Advertisement

Das Wesen des Malignen Wachstums

  • E. Grundmann
Chapter

Zusammenfassung

Bei der Analyse der malignen Wucherungen steht außer der hohen Wachstumsgeschwindigkeit der Tumorzellen die Histolyse, d.h. aggressive, lytische Mechanismen, mit denen sich bösartige Tumorzellen in die Umgebung vorschieben, im Vordergrund. Ein spezifisch gegen Typ-IV-Kollagen gerichtetes Enzym spielt hier eine bevorzugte Rolle. Hinzu kommt eine Auto-Lokomotion der Tumorzellen. Diese Eigenschaften erklären auch die Metastasierung, die als hoch-selektiver Prozeß in mindestens drei Schritten abläuft: Invasion in ein Blut- oder Lymphgefäß, Verschleppung in Blut- oder Lymphbahnen und Infiltration in ein fremdes Gewebe nach Destruktion der Gefäßwand. Unter den Faktoren, welche die Metastasierung leiten, spielen die Blutgerinnung und die Zusammensetzung der Tumoren aus verschieden malignen Subpopulationen eine führende Rolle. Grundlage all dieser Kennzeichen des malignen Wachstums ist ein Verlust der differenzierten Funktionsleistung der Zellen, faßbar z.B. an einem Verlust der gewebsspezifischen Chromatinstruktur der Zellkerne. Die auslösenden Faktoren der Tumorentstehung, die sog. Primärfaktoren, greifen durchweg an der DNA, also am Genom an. Sowohl chemische Carcinogene als auch Viren und vor allem auch kurzwellige und ionisierende Strahlen verursachen DNA-Defekte, die allerdings in den meisten Fällen durch Reparationsmechanismen korrigiert werden. Danach ist die Entstehung eines bösartigen Tumors letztlich ein Versagen dieser DNA-Reparationsmechanismen. Begünstigende Cofaktoren der Carcinogene bewirken eine Verkürzung der Latenzphase. Hierzu gehören verschiedene spezifische chemische Substanzen und Hormone. Nachdem wir wissen, daß bösartige Tumoren lange Zeit „schlafend” im Gewebe ruhen können, ergibt sich eine neue Gliederung des zeitlich-gestaltlichen Ablaufes der Carcinogenese, wobei nach Ausbildung des Primärtumors im einzelnen noch nicht bekannte Wachstumsfaktoren und vor allem immunologische Faktoren für die Entstehung der eigentlichen Tumorkrankheiten verantwortlich zu sein scheinen.

Schlüsselwörter

Maligne Invasion Metastasierung Zellkern-Entdifferenzierung Carcinogenese 

Summary

Analysis of invasive malignancy focuses on the particularly high growth rate of tumor cells, and on the aggressive mechanisms of histolysis favoring the infiltration of the malignant cells into the surrounding tissue. Specific significance is attributed to a certain enzyme directed against type IV collagen, and to the auto-locomotion of tumor cells, properties that may also explain the highly selective process of metastazation in at least three consecutive steps: Tumor cells invade a blood or lymph vessel, they are transported along blood or lymphatic pathways, and they eventually infiltrate foreign tissue after penetration and destruction of blood or lymph vessel walls. Among the factors involved in the process of metastazation, special interest is due to blood coagulation and to the coexistenxe of different dumor cell subpopulations within a primary. These features of malignant growth are based on the loss of functional differentiation as manifested e.g. in the loss of tissue-specific nuclear chromatin structures. Tumor development is triggered by the so-called primary factors which always affect the DNA, i.e. the cell genome. Chemical carcinogens, viruses, and shortwave or ionizing irradiation induce DNA defects which, however, will be reversed and mended by special repair mechanisms in most cases. Thus, the actual development and spread of malignancy is ultimately due to deficient reparation. Co-factors favorizing and promoting carcinogenesis may shorten the latency period, among other several specific chemicals and hormones. Based on current knowledge of tumor dormany a new concept is proposed for the chronological and morphological sequence of carcinogenesis: Following the development of a primary tumor certain as yet undefined growth factors and especially immunological factors may be responsible for the development of a progressive tumor disease.

