Advertisement

Erb- und Umweltfaktoren im Ursachengefiige des neoplastischen Wachstums nach Studien an Xiphophorus

  • F. Anders
Chapter

Zusammenfassung

Alle Individuen von Xiphophorus haben in ihrem Genom die genetische Information zur Tumorbildung. Neoplasmen wurden allerdings nur bei Bastarden von Angehörigen verschiedener Populationen oder Lokalrassen gefunden. Vier Neopla-sie-Typen verschiedener Ätiologie wurden nachgewiesen: (a) Eine große Gruppe mutagen-abhängiger, (b) eine ebenfalls große Gruppe promotor-abhängiger, (c) eine kleine Gruppe „spontan” entstehender und (d) eine ebenfalls kleine Gruppe dominant erblicher Neoplasmen. Der Prozeß, der zur Krebs-Suszeptibilität führt, beruht auf einem bastardierungsbedingten genetischen Abbau koadaptierter Gensysteme, die normalerweise vor Krebs schützen. Mutagene und Promotoren (Karzinogene im herkömmlichen Sinne) vervollständigen den Abbau dieser Gensysteme in Soma-zellen und lösen auf diese Weise die Krebsbildung aus.

Die Entstehung von Krebs-Suszeptibilität durch Bastardierung ist bei allen Gruppen der höheren Pflanzen und Tiere beobachtet worden (Tabelle 2). Es wird deshalb die Frage gestellt, ob und wie stark Bastardierung zwischen Angehörigen verschiedener menschlicher Populationen und Lokalrassen zur großen Krebshäufigkeit mancher hochentwickelter Nationen ursächlich beigetragen hat. Auf Grund unserer Studien an Xiphophorus vermuten wir, daß die Karzinogene aus der Umwelt im Ursachengefüge des neoplastischen Wachstums nur die Spitze eines Eisberges darstellen, während die wichtigste Komponente, die Suszeptibilität zur Krebsbildung, bei unseren Vorfahren im Verborgenen liegt.

Schlüsselwörter

Karzinogene Promotoren Tumorgene Krebs-Suszeptibilität 

Summary

The genetic information for neoplastic transformation is inherited as a normal part of the genome in all individuals of Xiphophorus. Neoplasia, however, was found only in hybrids between members of different populations and local races. It can be classified in (a) a large group that is triggered by mutagens, (b) a large group triggered by promoters, (c) a small group that develops “spontaneously”, and (d) a small group that is inherited according to Men-delian Laws. The process leading to susceptibility for neoplasia is represented by the disintegration of coa-dapted gene systems that normally protect the fish from neoplasia. Hybridization is the most effective process that leads to disintegration of the protection gene-systems. Environmental mutagens and promoters (i.e. carcinogens) may complete disintegration and thus may trigger neoplasia.

The phenomenon of introducing susceptibility to neoplasia by means of hybridization has been observed in a large variety of plants and animals (Table 2). While we have no data on the relation between hybridization and cancer in human beings comparable to those in plants and animals, we put the question whether the many facts on tumor incidence in humans, that do not agree with the concept of the primacy of environmental factors in carcinogenesis may be explained by interpopulational and interracial hybridization in preceding generations. Based on our studies on Xiphophorus we suppose that environmental factors represent only the peak of an iceberg in the multistep process of the causation of neoplasia. The most important steps leading to neoplasia, i.e. those that bring about susceptibility, are supposed to be hidden in our ancestry.

