Advertisement

Organisation und Ausgestaltung des Sprosses. — Organization and development of the shoot

  • C. W. Wardlaw
  • Cornelia A. Reinders-Gouwentak
  • P. Champagnat
  • J. Doorenbos
  • A. Allsopp
Chapter
  • 93 Downloads
Part of the Encyclopedia of Plant Physiology / Handbuch der Pflanzenphysiologie book series (532)

Abstract

In another chapter of this volume1 some of the more general aspects of morphogenesis at the shoot apical meristem have been considered. Here the aim is to examine what is meant by apical organization2, i.e. the constructional and functional unity which the apex exhibits throughout the development of the plant, and to see how the apex, during its metabolism and growth, gives rise to organs of characteristic size, position and symmetry and to the tissue pattern within.

Literature

  1. Albaum, H. G.: Inhibitions due to growth hormones in fern prothallia and sporophytes. Amer. J. Bot: 25, 124–133 (1938).Google Scholar
  2. Allard, H. A.: Some aspects of the phyllotaxy of tobacco. J. agric. Res. 64, 49–55 (1942).Google Scholar
  3. Allard, H. A.: Clockwise and counterclockwise spirality in the phyllotaxy of tobacco. J. agric. Res. 73, 237–242 (1946).Google Scholar
  4. Allsopp, A.: Experimental and analytical studies of pteridophytes. Xvii. The effect of various physiologically active substances on the development of Marsilea in sterile culture. Ann. Bot., N. S. 16, 165–183 (1952).Google Scholar
  5. Allsopp, A.: Experimental and analytical studies of pteridophytes. Xix. Investigations on Marsilea. 2. Induced reversion to juvenile stages. Ann. Bot., N. S. 17, 37–55 (1953).Google Scholar
  6. Allsopp, A.: Experimental and analytical studies of pteridophytes. XX. Investigations on Marsilea. 3. The effect of various sugars on development and morphology. Ann. Bot., N. S. 17, 447–463 (1953).Google Scholar
  7. Allsopp, A.: A comparison of the effects of 3-indolylacetic acid and 3-indolylacetonitrile on the development of sporelings of Marsilea in aseptic culture. J. exp. Bot. 5, 16–23 (1954).Google Scholar
  8. Allsopp, A.: Juvenile stages of plants and the nutritional status of the shoot apex. Nature (Lond.) 173, 1032–1035 (1954).Google Scholar
  9. Allsopp, A.: Experimental and analytical studies of pteridophytes. Xxiv. Investigations on Marsilea. 4. Anatomical effects of changes in sugar concentration. Ann Bot., N. S. 18, 449–461 (1954).Google Scholar
  10. Allsopp, A.: Apical dominance in Marsilea with particular reference to the effects of 3-indolylacetic acid, 3-indolylacetonitrile, and coumarin on lateral bud development. J. exp. Bot. 7, 14–24 (1956).Google Scholar
  11. Allsopp, A.: Morphogenetic affects of 3-indolylacetonitrile on sporelings of Marsilea in aseptic culture. J. exp. Bot. 7, 1–13 (1956).Google Scholar
  12. Antevs, E.: Die Jahresringe der Holzgewächse und die Bedeutung derselben als klimatischer Indikator. Progr. Rei bot. 5, 285–386 (1917).Google Scholar
  13. Audus, L. J.: Plant growth substances. London: Hill 1953; 2nd edn.: 1959a.Google Scholar
  14. Audus, L. J.: Correlations. J. Linn. Soc. Bot. 56, 177–187 (1959).Google Scholar
  15. Avery, G. S., JR.: Differential distribution of a phytohormone in the developing leaf of Nicotiana and its relation to polarised growth. Bull. Torrey bot. Club 62, 313–330 (1935).Google Scholar
  16. Avery, G. S.JR., P. R. Burkholder and H. B. Creighton: Production and distribution of growth hormone in shoots of Aesculus and Malus, and its probable rôle in stimulating cambial activity. Amer. J. Bot. 24, 51–58 (1937).Google Scholar
  17. Ball, E.: The effects of synthetic growth substances on the shoot apex of Tropaeolumm majus L. Amer. J. Bot. 31, 316–327 (1944).Google Scholar
