W, Klare I (1995) Glycopeptide-resistant Enterococcus faecium outside the hospitals: a commentary. Microb Drug Resist 1:259–263.PubMedCrossRefGoogle Scholar
  13. 13.
    Bager F, Aarestrup FM, Madsen M, Wegener HC (1999) Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb Drug Resist 5:53–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Devriese LA, Pot B, Collins MD (1993) Phenotypic identification of the genus Enterococcus and differentiation of distinct enterococcal species and species groups. J Appl Bacteriol 75:399–408.PubMedCrossRefGoogle Scholar
  15. 15.
    Deutsches Institut für Normung eV (1992) Methoden zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (außer Mykobakterien) gegen Chemotherapeutika: Mikrodilution. In: DIN Deutsches Institut für Normung (Hrsg), DIN Taschenbuch 222: Medizinische Mikrobiologie und Immunologie — Normen und weitere Unterlagen. DIN 58940, Teil 8. Beuth, Berlin, S 381-884.Google Scholar
  16. 16.
    Klare I, Konstabel C, Bastrop R (1997) Simple and rapid extraction of enterococcal DNA suitable for PCR of vancomycin resistance genes by use of the ion exchanger Chelex 100 Resin. In: Methodische Entwicklungen in der mikrobiologischen Nukleinsäure-Diagnostik, 374. Posterworkshop, Dez. 1995/Dez. 1996, Berlin. Hyg Med (Abstract-Band), pp 33-34.Google Scholar
  17. 17.
    Sahm DF, Free L, Handwerger S (1995) Inducible and constitutive expression of vanC1-encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob Agents Chemother 39:1480–1484.CrossRefGoogle Scholar
  18. 18.
    Werner G, Klare I, Witte W (1998) Association between quinupristin/dalfopristin resistance in glycopeptide-resistant Enterococcus faecium and the use of additives in animal husbandry. Eur J Clin Microbiol Infect Dis 17:401–402.PubMedGoogle Scholar
  19. 19.
    Werner G, Witte W (1999) Characterization of a new enterococcal gene, safG, encoding a putative acetyltransferase conferring resistance to streptogramin A compounds. Antimicrob Agents Chemother 43:1813–1814.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Claus H, Cuny C, Pasemann B, Witte W (1996) A database system for fragment patterns of genomic DNA of Staphylococcus aureus. Zentralbl Bakteriol 287:105–116.CrossRefGoogle Scholar
  21. 21.
    Klare I, Heier H, Claus H, Witte W (1993) Environmental strains of Enterococcus faecium with inducible high-level resistance to glycopeptides.FEMS Microbiol Lett 106: 23–30 and Addendum FEMS Microbiol Lett 107:347.CrossRefGoogle Scholar
  22. 22.
    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsedfield gel electrophoresis: criteria for strain typing. J Clin Microbiol 33:2233–2239.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Woodford N, Morrison D, Cookson B, George RC (1993) Comparison of high-level gentamicin-resistant Enterococcus faecium isolates from different countries. Antimicrob Agents Chemother 37:681–684.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Werner G, Klare I, Witte W (1999) Large conjugative vanA plasmids in vancomycin-resistant Enterococcus faecium. J Clin Microbiol 37:2383–2384.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Werner G, Klare I, Witte W (1997) Arrangement of the vanA gene cluster in enterococci of different ecological origin. FEMS Microbiol Lett 155:55–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Klare I, Badstübner D, Konstabel C, Witte W (1999) Identification of enterococci and determination of their glycopeptide resistance in German and Austrian clinical-microbiological laboratories. Clin Microbiol Infect 5 (in Druck).Google Scholar
  27. 27.
    Hospital Infection Control Practices Advisory Committee, HICPAC (1995) Recommendations for preventing the spread of vancomycin resistance. Morbid Mortal Weekly Rep 4: RR-12.Google Scholar
  28. 28.
    Witte W, Heuck D, Klare I, Kniehl E (1996) Stellungnahme zu “Recommendations for preventing the spread of vancomycin resistance”, erarbeitet durch Hospital Infection Control Practices Advisory Committee (HICPAC), Morbidity and Mortality Weekly Report, September 22,1995, Vol. 4: RR-12. Mikrobiologe 6:134-136.Google Scholar
  29. 29.
