Advertisement

Von der Amöbe zum schlagenden Herzen: Evolution und Feinstruktur des intrazellulären Bewegungsapparates

  • W. Hort
  • I. Hort
Chapter

Zusammenfassung

Die verschiedenen Arten der Zellbewegung werden in dieser Arbeit unter dem speziellen Blickpunkt der Entwicklung und der Ultrastruktur besprochen. Die Vielzahl der Bewegungsmechanismen tierischer Zellen läßt sich auf 3 Grundformen reduzieren: ciliare und amöboide Bewegungen und Muskelkontraktionen.

Die Ultrastruktur aller Cilien, vom Einzeller bis zu hochspezialisierten Zellen im menschlichen Organismus z.B. dem respiratorischen Epithel, ist sehr ähnlich. In der Regel wird die Bewegung der Cilien verursacht durch minimale gleitende Verschiebungen der neun Doppeltubuli, die aus Tubulin bestehen, einem Protein, das sich vom Myosin und Aktin unterscheidet.

Amöboide Bewegungen und Muskelkontraktion beruhen auf dem Gleit-Filamentmechanismus von Aktin und Myosin. Obwohl sich die Prinzipien dieses Mechanismus während der Evolution nicht geändert haben, stellten sich einige Unterschiede in der Struktur und in der Anordnung von Aktin- und Myosinfila-menten ein. Offenbar hat sich der hohe Ordnungsgrad der Myofibrillen in Herz und Skelettmuskulatur von Vertebraten aus der lockeren und zu rascher Wandlung fähigen Anordnung der kontraktilen Filamente in amöboiden Zellen entwickelt. Während der Evolution haben sich nur relativ geringe Änderungen in der Aminosäuresequenz im Aktin und Myosinmole-kül des intrazellulären kontraktilen Systems ergeben.

Abschließend werden einige Besonderheiten des Myocards mit seiner speziellen Anordnung der Muskelzellen und einigen Störungen im Verband der kontraktilen Filamente unter pathologischen Bedingungen diskutiert.

Schlüsselwörter

Zellmotilität Cilien- und amöboide Bewegung Muskelkontraktion Aktin Myosin 

Summary

Different kinds of cell motility are reviewed in this paper with special regard to development and ultrastructure. The variety of animal cell motility types can be reduced to three principles: ciliary and ameboid movements and muscle contraction.

The ultrastructure of all kinds of cilia is very similar from single cell organisms to highly specialized cells of the human body, e.g., ciliary respiratory epithelium. As a rule, ciliary movement is caused by minimal sliding of the nine double tubules consisting of tubulin, a protein differing from myosin and actin.

Ameboid movement and muscle cell contraction are based on the sliding filament mechanism of actin and myosin. Although the principles of this mechanism have not changed during evolution some differences in the structure and arrangement of actin and myosin filaments occurred.

Obviously, the high degree of order of the myofibrils of vertebrate heart and skeletal muscle cells has developed from the loose and rapid changing arrangement of contractile filaments in ameboid cells. There are some changes of residues in the actin and myosin molecules during the development of the intracellular contractile system.

Finally, some peculiarities of the myocardium, its special arrangement of muscle cells and some disturbances of the contractile filaments under pathologic conditions are discussed.