  18. Ball, E.: Development in sterile culture of stem tips and subjacent regions of Tropeaolum majus L. and Lupinus albus L. Amer. J. Bot. 33, 301–318 (1946).Google Scholar
  19. Ball, E.: Differentiation in the primary shoots of Lupinus albus L., and of Tropaeolum majus L. Symp. Soc. exp. Biol. 2, 246–262 (1948).Google Scholar
  20. Ball, E.: The shoot apex and normal plant of Lupinus albus L., bases for experimental morphology. Amer. J. Bot. 36, 440–454 (1949).Google Scholar
  21. Ball, E.: Differentiation in a callus culture of Sequoia sempervirens. Growth 14, 295–325 (1950).PubMedGoogle Scholar
  22. Ball, E.: On certain gradients in the shoot tip of Lupinus albus. Amer. J. Bot. 42, 509–521 (1955).Google Scholar
  23. Ball, E.: Studies of the nutrition of the callus culture of Sequoia sempervirens. Année biol. 59 (Sér. Iii 31), 281–305 (1955).Google Scholar
  24. Baby, A. DE: Vergleichende Anatomie der Phanerogamen und Farne. Strasbourg 1877. Engl. transln: Comparative anatomy of the phanerogams and ferns. Oxford: Clarendon Press 1884.Google Scholar
  25. Basford, K. H.: Morphogenetic responses to gibberellic acid of a radiation-induced mutant dwarf in groundsel, Senecio vulgaris L. Ann. Bot., N.S. 25, 279–302 (1961).Google Scholar
  26. Beal, J. M.: Bud development in Lilium harrisii following treatment with indoleacetic acid. Proc. nat. Acad. Sci. (Wash.) 23, 304–306 (1937).Google Scholar
  27. Beal, J. M.: Histological responses of three species of Lilium to indoleacetic acid. Bot. Gaz. 99, 881–911 (1938).Google Scholar
  28. Bersillon, G.: Sur le point végétatif de Papaver somniferum L.: structure et fonctionnement. C. R. Acad. Sci. (Paris) 232, 2470–2472 (1951).Google Scholar
  29. Bersillon, G.: Recherches sur les Papaveracées. Contribution à l’étude du développement des dicotyledones herbacées. Ann. Sci. nat., Bot., Sér. XI 16, 225–443 (1955).Google Scholar
  30. Bindloss, E.: A developmental analysis of cell length as related to stem length. Amer. J. Bot. 29, 179–188 (1942).Google Scholar
  31. Bonner, J.: Transport of thiamin in the tomato plant. Amer. J. Bot. 29, 136–142 (1942).Google Scholar
  32. Bouillenne, R.: La rhizogénèse. Année biol. 54 (Sér. Iii 31 ), 597–621 (1950).Google Scholar
  33. Bouillenne, R., F. W. Went: Recherches expérimentales sur la néoformation des racines dans les plantules et les boutures des plantes supérieures. Aim Jard. bot. Buitenzorg 43, 25–202 (1933).Google Scholar
  34. Bower, F. O.: The ferns, Vol. 1. Cambridge: Univ. Press 1923.Google Scholar
  35. Bravais, L., A. Bravais: Essai sur la disposition des feuilles curvisériées. Ann. Sci. nat., bot., Sér. II 7, 42–110 (1837).Google Scholar
  36. Brian, P. W., J. P. Grove and J. Macmillan: The gibberellins. Fortschr. Chem. organ. Naturstoffe 8, 350–433 (1960).Google Scholar
  37. Brown, R., and E. Robinson: Cellular differentiation and the development of enzyme proteins in plants. In: Biological specificity and growth (E. G. Butler, ed.), pp. 93–118. Princeton: Univ. Press 1955.Google Scholar
  38. Ruder, J.: Der Bau des phanerogamen Sproßvegetationspunktes und seine Bedeutung für die Chimärentheorie. Ber. dtsch. bot. Ges. 46, 20–21 (1928).Google Scholar
  39. Bucbbolz, J. T.: Volumetric studies of seeds, endosperms, and embryos in Pinus ponderosa during embryonic differentiation. Bot. Gaz. 108, 232–244 (1946).Google Scholar
  40. Bunning, E.: Morphogenesis in plants. Surv. biol. Progr. 2, 105–140 (1952).Google Scholar
  41. BurstrÖM, H.: The nitrate nutrition of plants. Ann. agric. Coll. Sweden 13, 1–86 (1945).Google Scholar
  42. BurstrÖM, H.: The rate of the nutrient transport to swelling buds of trees. Physiol. Plantarum (Cph.) 1, 124–135 (1948).Google Scholar
  43. BurstrÖM, H.: Auxin and the mechanism of root growth. Symp. Soc. exp. Biol. 11, 44–62 (1957).PubMedGoogle Scholar