Key words

Malignant invasion Metastazation Nuclear dedifferentiation Carcinogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bannasch P (1979) Präneoplastische Stadien der chemischen Carci-nogenese: Zelluläre Vorgänge. Verh Dtsch Ges Pathol 63:40–61Google Scholar
  2. Bauer KH (1928) Die Mutationstheorie der Geschwulstentstehung. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  3. Bernfield MR, Cohn RH, Banerjee SD (1973) Glycosaminoglycans and epithelial organ formation. Am Zool 13:1067–1083Google Scholar
  4. Büchner F (1950) Allgemeine Pathologie. Urban & Schwarzenberg, München BerlinGoogle Scholar
  5. Bullough WS, Laurence EB, Iversen OH, Elgio K (1967) The vertebrate epidermal chalone. Nature 214:578–580CrossRefGoogle Scholar
  6. Byers VS, Johnston JO (1977) Antigenic differences among osteogenic sarcoma tumor cells taken from different locations in human tumors. Cancer Res 37:3173–3183PubMedGoogle Scholar
  7. Coombs MM (1980) Chemical carcinogenesis: A view at the end of the first half-century. J Pathol 130:117–146PubMedCrossRefGoogle Scholar
  8. Dix D, Cohen P, Flannery J (1980) On the role of aging in cancer incidence J Theor Biol 83:163–173PubMedCrossRefGoogle Scholar
  9. Doll R (1977) Introduction. In: HH Hiatt, JD Watson, JA Winsten (eds): Origins of human cancer, Book A: Incidence of cancer in humans. Cold Spring Harbor Laboratory, Cold Spring Harbor USA, pp 1–12Google Scholar
  10. Donelli MG, Colombo T, Broggini M, Garattini S (1977) Differential distribution of antitumor agents in primary and secondary tumors. Cancer Treatm Rep 61:1319–1324Google Scholar
  11. Druckrey H, Preussmann R, Ivankovic S (1967) Organotrope carcinogene Wirkung bei 65 verschiedenen Nitroso-Verbindungen an BD-Ratten. Z Krebsforsch 69:103–201PubMedCrossRefGoogle Scholar
  12. Eder M (1980) Malignes Wachstum. Verh Dtsch Ges Inn Med 86Google Scholar
  13. Elgin SCR, Weintraub H (1975) Chromosomal proteins and chromatin structure. Ann Rev Biochem 44:725–774PubMedCrossRefGoogle Scholar
  14. Fidler IJ, Gersten DM, Hart IR (1978) The biology of cancer invasion and metastasis. In: Klein G, Weinhouse S (eds) Advances in Cancer Research. Academic Press, New York (vol 28, pp 149–250)Google Scholar
  15. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197:893–895PubMedCrossRefGoogle Scholar
  16. Frazier W, Glaser L (1979) Surface components and cell recognition. Ann Rev Biochem 48:491–524PubMedCrossRefGoogle Scholar
  17. Fugman RA, Anderson JC, Stolfi RL, Martin DS (1977) Comparison of adjuvant chemotherapeutic activity against primary andmetastatic spontaneous murine tumors. Cancer Res 37:496–500Google Scholar
  18. Gastpar A (1980) Metastasis prophylaxis by platelet aggregation inhibitors. In: Grundmann E (ed) Metastatic tumor spred. Cancer campaign. G Fischer, Stuttgart New York (vol 4, pp 321—331)Google Scholar
  19. Gatti RA, Good RA (1971) Occurrence of malignancy in immunodeficiency diseases. Cancer 28:89–97PubMedCrossRefGoogle Scholar
  20. Glick MC (1979) Membrane glycopeptides from virus transformed hamster fibroblasts and the normal counterpart. Biochemistry 12:2525–2532CrossRefGoogle Scholar
  21. Gropp C, Havemann K (1980) Bedeutung von Tumormarkern in der Diagnostik und Behandlung des Bronchialkarzinoms. Onkologie 3:133–138PubMedCrossRefGoogle Scholar
  22. Grundmann E, Hobik HP (1973) Lymphoreticuläre Sarkome bei immunologisch geschädigten Mäusen. Z Krebsforsch 79:298–303CrossRefGoogle Scholar
  23. Grundmann E, Sieburg H (1962) Die Histogenese und Cytogenese des Lebercarcinoms der Ratte durch Diäthylnitrosamin im lichtmikroskopischen Bild. Beitr Pathol Anat 125:57–90Google Scholar
  24. Grundmann E, Stein P (1961) Untersuchungen über die Kernstrukturen in normalen Geweben und im Carcinom. Beitr Pathol Anat 125:54–76PubMedGoogle Scholar