Key words

Cell motility Movements, ciliary, ameboid Muscle contraction Actin Myosin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Afzelius B (1979) Abnormal cilia. Br Med J 40:674CrossRefGoogle Scholar
  2. 2.
    Arnos LA (1979) Structure of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London New York, pp 1–64Google Scholar
  3. 3.
    Aronson J (1961) Sarcomere size in developing muscle of a tarsonemid mite. J Cell Biol 11:147–156CrossRefGoogle Scholar
  4. 4.
    Böger A, Hort W (1977) The importance of smooth muscle cells in the development of foam cells in the gastric mucosa. An electron microscopic study. Virchows Arch [Pathol Anat] 372:287–297Google Scholar
  5. 5.
    Braatz-Schade K (1978) Effects of various substances on cell shape, motile activity and membrane potential in amoeba pro-teus. Acta Protozool 17:163–176Google Scholar
  6. 6.
    Dewey MM, Levine RJC, Colflesh D, Walcott B, Brann L, Baldwin A, Brink P (1979) Structural changes in thick filaments during sarcomere shortening in limulus striated muscle. In: Sugi H, Pollack GH (eds) Cross-bridge mechanism in muscle contraction. University Park Press, Baltimore, pp 3–19Google Scholar
  7. 7.
    Dustin P (1978) Microtubules. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  8. 8.
    Ferrans VJ, Maron BJ, Jones M, Thiedemann K-U (1978) Ultrastructural aspects of contractile proteins in cardiac hypertrophy and failure. In: Kobayashi T, Ito Y, Rona G (eds) Recent advances in studies on cardiac structure and metabolism. University Park Press, Baltimore (vol 12, pp 129–140)Google Scholar
  9. 9.
    Ghadially FN (1978) Ultrastructural pathology of the cell. But-terworths, London BostonGoogle Scholar
  10. 10.
    Gibbons IR (1975) Molecular basis of flagellar motility in sea urchin spermatozoa. In: Inoué S, Stephens RE (eds) Molecules and cell movement. Raven Press, New York; North-Holland, Amsterdam, pp 207–232Google Scholar
  11. 11.
    Goldman AS, Schochet GG, Howell JT (1980) The discovery of defects in respiratory cilia in the immotile cilia syndrome. J Pediatr 96:244–247PubMedCrossRefGoogle Scholar
  12. 12.
    Gordon AM, Huxley AF, Julian FJ (1966) Variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol 184:170–192PubMedGoogle Scholar
  13. 13.
    Gröschel-Stewart U (1978) Filamente. Verh Anat Ges 72:171–177PubMedGoogle Scholar
  14. 14.
    Gröschel-Stewart U (1980) Immunochemistry of cytoplasmic contractile Proteins. Int Rev Cytol 65:194–254Google Scholar
  15. 15.
    Gröschel-Stewart U (1980) Biochemistry and immunochemistry of cytoplasmic filamentous structures. Eur J Cancer 16:2–4PubMedCrossRefGoogle Scholar
  16. 16.
    Herson FS, Murphy S (1980) Normal ciliary ultrastructure in children with Kartageners syndrome. Ann Otol Rhinol Laryn-gol 89:81–83Google Scholar
  17. 17.
    Hort W (1960) Untersuchungen zur funktionellen Morphologie des Myokards. Klin Wochenschr 38:785–790PubMedCrossRefGoogle Scholar
  18. 18.
    Hort W (1970) Der Herzbeutel und seine Bedeutung für das Herz. In: Heilmeyer L, Müller AF, Prader A, Schoen R (eds) Ergebnisse der inneren Medizin. Springer, Berlin Heidelberg New York (Bd 29, pp 1–50)CrossRefGoogle Scholar
  19. 19.
    Huddart H, Hunt St (1975) Visceral muscle. Its structure and function. Blackie, Glasgow LondonGoogle Scholar
  20. 20.
    Huxley HE (1973) Muscular contraction and cell motility. Nature 243:445–449PubMedCrossRefGoogle Scholar
  21. 21.
    Huxley HE (1979) Time resolved X-ray diffraction studies on muscle. In: Sugi H, Pollack GH (ed) Cross-bridge mechanism in muscle contraction. University Park Press, Baltimore, pp 391–401Google Scholar
  22. 22.
    Isenberg G, Wohlfarth-Bottermann KE (1976) Transformation of cytoplasmic actin. Cell Tiss Res 173:495–528CrossRefGoogle Scholar
  23. 23.