  44. BurstrÖM, H., and A. Krooa: The biochemistry of the development of buds in trees and the bleeding sap. Kgl. danske Vidensk. Selsk. Biol. Medd. 20, No 2 (1946).Google Scholar
  45. BurstrÖM, H., and A. Krooa: Bleeding and bud development in Carpinus. Svensk bot. Tidskr. 41, 17–44 (1947).Google Scholar
  46. Buvat, R.: Structure, évolution et fonctionnement du méristème apical de quelques dicotyledones. Ann Sci. nat., Bot., Sér. XI 13, 199–300 (1952).Google Scholar
  47. Buvat, R.: L’apex de Triticum vulgare: modalités de reprise des mitoses lors de la germination et du fonctionnement végétatif. C. R. Acad. Sci. (Paris) 236, 1989–1991 (1953).Google Scholar
  48. Buvat, R.: Le méristème apicale de la tige. Année biol. 59 (Sér. Iii 31), 596–656 (1955).Google Scholar
  49. Camefort, H.: Étude de la structure du point végétatif et des variations phyllotaxiques chez quelques Gymnospermes. Ann. Sci. nat., Bot., Sér. XI 17, 1–185 (1956).Google Scholar
  50. Camus, G.: Recherches sur le rôle des bourgeons dans les phenomènes de morphogenèse. Rev. Cytol. et Biol. végét. 11, 1–199 (1949).Google Scholar
  51. Cathey, H. M.: Mutual antagonism of growth control of Chrysanthemum morifolium by gibberellin and Amo-1618. (Abstr.) Plant Physiol. xliii, Suppl., 88, (1958).Google Scholar
  52. Cheadle, V. I.: Research on xylem and phloem — progress in fifty years. Amer J Bot. 43, 719–731 (1956).Google Scholar
  53. Chouard, P.: Sur la nature d’excitation par les hétéroauxins dans la formation provoquée de racines ou de bourgeons en n’importe quel point de boutures de feuilles. C. R. Acad. Sci. (Paris) 207, 597–599 (1938).Google Scholar
  54. Church, A. H.: On the relation of phyllotaxis to mechanical laws. London 1904.Google Scholar
  55. Church, A. H.: On the interpretation of phenomena of phyllotaxis. Oxford: Univ. Press 1920.Google Scholar
  56. Clowes, F. A. L.: Adenine incorporation and cell division in shoot apices. New Phytologist 58, 16–19 (1959).Google Scholar
  57. Crooks, D. M.: Histological and regenerative studies on the flax seedling Bot. Gaz. 95, 209–239 (1933).Google Scholar
  58. Cutter, E. G.: Experimental induction of buds from fern leaf primordia. Nature (Lond.) 173, 440–441 (1954).Google Scholar
  59. Cutter, E. G.: Anatomical studies on the shoot apices of some parasitic and saprophytic angiosperms. Phytomorphology 5, 231–247 (1955).Google Scholar
  60. Cutter, E. G.: Experimental and analytical studies of pteridophytes. Xxxiii. The experimental induction of buds from leaf primordia in Dryopteris aristata Druce. Ann. Bot., N. S. 20, 143–165 (1956).Google Scholar
  61. Cutter, E. G.: Studies of morphogenesis in the Nymphaeaceae. I. Introduction: some aspects of the morphology of Nuphar lutea (L.) Sm. and Nymphaea alba L. Phytomorphology 7, 45–56 (1957).Google Scholar
  62. Cutter, E. G.: Studies of morphogenesis in the Nymphaeaceae. II. Floral development in Nuphar and Nymphaea: bracts and calyx. Phytomorphology 7, 57–73 (1957).Google Scholar
  63. Cutter, E. G.: Experimental and analytical studies of pteridophytes. Xxxvi Further experiments on the developmental potentialities of leaf primordia in Dryopteris aristata Druce. Ann. Bot., N. S. 21, 343–372 (1957).Google Scholar
  64. Cutter, E. G.: Studies of morphogenesis in the Nymphaeaceae. Iii. Surgical experiments on leaf and bud formation. Phytomorphology S, 74–95 (1958).Google Scholar
  65. Cutter, E. G.: On a theory of phyllotaxis and histogenesis. Biol. Rev. 34, 243–263 (1959).Google Scholar
  66. Cutter, E. G., and B. R. Voeller: Changes in leaf arrangement in individual fern apices. J. Linn. Soc. Bot. 56, 225–239 (1959).Google Scholar
  67. Czaja, A. T.: Der Einfluß von Korrelationen auf Restitution und Polarität von Wurzel-Sproß-Stecklingen. Ber. dtsch. bot. Ges. 49, 67–71 (1931).Google Scholar