  25. Haemmerli G, Sträuli P (1978) Motility of L 5222 leukemia cells within the mesentery. Virchows Arch [Cell Pathol] 29:167–177Google Scholar
  26. Hecker E (1975) Cocarcinogens and cocarcinogenesis (with a note on synergistic processes in carcinogenesis). In: Grundmann E (ed) Handbuch der allgemeinen Pathologie. Springer, Berlin Heidelberg New York (vol VI/6, 2, Geschwülste, pp 651–676)Google Scholar
  27. Henle W, Henle G (1981) The association of Epstein-Barr virus with nasopharyngeal carcinoma. In: Grundmann E, Krueger GRF, Ablashi DV (eds) Nasopharyngeal carcinoma. Cancer campaign., G. Fischer, Stuttgart New York (vol 5, im Druck)Google Scholar
  28. Herbst AL, Scully RE, Robboy SJ, Welch WR, Cole P (1977) Abnormal development of the human genital tract following prenatal exposure to diethylstilbestrol. In: Hiatt HH, Watson JD, Winsten JA (eds) Origins of human cancer, Book A: Incidence of cancer, in humans. Cold Spring Harbor Laboratory, Cold Spring Harbor USA, pp 399–412Google Scholar
  29. Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina: Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284:878–881PubMedCrossRefGoogle Scholar
  30. Hilgard P (1980) Metastatic spread and altered blood coagulability. In: Grundmann E (ed) Metastatic tumor spread. Cancer campaign. G Fischer, Stuttgart New York (vol 4, pp 107–116)Google Scholar
  31. Hoover R (1977) Effects of drugs — immunosuppression. In: Hiatt HH, Watson JD, Winsten JA (eds) Origins of humancancer, Book A: Incidence of cancer in humans. Cold Spring Harbor Laboratory, Cold Spring Harbor USA, pp 369–379Google Scholar
  32. Iversen OH, Andahl E, Elgio K (1965) The effect of an epidermisspecific mitotic inhibitor (chalone) extracted from epidermal cells. Acta Pathol Microbiol Scand 64:506–610PubMedGoogle Scholar
  33. Kefalides NA (1975) Basement membranes: structural and biosynthesis consideration. J Invest Dermatol 65:85–92PubMedCrossRefGoogle Scholar
  34. Lenz F (1923) Rassenhygiene. In: Rubner M, Grober M, Ficker M (Hrsg) Handbuch der Hygiene. Lehmanns München, Bd IV/3, pp 33–35)Google Scholar
  35. Liavåg I (1967) Carcinome of the prostate. Universitetsforlaget, OsloGoogle Scholar
  36. Liotta LA, Tryggvason K, Garbisa S, Gehron Robey P, Murray JC (1980) Interaction of metastatic tumor cells with basement membrane collagens. In: Grundmann E (ed) Metastatic tumor growth. Cancer campaign. G Fischer, Stuttgart New York (vol 4, pp 21–30)Google Scholar
  37. Mack TM, Pike MC, Henderson BE, Pfeffer RI, Gerkins VR, Arthur M, Brown SE (1976) Estrogens and endometrial cancer in a retirement community. N Engl J Med 294:1262–1267PubMedCrossRefGoogle Scholar
  38. Makino S, Kano K (1952) Cytological studies of tumors IX. Characteristic chromosome individuality in tumor strain-cells in ascites tumors of rats. J Natl Cancer Inst 13:1213–1234Google Scholar
  39. Murphy ME, Johnson PC (1975) possible contribution of basement membrane to the structural rigidity of blood capillaries. Microvasc Res 9:242–245PubMedCrossRefGoogle Scholar
  40. Niedorf HR, Lusznat A, Hultsch E, Grundmann E (1978) The influence of embryonal bursectomy on Benzpyrene-induced sarcoma of the chicken. Z Krebsforsch 91:323–334CrossRefGoogle Scholar
  41. Nienhaus H (1977) Zur Histogenèse des Mammakarzinoms. Med Habilitationsschrift, MünsterGoogle Scholar
  42. Oldberg A, Kjellén L, Höök M (1979) Cell-surface heparan sulfate. J Biol Chem 254:8505–8510PubMedGoogle Scholar
  43. Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146PubMedCrossRefGoogle Scholar
  44. Rabes HM (1979) Proliverative Vorgänge während der Frühstadien der malignen Transformation. Verh Dtsch Ges Pathol 63:18–39Google Scholar
  45. Rabotti G (1959) Ploidy of human tumours. Nature 183:1276–1277PubMedCrossRefGoogle Scholar