Key words

Carcinogens Promoters Tumor genes Tumor incidence Tumor susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abdo S (1979) Studies on neoplasia in Xiphophorus. Histomor-phology of N-methyl-N-nitrosourea (MNU) induced neoplasms and cytology and cytochemistry of genetically conditioned ame-lanotic melanoma. Dissertation, GießenGoogle Scholar
  2. 2.
    Ahuja MR (1962) A cytogenetic study of heritable tumor in nicotiana species hybrids. Genetics 47:865–880PubMedGoogle Scholar
  3. 3.
    Ahuja MR, Anders F (1977) Cancer as a problem of gene regulation. In: Gallo RC (ed) Recent advances in cancer research: Cell biology, and tumor virology. CRC Press, Cleveland, pp 103–117Google Scholar
  4. 4.
    Ahuja MR, Lepper K, Anders F (1979) Sex chromosome aberrations involving loss and translocation of tumor-inducing loci in Xiphophorus. Experientia 35:28–30PubMedCrossRefGoogle Scholar
  5. 5.
    Ahuja MR, Schwab M, Anders F (1980) Linkage between a regulatory locus for melanoma cell differentiation and an esterase locus in Xiphophorus. J Heredity 71:403–407Google Scholar
  6. 6.
    Ames BN (1979) Identifying environmental chemicals causing mutation and cancer. Science 204:587–593PubMedCrossRefGoogle Scholar
  7. 7.
    Anders A, Anders F (1978) Etiology of cancer as studied in the platyfish-swordtail system. Biochim Biophys Acta 516:61–95PubMedGoogle Scholar
  8. 8.
    Anders A, Anders F, Klinke K (1973) Regulation of gene expression m the Gordon-Kosswig melanoma system. I. The distribution of the controlling genes in the genome of the xipho-phorine fish, Platypoecilus maculatus and Platypoecilus varia-tus. In: Schröder JH (ed) Genetics and mutagenesis of fish. Springer, Berlin Heidelberg New York, pp 33–52CrossRefGoogle Scholar
  9. 9.
    Anders A, Anders F, Klinke K (1973) Regulation of gene expression in the Gordon-Kosswig melanoma system. II. The arrangement of chromatophore determining loci and regulating elements in the sex chromosomes of xiphophorine fish, Platypoecilus maculatus and Platypoecilus variatus. In: Schröder JH (ed) Genetics and mutagenesis of fish. Springer, Berlin Heidelberg New York, pp 53–63CrossRefGoogle Scholar
  10. 10.
    Anders A, Kollinger G, Chatterjee K (im Druck) Heritable and induced melanoma in Xiphophorus. In: Seiji M (ed) Pigment cell. Karger, Basel (Vol 6)Google Scholar
  11. 11.
    Anders F (1967) Tumour formation in platyfish-swordtail hybrids as a problem of gene regulation. Experientia 23:1–10PubMedCrossRefGoogle Scholar
  12. 12.
    Anders F (1968) Genetische Faktoren bei der Entstehung von Neoplasmen. Zentral Vet Med 15:29–46CrossRefGoogle Scholar
  13. 13.
    Anders F, Diehl H, Scholl E (1980) Differentiation of normal melanophores and of neoplastically transformed melanophores in the skin of Xiphophorus. In: Spearman RIC, Riley PA (eds) The skin of vertebrates. Academic Press, London (Linnean society symposium series number 9, pp 211–224)Google Scholar
  14. 14.
    Anders F, Diehl H, Schwab M, Anders A (1979) Contributions to an understanding of the cellular origin of melanomas in the Gordon-Kosswig xiphophorine fish tumor system. In: Klaus SN (ed) Pigment Cell, Karger, Basel (vol 4, pp 142–149)Google Scholar
  15. 15.