  68. DanckwardtlilliestrÖM, C.: Kinetin induced shoot formation from isolated roots of Isatis tinctoria. Physiol. Plantarum (Cph.) 10, 794–796 (1957).Google Scholar
  69. Debary B., Deropp, R. S.: Studies in the physiology of leaf growth. I. The effect of various accessory growth factors on the growth of the first leaf of isolated stem tips of rye. Ann Bot., N. S. 9, 369–381 (1945).Google Scholar
  70. Debary B., Deropp, R. S.: The growth capacity of sunflower hypocotyl. Plant Physiol. 26, 778–785 (1951).Google Scholar
  71. Derofp, R. S., and E. Markley: The correlation of different aspects of auxin action. Plant Physiol. 30, 210–214 (1955).Google Scholar
  72. Deschatres, R.: Recherches sur la phyllotaxie du genre Sedum. Rev. gén. Bot. 61, 1–70 (1954).Google Scholar
  73. Devries V., Edwards, P.ST. J., and A. Allsopp: The effect of changes in the inorganic nitrogen supply on the growth and development of Marsilea in aseptic culture. J. exp. Bot. 7, 194–202 (1956).Google Scholar
  74. Esau, K.: Plant anatomy. New York: Wiley; London: Chapman and Hall 1953.Google Scholar
  75. Esau, K.: Primary vascular differentiation in plants. Biol. Rev. 29, 46–86 (1954).Google Scholar
  76. Esau, K., H. B. Currier and V. I. Cheadle: Physiology of phloem. Ann Rev. Plant Physiol. 8, 349–374 (1957).Google Scholar
  77. Fiscmnich, O.: Weitere Versuche über die Bedeutung des Wuchsstoffes für Adventivsproß- und Wurzelbildung. Ber. dtsch. bot. Ges. 57, 122–134 (1939).Google Scholar
  78. Fiscmnich, O.: Über Kallus-, Wurzel- und Sproßbildung bei Populus nigra var. pyramidalis. Beitr. Biol. Pflanz. 27, 339–371 (1944).Google Scholar
  79. Foster, A. S.: Investigations on the morphology and comparative history of development of foliar organs. I. The foliage leaves and cataphyllary structures in the horse-chestnut (Aesculus hippocastanum L.). Amer. J. Bot. 18, 243–249 (1929).Google Scholar
  80. Foster, A. S.: A histogenetic study of foliar determination in Carya buckleyi var. arkansana. Amer. J. Bot. 22, 88–147 (1935).Google Scholar
  81. Foster, A. S.: Problems of structure, growth and evolution in the shoot apex of seed plants. Bot. Rev. 5, 454–470 (1939).Google Scholar
  82. Fraser, D. A.: Production of spring wood with indoleacetic acid (heteroauxin) Nature (Lond.) 164, 542 (1949).Google Scholar
  83. Frazer, H. L.: Seasonal changes in the shoot apex of Dryopteris aristata. Ann. Bot., N. S. 10, 391–408 (1946).Google Scholar
  84. Galston, A. W.: On the physiology of root initiation in excised Asparagus stem tips. Amer. J. Bot. 35, 281–287 (1948).Google Scholar
  85. Gautheret, R. J.: Hétéro-auxines et cultures des tissus végétaux. Bull. Soc. Chim. biol. 24, 13–47 (1942).Google Scholar
  86. Gautheret, R. J.: Le bourgeonnement des tissus végétaux en culture. Sciences (Paris) 40, 95–128 (1942).Google Scholar
  87. Gautheret, R. J.: Recherches sur le développement de fragments de tissus végétaux cultivés “in vitro”. Rev. Cytol. et Cytophysiol. vég. 6, 85–180 (1942).Google Scholar
  88. Gautheret, R. J.: Recherches sur la polarité des tissus végétaux. Rev. Cytol. et Cytophysiol. vég. 7, 45–215 (1944).Google Scholar
  89. Gautheret, R. J.: Une voie d’avenir en biologie végétale: La culture des tissus. Paris: Gallimard 1945.Google Scholar
  90. Gautheret, R. J.: La culture des tissus végétaux et les phénomènes d’histogénèse. Année biol. 43 (Sér. Iii 26), 719–744 (1950).Google Scholar
  91. Gautheret, R. J.: Sur la variabilité des propriétés physiologiques de cultures de tissus végétaux. Rev. gén. Bot. 62. 5–110 (1955).Google Scholar
  92. Gautheret, R. J.: La culture des tissus végétaux. Paris: Masson 1959.Google Scholar
  93. Gifford E. M., JR.: The shoot apex in angiosperms. Bot. Rev. 20, 477–529 (1954).Google Scholar