  46. Sandberg A A, Hossfeld DK (1974) Chromosomal changes in human tumors and leukemias. In: Grundmann E (Hrsg) Handbuch der allgemeinen Pathologie. Springer, Berlin Heidelberg New York (vol 6/5,1 Geschwülste, pp 141–287)Google Scholar
  47. Sandritter W, Kiefer G, Kiefer R, Salm R, Moore GW, Grimm H (1974) DNA in heterochromatin. Cytophotometric pattern recognition image analysis among cell nuclei in duct epithelium and in carcinoma of the human breast. Beitr Pathol 151:87–96PubMedCrossRefGoogle Scholar
  48. Santer UV, Glick MC (1979) Partial structure of a membrane glycopeptide from virus transformed hamster cells. Biochemistry 12:2533–2540CrossRefGoogle Scholar
  49. Schirrmacher V, Bosslet K, Shantz G, Clauer K, Hübsch D (1979) Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between a metastasizing variant and the parental tumor line revealed by cytotoxic T lymphocytes. Int J Cancer 23:245–252PubMedCrossRefGoogle Scholar
  50. Schlake W, Grundmann E (1979) Multifocal early gastric cancer of mixed type Pathol Res Pract 164:331–341PubMedCrossRefGoogle Scholar
  51. Seidel A, Sandritter W (1963) Cytophotometrische Messungen des DNA-Gehaltes eines Lungenadenoms und einer malignen Lungenadenomatose. Z Krebsforsch 65:555–559PubMedCrossRefGoogle Scholar
  52. Sonnenbichler J (1979) Advances in chromatin research. Naturwissenschaften 66:244–250PubMedCrossRefGoogle Scholar
  53. Sträuli P, Haemmerli G (1980) Interaction of locomotive and lytic activities of tumor cells in invasion. In: Grundmann E (ed) Metastatic tumor growth. Cancer campaign. G Fischer, Stuttgart New York (vol 4, pp 1–9)Google Scholar
  54. Todaro GJ (1977) RNA tumor virus genes (virogenes) and the transforming genes (oncogenes): Genetic transmission, infectious spread, and modes of expression. In: Hiatt HH, Watson JD, Winsten JA (eds) Origins of human cancer, book B: Mechanisms of carcinogenesis. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1169–1196Google Scholar
  55. Vaheri A, Mosher DF (1978) High molecular weight cell surface-associated glycoprotein (fibronectin) lost in malignant transformation. Biochim Biophys Acta 516:1–25PubMedGoogle Scholar
  56. Vorherr H (1980) Breast cancer in relation to overnutrition. Klin Wochenschr 58:167–171PubMedCrossRefGoogle Scholar
  57. Watanabe S (1974) Cancer and leukemia developing among atombomb survivors. In: Grundmann E (Hrsg) Handbuch der allgemeinen Pathologie. Springer, Berlin Heidelberg New York (vol 6/5, 1 Geschwülste, pp 461–577)Google Scholar
  58. Weiss L (1980) Comments of possible differences between cancer cells in primary tumors and their metastases. In: Grundmann E (ed) Metastatic tumor growth. Cancer campaign. G Fischer, Stuttgart New York (vol 4, pp 53–64)Google Scholar
  59. Wheelock EF, Weinhold KJ, Goldstein LT (1980) Tumor dormancy in animals and man. In: Grundmann E (ed) Metastatic tumor growth. Cancer campaign. G Fischer, Stuttgart New York (vol 4, pp 123–129)Google Scholar
  60. Witting C, Hultsch E (1978) Effect of generalized graft-versus-host reaction on B- and T-lymphocytes and a benzpyrene-induced murine sarcoma. Z Krebsforsch 92:255–265CrossRefGoogle Scholar
  61. Wynder EL, Chan P, Cohen L, MacCornack F, Hill P (1978) Etiology and prevention of breast cancer. In: Grundmann E, Beck L (eds) Early diagnosis of breast cancer. Cancer campaign. G Fischer, Stuttgart New York (vol 1, pp 1–28)Google Scholar
  62. Zamcheck N (1978) Serial CEA determination in management of colo-rectal cancer: Update. In: Grundmann E (ed) Colon cancer. Cancer campaign, G Fischer, Stuttgart New York (vol 2, pp 149–161)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • E. Grundmann
    • 1
  1. 1.Pathologisches InstitutUniversitätMünsterBundesrepublik Deutschland

Personalised recommendations