    Anders F, Klinke K, Vielkind U (1972) Genregulation und Differenzierung im Melanom-System der Zahnkärpflinge. Biol in unserer Zeit 2:35–45CrossRefGoogle Scholar
  16. 16.
    Anders F, Schartl M, Scholl E (im Druck) Evaluation of environmental and hereditary factors in carcinogenesis based on studies in Xiphophorus. Proceeding of the eleventh international symposium of the Princess Takamatsu cancer research fund. University Park Press, Baltimore London TokyoGoogle Scholar
  17. 17.
    Anders F, Scholl E, Schartl M (1979) Xiphophorus als Modell in der Krebsforschung. In: Porcher H, Theurer K (eds) Organo-und Immuntherapie: Neue Perspektiven in der Medizin. Enke, Stuttgart, pp 38–100Google Scholar
  18. 18.
    Anders F, Schwab M, Scholl E (1981) Strategy for breeding test animals of high susceptibility to carcinogens. In: Stich H, San R (eds) Short-term tests for chemical carcinogens. Springer, New YorkGoogle Scholar
  19. 19.
    Beiderbeck R (1977) Pflanzentumoren. Ulmer, StuttgartGoogle Scholar
  20. 20.
    Berg R, Engels WR, Kreber RA (1980) Site-specific X-chromo-some rearrangements from hybrid dysgenesis in Drosophila melanogaster. Science 210:427–429PubMedCrossRefGoogle Scholar
  21. 21.
    Braun AC (1978) Plant tumors. Biochim Biophys Acta 516:167–191Google Scholar
  22. 22.
    Braun AC, Stonier T (1958) Morphology and physiology of plant tumors. In: Heilbrunn LV, Weber F (eds) Protoplasmato-logia. Springer, Wien Bd. 10, Heft 5aGoogle Scholar
  23. 23.
    Burch PRJ (1978) Smoking and lung cancer: the problem of inferring cause. JR Statist Soc A 141:437–477CrossRefGoogle Scholar
  24. 24.
    Carroll K (1975) Experimental evidence of dietary factors and hormonedependent cancer. Cancer Res 35:3374–3383PubMedGoogle Scholar
  25. 25.
    Cairns J, Lyon JL, Skolnick M (1980) Banbury Report 4, Cancer incidence in defined populations. Cold Spring Harbor LaboratoryGoogle Scholar
  26. 26.
    Chatterjee K, Kollinger G, Schmidt CR, Anders A, Anders F (1981) Cytogenetics of Neoplasia of Xiphophorus. Cancer Genet Cytogenet 3:195–210PubMedCrossRefGoogle Scholar
  27. 27.
    Crew FAE, Koller P (1936) Genetical and cytological studies on the intergenetic hybrid of Cairina moschata and Anas platyr-hynchos. Proc R Soc Edinb 56:210Google Scholar
  28. 28.
    Denlinger RH, Koestner A, Swenber JA (1978) Neoplasms in purebred boxer dogs following long-term administration of N-Methyl-N-Nitrosourea. Cancer Res 38:1711–1717PubMedGoogle Scholar
  29. 29.
    Doll Sir R (1977) Strategy for detection of cancer hazards to man. Nature 265:589–596CrossRefGoogle Scholar
  30. 30.
    Flindt R, Hemmer H, Schipp R (1968) Zur Morphogenese von Mißbildungen bei Bastardlarven von Bufo calamita ♀ und Bufo viridis ♂: Störungen in der Ausbildung des Axialskeletts. Zool Jb Anat 85:51–71Google Scholar
  31. 31.
    Foerster H (1980) Nahrungsmittel und Krebsverdacht am Beispiel von Zucker. Umschau 80:22–23Google Scholar
  32. 32.
    Fuerst PA, Chakraborty R, Nei M (1977) Statistical studies on protein polymorphism in natural populations I. Distribution of single locus heterozygosity. Genetics 86:455–483PubMedGoogle Scholar
  33. 33.
    Gateff E (1978) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200:1448–1459PubMedCrossRefGoogle Scholar
  34. 34.
    Gebhard K, Niebauer F (1979) Abstract, Second European Workshop on Mammalian Melanin Pigmentation, LondonGoogle Scholar