  94. Gifford E. M.JR., and R. H. Wetmore: Apical meristems of vegetative shoots and strobili in certain gymnosperms. Proc. nat. Acad. Sei. (Wash.) 43, 571–576 (1957).Google Scholar
  95. Goebel, K.: Organographie der Pflanzen, pt. 1: Allgemeine Organographie, 3rd edn. Jena: Fischer 1928.Google Scholar
  96. Goldberg, E.: Root and shoot production induced in cabbage by 3-indoleacetic acid. Science 87, 511 (1938).PubMedGoogle Scholar
  97. Goldberg, E.: Histological responses of cabbage plants grown at different levels of nitrogen nutrition to indole-3-acetic acid. Bot. Gaz. 100, 347–369 (1938).Google Scholar
  98. Goodwin, R. H.: The rôle of auxin in leaf development in Solidago species. Amer. J. Bot. 24, 43–51 (1937).Google Scholar
  99. Gorter, C. J.: The influence of 2,3,5-triiodobenzoic acid on the growing points of tomatoes. Proc. kon. ned. Akad. Wet. 52, 1185–1193 (1951).Google Scholar
  100. Greenidge, K. N. H.: Ascent of sap. Ann. Rev. Plant Physiol. 8, 237–256 (1957).Google Scholar
  101. Greenleaf, W. H.: Induction of polyploidy in Nicotiana. Science 86, 565–566 (1937).PubMedGoogle Scholar
  102. Gregory, F. G.: Studies in the energy relations of plants. II. The effect of temperature on increase in area of leaf surface and in dry weight of Cucumis sativus. Ann. Bot. 42, 469–507 (1928).Google Scholar
  103. Gregory, F. G., and J. A. Veale: A reassessment of the problem of apical dominance. Symp. Soc. exp. Biol. 11, 1–20 (1957).PubMedGoogle Scholar
  104. Gunckel, J. E., and K. V. Thimann: Studies of development on long shoots and short shoots of Ginkgo biloba L. Iii. Auxin production in shoot growth. Amer. J. Bot. 36, 145–151 (1949).Google Scholar
  105. Guncrel, J. E., and R. H. Wetmore: Studies of development in long shoots and short shoots of Ginkgo biloba L. I. The origin and pattern of development of the cortex pith, and procambium. Amer. J. Bot. 33, 285–295 (1946).Google Scholar
  106. Guncrel, J. E., and R. H. Wetmore: Phyllotaxis and the organization of the primary vascular system, primary phloem and primary xylem. Amer. J. Bot. 33, 532–543 (1946).Google Scholar
  107. Haberlandt, G.: Physiologische Pflanzenanatomie. Leipzig: Engelmann 1884; 6th edn. 1924.Google Scholar
  108. Haberlandt, G.: Engl. transln.: Physiological plant anatomy. London: Macmillan 1914.Google Scholar
  109. Haccius, B.: Weitere Untersuchungen zum Verständnis der zerstreuten Blattstellungen bei den Dikotylen. S.-B. Heidelb. Akad. Wiss. 6, 289–337 (1950).Google Scholar
  110. Haccius, B.: Experimentally induced twinning in plants. Nature (Lond.) 176, 355–356 (1955).Google Scholar
  111. Hamner, K. C.: Histological responses of Mirabilis Jalapa to indoleacetic acid. Bot. Gaz. 99, 912–954 (1938).Google Scholar
  112. Hanstein, J.: Die Scheitelzellgruppe im Vegetationspunkt der Phanerogamen. Festschr. Niederrhein. Ges. Nat.- u. Heilk., pp. 109–143 (1868).Google Scholar
  113. Harada, H., and J. P. Nitscr: Changes in endogenous growth substances during flower development. Plant Physiol. 34, 409–415 (1959).PubMedGoogle Scholar
  114. Harrison, B. F.: Histological responses of Iresine lindenii to indoleacetic acid. Bot. Gaz. 99, 301–338 (1937).Google Scholar
  115. Harting, M. G.: Recherches micrométriques sur le développement des parties élémentaires de la tige annuelle des plantes dicotyledonées. Ann Sci. nat., Bot., Sér. Iii 4, 210–279 (1845).Google Scholar
  116. Hayward, H. E., and F. W. Went: Transplantation experiments with peas. II. Bot. Gaz. 100, 788–801 (1939).Google Scholar
  117. Helm, J.: Tuber die Beeinflussung der SproBgewebe-Differenzierung durch Entfernen der jungen Blattanlagen. Planta (Berl.) 16, 607–621 (1932).Google Scholar
  118. Heyes, J. K., and R. Brown: Growth and cellular differentiation. In: The growth of leaves (F. L. Mu,Thorpe, ed.), pp. 31–49. London: Butterworths Scient. Publns. 1956.Google Scholar