    Grayson ML, Thauvin-Eliopoulos C, Eliopoulos GM, Yao JDC, de Angelis DV, Walton L, Wolley JL, Moellering RC (1990) Failure of trimethoprim-sulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob Agents Chemother 34:1792–1794.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Norris AH, Reilly JP, Edelstein PH, Brennan PJ, Schuster MG (1995) Chloramphenicol for the treatment of vancomycin-resistant enterococcal infections. Clin Infect Dis 20:1137–1144.PubMedCrossRefGoogle Scholar
  31. 31.
    Ricaurte JC, Turett GS, Kislak JW (1999) Chloramphenicol treatment for vancomycinresistant Enterococcus faecium bacteremia. n: 9th European Congress of Clinical Microbiology and Infectious Diseases, Berlin, Germany, March 21–24,1999 (Abstracts). Clin Microbiol Infect 5 [Suppl 3] p 74 (Abstract P146).Google Scholar
  32. 32.
    Lukashok SA, Casadevall A (1995) Persistent vancomycin-resistant Enterococcus faecium bacteremia. In: Abstracts of the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco LA, 1995. American Society for Microbiology, Washington DC, p 270 (Abstract J74).Google Scholar
  33. 33.
    Bryson HM, Spencer CM (1996) Quinupristin-dalfopristin. Drugs 52:406–415.PubMedCrossRefGoogle Scholar
  34. 34.
    Hill RLR, Smith CT, Seyed-Akhavani M, Casewell MW (1997) Bactericidal and inhibitory activity of quinupristin/dalfopristin against vancomycin-and gentamicin-resistant Enterococcus faecium. J Antimicrob Chemother 39 [Suppl A]:23-28.Google Scholar
  35. 35.
    Low DE (1995) Quinupristin/dalfopristin: spectrum of activity, pharmacokinetics, and initial clinical experience. Microb Drug Resist 1:223–234.PubMedCrossRefGoogle Scholar
  36. 36.
    Thal LA, Zervos MJ (1999) Occurrence and epidemiology of resistance to virginiamycin and streptogramins. J Antimicrob Chemother 43:171–176.PubMedCrossRefGoogle Scholar
  37. 37.
    Hummel R, Tschäpe H, Witte W (1986) Spread of plasmid-mediated nourseothricin resistance due to antibiotic use in animal husbandry. J Basic Microbiol 26:461–466.PubMedCrossRefGoogle Scholar
  38. 38.
    Tschäpe H (1994) The spread of plasmids as a function of bacterial adaptibility. FEMS Microbiol Lett 15:23–32.Google Scholar
  39. 39.
    Reinert RR, Conrads G, Schlaeger JJ, Werner G, Witte W, Lütticken R, Klare I (1999) Survey of antibiotic resistance among enterococci in North-Rhine Westphalia, Germany. J Clin Microbiol 37:1638–1641.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Klare I, Witte W, Reinhardt A, Just HM, Eßinger U, Hoffler D (1996) Ausbrüche von Infektionen mit vanA-positiven high-level glycopeptidre-sistenten Enterococcus faecium (VRE) in Deutschland. In:48.Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie e V, Bonn, 8.-11. Oktober 1996 (Abstract-Band): p 117 (Abstract P154).Google Scholar
  41. 41.
    Klare I, Witte W (1997) Glycopeptidresistente Enterokokken: zur Situation in Deutschland. Hyg Mikrobiol 2:31–38.Google Scholar
  42. 42.
    Klare I, Witte W (1997) Glycopeptidresistente Enterokokken: Auftreten, Verbreitung, Resistenzübertragung, Bedeutung. Wien Klin Wochenschr 109:293–300.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Ingo Klare
    • 1
  • C. Konstabel
    • 1
  • D. Badstübner
    • 1
  • G. Werner
    • 1
  • W. Witte
    • 1
  1. 1.Robert Koch-InstitutBerlinDeutschland

Personalised recommendations