  35. 35.
    Gordon M (1927) The genetics of a viviparous topminnow Platypoecilus — the inheritance of two kinds of melanophores. Genetics 12:253–283PubMedGoogle Scholar
  36. 36.
    Gross L, Dreyfuss Y (1979) Spontaneous tumors in Sprague-Dawley and Long-Evans rats and their F1 hybrids: carcinogenic effect of total body x-irradiation. Proc Natl Acad Sci USA 76:5910–5913PubMedCrossRefGoogle Scholar
  37. 37.
    Haas-Andela H (1978) Versuche zur genetischen Transformation von Pigmentzellen bei lebendgebärenden Zahnkarpfen (Poeciliidae). Dissertation, GießenGoogle Scholar
  38. 38.
    Haas J (1981) Nachweis somatischer Mutationen im Melanom-system der lebendgebärenden Zahnkarpfen (Poeciliidae). Dissertation, GießenGoogle Scholar
  39. 39.
    Haussier G (1928) Über Melanombildung bei Bastarden von Xiphophorus hellen und Platypoecilus maculatus var. Rubra Klin Wochenschr 7:1561–1562CrossRefGoogle Scholar
  40. 40.
    Halver JE, Mitchel IA (1967) Trout hepatoma research conference papers. Res Rep US Fish Wildl Serv 70:1–99Google Scholar
  41. 41.
    Heston WE (1974) Genetics of cancer. J Hereditty 65:262–272Google Scholar
  42. 42.
    Heston WE, Vlahakis G (1968) C3H-Avy — a high hepatoma and high mammary tumor strain of mice. J Natl Cancer Inst 40:1161–1166PubMedGoogle Scholar
  43. 43.
    Higginson J (1969) Present trends in cancer epidemiology. In: Proceedings of the 8th Canadian cancer conference. Pergamon Press of Canada, Honey Harbor, Ontario, pp 40–75Google Scholar
  44. 44.
    Hook RR, Aultman MD, Adelstein EH, Oxenhandler RW, Milliken LE, Middleton CC (1979) Influence of selective breeding on the incidence of melanomas in Sinclair miniature swine. Int J Cancer 24:668–672PubMedCrossRefGoogle Scholar
  45. 45.
    Ishikawa T, Prince Masahito, Matsumoto J, Takayama S (1978) Morphologic and biochemical characterization of erythropho-romas in goldfish (Carassius auratus). J Natl Cancer Inst 61:1461–1470PubMedGoogle Scholar
  46. 46.
    Ishikawa T, Prince Masahito, Takayama S (1978) Olfactory Neuroepthelioma in a domestic carp (Cyprinus carpio). Cancer Res 38:3954–3959PubMedGoogle Scholar
  47. 47.
    Ishikawa T, Takayama S (1977) Ovarian neoplasia in ornamental hybrid carp (Nishikigoi) in Japan. Ann NY Acad Sci 198:330–341CrossRefGoogle Scholar
  48. 48.
    Kallman K (1975) The Platyfish Xiphophorus maculatus. In: King RC (ed) Handbook of genetics. Plenum Press, New York, vol 4, pp 81–132CrossRefGoogle Scholar
  49. 49.
    Koeppe P (1980) Überlegungen zur Krebsstatistik und -epidemiologic Biol Med 9:99–110Google Scholar
  50. 50.
    Kollinger G (1981) Zelldifferenzierung und Malignität spontaner und carcinogen-induzierter Neoplasmen (Melanom und Neuroblastom) bei Xiphophorus. Eine licht- und elektronen-mirkroskopische Untersuchung. Dissertation, GießenGoogle Scholar
  51. 51.
    Kosswig C (1927) Über Bastarde der Teleostier Platypoecilus und Xiphophorus. Z Indukt Abstamm Vererbungsl 44:253Google Scholar
  52. 52.
    Leatherland JF, Sonstegard RA (1978) Structure of normal testis and testicular tumors in cyprinids from Lake Ontario. Cancer Res 38:3164–3173PubMedGoogle Scholar
  53. 53.
    Little CC (1947) The genetics of cancer in mice. Biol Rev 22:315PubMedCrossRefGoogle Scholar
  54. 54.