  119. Hofmeister, W.: Beiträge zur Kenntniss der GefäBkryptogamen. Abh. kgl. sächs. Ges. Wiss. 3, 603–682 (1857).Google Scholar
  120. Hofmeister, W.: Allgemeine Morphologie der Gewächse. Leipzig 1868.Google Scholar
  121. Howard, H. W.: Possible action of phytohormones as root-determiners. Ann. Bot., N. S. 2, 933–942 (1938).Google Scholar
  122. Ireno, S.: Erblichkeitsversuche an einigen Sippen von Plantago major. Jap. J. Genet. 1, 153–212 (1923).Google Scholar
  123. Imai, Y: The right-and left-handedness of phyllotaxy. Bot. Mag. (Tokyo) 41, 592–596 (1927).Google Scholar
  124. Iterson, G. Van: Mathematische und mikroskopisch-anatomische Studien über Blattstellungen. Jena: Fischer 1907.Google Scholar
  125. Jablonski, J. R., and F. Skoog: Cell enlargement and cell division in excised tobacco pith tissue. Physiol. Plantarum (Cph.) 7, 17–24 (1954).Google Scholar
  126. Jacobs, W. P.: Auxin relationships in an intercalary meristem: further studies on the gymnophore of Arachis hypogaea L. Amer. J. Bot. 38, 307–310 (1951).Google Scholar
  127. Jacobs, W. P.: The rôle of auxin in differentiation of xylem around a wound. Amer. J. Bot. 39, 301–309 (1952).Google Scholar
  128. Jacobs, W. P.: Acropetal auxin transport and xylem regeneration — a quantitative study. Amer. Naturalist 88, 327–337 (1954).Google Scholar
  129. Jacobs, W. P.: Internal factors controlling cell differentiation in the flowering plant. Amer. Naturalist 90, 163–169 (1956).Google Scholar
  130. Jacobs, W. P., J. Danielson, V. Hurst and P. Adams: What substance normally controls a given biological process ? II. The relation of auxin to apical dominance. Develop. Biol. 1, 534–554 (1959).Google Scholar
  131. Jacobs, W. P., and I. B. Morrow: A quantitative study of xylem development in the vegetative shoot apex of Coleus. Amer. J. Bot. 44, 823–842 (1957).Google Scholar
  132. Jacquiot, C.: Formation d’organes par le tissu cambial d’ (limns campestris L. et de Betula verrucosa Gaertn. cultivés in vitro. C. R. Acad. Sci. (Paris) 240, 557–558 (1955).Google Scholar
  133. Janse, J. M.: La polarité des cellules cambiennes. Ann Jard. bot. Buitenzorg 31, 167–180 (1921).Google Scholar
  134. Jones, E. R. H., H. B. Henbest, G. F. Smith and J. A. Bentley: 3-indoleacetonitrile: a naturally occurring plant growth hormone. Nature (Loud.) 169, 485–486 (1952).Google Scholar
  135. Jost, L.: Zur Physiologie der Gefäßbildung. Z. Bot. 35, 114–150 (1940).Google Scholar
  136. Jost, L.: Über Gefäßbrücken. Z. Bot. 38, 161–215 (1942).Google Scholar
  137. Kaan Albest, A.V.: Anatomische und physiologische Untersuchungen über die Entstehung von Siebröhrenverbindungen. Z. Bot. 27, 1–94 (1934).Google Scholar
  138. Kulescha, Z., G. Camus: Relation entre l’inhibition de croissance des bourgeons et la teneur en substance de croissance des fragments de racines d’Endive. C. R. Soc. Biol. (Paris) 142, 320–323 (1948).Google Scholar
  139. Lance, A.: Recherches cytologiques sur l’évolution de quelques méristèmes apicaux et sur ses variations provoqueés par des traitements photopériodiques. Ann Sci. nat. Bot., Sér. XI 18, 91–422 (1957).Google Scholar
  140. Lang, A.: The effect of gibberellin upon flower formation. Proc. nat. Acad. Sci. (Wash.) 43, 709–717 (1957).Google Scholar
  141. Lang, A.: The influence of gibberellin and auxin on photoperiodic induction. In: Photoperiodism and related phenomena in plants and animals (R. B. Withxow, ed.; Amer. Assoc. Adv. Sci. Publ. No 55), pp. 329–350. Washington, D.C. 1959.Google Scholar
  142. Lang, A.: Gibberellin-like substances in photoinduced and vegetative Hyoscyamus plants. Planta (Berl.) 54, 498–504 (1960).Google Scholar