    Jahromi SS, Charlton MP (1979) Transverse sarcomere splitting. A possible means of longitudial growth in crab muscles. J Cell Biol 80:736–742PubMedCrossRefGoogle Scholar
  24. 24.
    Kartagener M (1933) Zur Pathogenese der Bronchiektasien. I. Mitteilung: Bronchiektasen bei Situs viscerum inversus. Beitr Klinik Tuberk 83:489–501CrossRefGoogle Scholar
  25. 25.
    Knieriem H-J (1978) Electron-microscopic findings in congestive cardiomyopathy. In: Kaltenbach M, Looqen F, Olsen EGJ (eds) Cardiomyopathy and myocardial biopsy. Springer, Berlin Heidelberg New York, pp 71–86CrossRefGoogle Scholar
  26. 26.
    Koltzoff NK (1928) Physikalisch-chemische Grundlage der Morphologie. Biol Zentralbl 48:345–369Google Scholar
  27. 27.
    Komnick H, Stockem W, Wohlfahrt-Bottermann KE (1972) Ursachen, Begleitphänomene und Steuerung zellulärer Bewegungserscheinungen. Fortschr Zool 21:1–74Google Scholar
  28. 28.
    Luduena RF (1979) Biochemistry of tubulin. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London New York, pp 66–116Google Scholar
  29. 29.
    Pedersen M, Mygind N (1976) Absence of axonemal arms in nasal mucosa cilia in Kartargener’s syndrome. Nature 262:494–495PubMedCrossRefGoogle Scholar
  30. 30.
    Randall (zit. nach Satir)Google Scholar
  31. 31.
    Roberts WC, Ferrans VJ (1975) Pathologic anatomy of the cardiomyopathies. Hum Pathol 6:287–342PubMedCrossRefGoogle Scholar
  32. 32.
    Roberts K, Hyams JS (1979) Microtubules. Academic Press, London New YorkGoogle Scholar
  33. 33.
    Satir P (1974) How cilia move. Sci Am 231:44–52PubMedGoogle Scholar
  34. 34.
    Sendai N, Tamura H, Shibata N, Yoshitake J, Konda K, Tanaka K (1975) The mechanism of the movement of leucocytes. Exp Cell Res 91:393–407CrossRefGoogle Scholar
  35. 35.
    Small JV, Sobieszek A (1980) The contractile apparatus of smooth muscle. Int Rev Cytol 64:241–306PubMedGoogle Scholar
  36. 36.
    Sonnenblick EH, Spotnitz HM, Spiro D (1964) Role of the sarcomere in ventricular function and the mechanism of heart failure. Circ Res [Suppl 2] 15:70–81PubMedGoogle Scholar
  37. 37.
    Summers K (1974) ATP-induced sliding of microtubules in bull sperm flagella. J Cell Biol 60:321–324PubMedCrossRefGoogle Scholar
  38. 38.
    Toh BH, Yildiz A, Sotelo J, Osung O, Holborow EJ, Fairfax A (1979) Distribution of actin and myosin in muscle and non-muscle cells. Cell Tiss Res 199:117–126CrossRefGoogle Scholar
  39. 39.
    Ueda T, Götz von Olenhusen K, Wohlfarth-Bottermann KE (1978) Reaction of the contractile apparatus in Physarum to injected Ca+ +, ATP, ADP and 5′AMP. Cytobiologie 18:76–94PubMedGoogle Scholar
  40. 40.
    Vandekerckhove J, Weber K (1978) Actin amino acid sequences. Comparison of actins from calf thymus, bovine brain and SV 40-transformed mouse 3T3 cells with rabbit skeletal muscle actin. Eur J Biochem 90:451–462PubMedCrossRefGoogle Scholar
  41. 41.
    Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation 14:123–133PubMedCrossRefGoogle Scholar
  42. 42.
    Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802PubMedCrossRefGoogle Scholar
  43. 43.
    Wissler RW (1978) Progression and regression of atherosclerosis. In: Chandler AB, Eurenius K, McMillan GC, Nelson CB, Schwartz CJ, Wessler S (eds) The thrombotic process in athero-genesis. Advances of experimental medicine and biology. Plenum Press, New York, (vol 104, pp 77–110)CrossRefGoogle Scholar
  44. 44.
    Wohlfarth-Bottermann KE (1977) Zellmotilität im Transmissions-Elektronenmikroskop: Cytoplasmatische Actomyosine als Ursache von Zellbewegungen. Beitr. elektronenmikroskop. Direktabb Oberfl 10:97–138Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • W. Hort
    • 1
  • I. Hort
    • 1
  1. 1.Pathologisches InstitutUniversität DüsseldorfDüsseldorfBundesrepublik Deutschland

Personalised recommendations