    Lubs HA, Kimberling WJ, Hecht F, Patil SR, Brown J, Gerald P, Summitt RL (1977) Racial differences in the frequency of Q and C chromosomal heteromorphism. Nature 268:631–632PubMedCrossRefGoogle Scholar
  55. 55.
    Maugh TH (1979) Cancer and Environment: Higginson speaks out (Interview with J Higginson). Science 205:1363–1366CrossRefGoogle Scholar
  56. 56.
    O’Brien SJ (1980) The extent and character of biochemical genetic variation in the domestic cat. J Heredity 71:2–8Google Scholar
  57. 57.
    Oeser H, Koeppe P (1979) Krebs: Schicksal oder Verschulden? Thieme, StuttgartGoogle Scholar
  58. 58.
    Poll H (1920) Zwischenzellengeschwulst des Hodens bei Vogelmischlingen. Beitr Pathol Anat 67:40Google Scholar
  59. 59.
    Radda AC (1980) Synopsis der Gattung Xiphophorus Heckel. Aquearia 27:39–44Google Scholar
  60. 60.
    Rosen D (1979) Fishes from the uplands and inter-mountain basins of Guatemala: Revisionary studies and comparative geography. Bull Am Natl Hist 162:267–376Google Scholar
  61. 61.
    Sato S, Matsushima T, Tanaka N, Sugimura T, Takashima F (1973) Hepatic tumors in the Guppy (Lebistes reticulatus) induced by aflatoxin B1, dimethylnitrosamine, and 2-acetylami-nofluorene. J Natl Cancer Inst 50:767–776PubMedGoogle Scholar
  62. 62.
    Schartl A, Schartl M, Anders F (im Druck) Promotion of neoplasia by testosterone-promoted cell differentiation in Xiphophorus and Girardinus. In: Hecker E (ed) Proceedings of the symposium of carcinogenesis and biological effects of tumor promotorsGoogle Scholar
  63. 63.
    Schartl M, Schartl A, Anders F (im Druck) Phenotypic conversion of malignant melanoma to benign melanoma and vice versa in Xiphophorus. In: Seiji M (ed) Pigment cell. Karger, Basel, vol 6Google Scholar
  64. 64.
    Schmidt CR (1981) Untersuchungen über MNU-induzierte Neoplasmen bei Xiphophorus. — Abhängigkeit der Induzierbar-keit von Genotyp und Entwicklungsstadium. Dissertation, GießenGoogle Scholar
  65. 65.
    Scholl A (1973) Biochemical evolution in the genus Xiphophorus (Poeciliidae Teleostei). In: Schröder JH (ed) Genetics and mutagenesis of fish. Springer, Berlin Heidelberg New York, pp 277–299CrossRefGoogle Scholar
  66. 66.
    Scholl A, Anders F (1973) Electrophoretic variation of enzym-proteins in platyfish and swordtails (Poeciliidae; Teleostei). Arch Gen 46:121–129Google Scholar
  67. 67.
    Scholl E (1977) Biochemische Markierung von Chromosomen und differentielle Genexpression in Tumor- und Embryonalgewebe bei Zahnkarpfen (Poeciliidae). Staatsexamensarbeit, GießenGoogle Scholar
  68. 68.
    Scholl E (1980) Untersuchungen am Melanomsystem von Xiphophorus — Koppelung eines Esterase-Gens (Est-1) mit einem Differenzierungsgen (Diff). Dissertation, GießenGoogle Scholar
  69. 69.
    Schull WJ (1979) Genetic structure of human populations. J Toxicol Environ Health 5:17–25PubMedCrossRefGoogle Scholar
  70. 70.
    Schwab M (1980) Genome organisation in the tumor model of Xiphophorus (Poeciliidae; Teleostei). Verh Dtsch Zool Ges 73:285Google Scholar
  71. 71.
    Schwab M (1981) How can altered differentiation induced by 12–0-tetradecanoyl-phorbol-13-acetate (TPA) be related to tumor promotion? In: Hecker E (ed) Carcinogenesis and biological effects of tumor promoters. Raven Press, New York (im Druck)Google Scholar
  72. 72.