  143. Lang, A., R. M. Sachs and C. Bretz: Effets morphogénétiques de la gibbérelline. Bull. Soc. franç. Physiol. végét. 5, 1–19 (1959).Google Scholar
  144. LE Fanu, B.: Auxin and correlative inhibition. New Phytologist 35, 205–220 (1936).Google Scholar
  145. Leopold, A. C., and K. V. T. Hfmann: The effect of auxin on flower initiation. Amer. J. Bot. 36, 342–347 (1949).Google Scholar
  146. Lindner, R. A.: Effects of indoleacetic and naphthylacetic acids on development of buds in horse-radish. Bot. Gaz. 100, 500–527 (1939).Google Scholar
  147. Loiseau, J. E.: Suppression expérimentale d’une hélice foliaire chez Impatiens roylei Walp. C. R. Acad. Sci. (Paris) 238, 149–151 (1954).Google Scholar
  148. Loiseau, J. E.: Evolution morphologique de quelques tiges d’Impatiens roylei Walp. après suppression expérimentale d’une helice foliaire. C. R. Acad. Sci. (Paris) 238, 385–387 (1954).Google Scholar
  149. Loiseau, J. E.: Multiplication expérimentale des hélices foliaires chez Impatiens roylei Walp. C. R. Acad. Sci. (Paris) 238, 1259–1261 (1954).Google Scholar
  150. Loiseau, J. E.: Influence de destructions ménagées de l’anneau initial sur la phyllotaxie. C. R. Acad. Sci. (Paris) 240; 1715–1717 (1955).Google Scholar
  151. Loo, S. W.: Cultivation of excised stem tips of Asparagus in vitro. Amer. J. Bot. 32, 13–17 (1945).Google Scholar
  152. Looms, W. E.: Growth correlation. In: Growth and differentiation in plants (W. E. Looms, ed.), pp. 197–217. Ames: Iowa State Coll. Press 1953.Google Scholar
  153. Macloskie, G.: Antidromy in plants. Bull. Torrey bot. Club 22, 379–387 (1895).Google Scholar
  154. Marsden, M. P. F., and R. H. Wetmore: In vitro culture of the shoot tips of Psilotum nudum. Amer. J. Bot. 41, 640–645 (1954).Google Scholar
  155. Mirth, P. C., W. H. Preston JR. and J. W. Mitchell: Growth controlling effects of some quarternary ammonium compounds on various species of plants. Bot. Gaz. 115, 200–204 (1953).Google Scholar
  156. Mayer, L.: Wachstum und Organbildung an in vitro kultivierten Segmenten von Pelargonium zonale und Cyclamen persicum. Planta (Berl.) 47, 401–446 (1956).Google Scholar
  157. Miller, C. O., and F. Skoog: Chemical control of bud formation in tobacco stem segments. Amer. J. Bot. 40, 768–773 (1953).Google Scholar
  158. Miller, C. O., F. Skoog, F. S. Okumura, M. H. Von Saltza and F.M. Strong: Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Amer. chem. Soc. 78, 1375–1380 (1956).Google Scholar
  159. Nagelt, C.: Ueber das Scheitelwachstum hder Phanerogamen. Bot. Ztg 36, 124–126 (1878).Google Scholar
  160. NobÉCourt, P.: Cultures en série de tissus végétaux sur milieu artificiel. C. R. Acad. Sci. (Paris) 205, 521–523 (1937).Google Scholar
  161. NobÉCourt, P.: État actuel de la question des cultures de tissus végétaux. Etudes biol. Soc. dauphin. 322, 54 (1939).Google Scholar
  162. Patau, K., N. K. Das and F. Skoog: Induction of Dna synthesis by kinetin and indole-acetic acid in excised tobacco pith tissue. Physiol. Plantarum (Cph.) 10, 949–966 (1957).Google Scholar
  163. Paulet, P., J. P. Nrrson: Stimulation chimique de bourgeonnement chez Cardamine pratensis L. Bull. Soc. bot. France 106, 426 141 (1959).Google Scholar
  164. Pranney, B. O., and C. A. West: Gibberellins as native plant growth regulators. Ann. Rev. Plant Physiol. 11, 411–436 (1960).Google Scholar
  165. Plant, W.: The role of growth substances in the regeneration of cuttings. Ann Bot., N. S. 4, 607–614 (1940).Google Scholar
  166. Plantefol, L.: Fondements d’une theorie phyllotaxique nouvelle. I. Historique et critique; II. La phyllotaxie des Monocotylédones. Ann. Sci. nat., Bot., Sér. XI 7, 153–229 (1946).Google Scholar
  167. Plantefol, L.: La phyllotaxie des Dikotylédones. IV. Generalisations et conclusions. Ann Sci. nat., Bot., Sér. XI 8, 1–66 (1947).Google Scholar