    Schwab M, Anders A (1981) Carcinogenesis in Xiphophorus and the role of the genotype in tumor susceptibility. In: Kaiser HE (ed) Neoplasms — comparative pathology of growth in animals, plants, and man. Williams and Wilkins, Baltimore, pp 451–460Google Scholar
  73. 73.
    Schwab M, Haas J, Abdo S, Ahuja MR, Kollinger G, Anders A, Anders F (1978) Genetic basis of the susceptibility for the induction of neoplasms by N-methyl-N-nitrosourea (MNU) and X-rays in the platyfish-swordtail tumor system. Experientia 34:780–782PubMedCrossRefGoogle Scholar
  74. 74.
    Scholz A (1977) Untersuchungen zur Dinitrochlorbenzol (DNCB)-induzierten Regression kreuzungsbedingter Melanome der lebendgebärenden Zahnkarpfen (Poeciliidae). Staatsexamensarbeit, GießenGoogle Scholar
  75. 75.
    Seiler J, Puchta O, Brunold E, Rainer M (1958) Die Entwicklung des Genitalapparates bei triploiden Intersexen von Soleno-bia triquetrella F.R. (Lepid. Psychidae). Deutung des Intersexualitätphänomens. Wilhelm Roux’s Arch Entwickl Mech 150:199–372CrossRefGoogle Scholar
  76. 76.
    Siegmund E (1981) Licht- und elektronenmikroskopische Untersuchungen an Mitose- und Meiosechromosomen von Xiphophorus. Diplomarbeit, GießenGoogle Scholar
  77. 77.
    Stich HF, Acton AB (1979) Can mutation theories of carcinogenesis set priorities for carcinogen testing programs? Can J Genet Cytol 21:155–177PubMedGoogle Scholar
  78. 78.
    Takashima F, Hibiya T (1972) Fibrosarcoma in pond-cultured hybrids of Salvelinus. J Ichthyol 19:97–101Google Scholar
  79. 79.
    Takayama S, Ishikawa T (1977) Comparability of histological alteration during carcinogenesis in animals and man in special reference to hepatocarcinogenesis in fish. IARC Sci Publ 16:271–286PubMedGoogle Scholar
  80. 80.
    Thompson JN, Woodruff RR (1980) Increased mutation in crosses between geographically separated strains of Drosophila malenogaster. Proc Natl Acad Sci USA 77:1059–1062PubMedCrossRefGoogle Scholar
  81. 81.
    Vielkind U (1976) Genetic control of cell differentiation in platyfish-swordtail melanoma. J Exp Zool 196:197–204PubMedCrossRefGoogle Scholar
  82. 82.
    Vielkind U, Vielkind J(1973) Inhibitiory effect of dibutryl cyclic AMP on fish melanoma growth, in vitro, as measured by H3-Thymidine incorporation into DNA. IRCS (73–3) 3–8–2Google Scholar
  83. 83.
    Warner NL, Potter M, Metcalf D (1974) Multiple myeloma and related immunoglobulin-producing neoplasms. U/CC Techn Rep Ser 13, GenfGoogle Scholar
  84. 84.
    Weiss E (1972) Geschwülste. In: Frei A (ed) Allgemeine Pathologic Parey, Berlin, pp 295–347Google Scholar
  85. 85.
    Wolley GW, Dickie MM, Little CC (1952) Adrenal tumors and other pathological changes in reciprocal crosses in mice I. Cancer Res 12:142Google Scholar
  86. 86.
    Woodruff RC, Thompson JN, Lyman RF (1979) Intraspecific hybridization and the release of mutator activity. Nature 278:277–279PubMedCrossRefGoogle Scholar
  87. 87.
    Yamada K, Hasegawa T (1978) Types of frequencies of Q-variant chromosomes in a Japanese population. Hum Genet 44:89–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • F. Anders
    • 1
    • 2
  1. 1.Genetisches InstitutJustus-Liebig-Universität GießenDeutschland
  2. 2.Genetisches InstitutHeinrich-Buff-Ring 58-62GießenBundesrepublik Deutschland

Personalised recommendations