  168. Plantefol, L.: Hélices foliaires, point végétatif et stèle chez les dicotylédones. La notion d’anneau initial. Rev. gén. Bot. 54, 49–80 (1947).Google Scholar
  169. Plantefol, L.: La théorie des hélices multiples foliaires. Paris: Masson 1948.Google Scholar
  170. Plantefol, L.: La phyllotaxie. Année biol. 54 (Sér. Iii 26 ), 447–460 (1950).Google Scholar
  171. Postlethwait, S. N., and O. E. Nelson JR.: A chronically wilted mutant of maize. Amer. J. Bot. 44, 628–633 (1957).Google Scholar
  172. Priestley, J. H.: The meristematic tissues of the plant. Biol. Rev. 3, 1–20 (1928).Google Scholar
  173. Priestley, J. H.: Studies in the physiology of cambial activity. Iii. The seasonal activity of the cambium. New Phytologist 29, 316–350 (1930).Google Scholar
  174. Priestley, J. H., and L. I. Scott: Phyllotaxis in the dicotyledon from the standpoint of developmental anatomy. Biol. Rev. 8, 241–268 (1933).Google Scholar
  175. Priestley, J. H., L. I. Scott and K. M. Mattinson: Dicotyledon phyllotaxis from the standpoint of development. Proc. Leeds philos. and lit. Soc., Sci. Sect. 3, 380–388 (1937).Google Scholar
  176. Raunkiaer, C.: Über Homodromie und Antidromie, insbesondere bei Gramineen. Kgl. Danske Vidensk. Sellsk. Biol. Medd. 1, No 12 (1919).Google Scholar
  177. Rehm, S.: Zur Entwicklungsphysiologie der Gefäße und des trachealen Systems. Planta (Berl.) 26, 255–274 (1936).Google Scholar
  178. Richards, F. J.: The geometry of phyllotaxis and its origin. Symp. Soc. exp. Biol. 2, 217–245 (1948).Google Scholar
  179. Richards, F. J.: Phyllotaxis: its quantitative expression and relation to growth in the apex. Phil. Trans. B 235, 509–563 (1951).Google Scholar
  180. Richards, F. J.: Spatial and temporal correlations involved in leaf pattern production at the apex. In: The growth of leaves (F. L. Milthorpe, ed.), pp. 66–75. London: Butterworths Scient. Publns. 1956.Google Scholar
  181. Robinson, E., and R. Brown: The development of the enzyme complement in growing root cells. J. exp. Bot. 3, 356–374 (1952).Google Scholar
  182. Robinson, E., and R. Brown: Enzyme changes in relation to cell growth in excised root tissues. J. exp. Bot. 5, 71–78 (1954).Google Scholar
  183. Sachs, J.: Vorlesungen über Pflanzenphysiologie. Würzburg 1882. Engl. transln.: Lectures on the physiology of plants. Oxford: Clarendon Press 1887.Google Scholar
  184. Sachs, R. M., C. F. Bretz and A. Lang: Shoot histogenesis: the early effects of gibberellin upon stem elongation in two rosette plants. Amer J Bot. 46, 376–384 (1959).Google Scholar
  185. Sachs, R. M., and A. Lang: Effect of gibberellin upon cell division in Hyoscyamus. Science 125, 1144–1145 (1957).PubMedGoogle Scholar
  186. Sachs, R. M., and A. Lang: Shoot histogenesis and the subapical meristem: the action of gibberellic acid, Amo-1618, and maleic hydraxide. In: 4th internat. Conf. on Plant Growth Regulation (Yonkers, N.Y., Usa., Aug. 1959), pp. 567–578. Ames: Iowa State Univ. Press 1961.Google Scholar
  187. Sachs, R. M., A. Lang, C. F. Bretz and J. Roach: Shoot histogenesis: subapical meristematic activity in a caulescent plant and the action of gibberellic acid and Amo-1618. Amer. J. Bot. 47, 260–266 (1960).Google Scholar
  188. Schmidt, A.: Histologische Studien an phanerogamen Vegetationspunkten. Bot. Arch. 8, 345–404 (1924).Google Scholar
  189. Schmucker, TH.: Rechts- und Linkstendenz bei Pflanzen. Beih. Bot. Zbl. 41 I, 51–81 (1925).Google Scholar
  190. Schmucker, TH.: Zur Entwickelungsphysiologie der schraubigen Blattstellung. Planta (Berl.) 19, 139–153 (1933).Google Scholar
  191. Schoute, J. C.: Beiträge zur Blattstellungslehre. Rec. Tray. bot. néerl. 10, 153–339 (1913).Google Scholar
  192. Schoute, J. C.: Fasciation and dichotomy. Rec. Tray. bot. néerl. 33, 649–669 (1936).Google Scholar
  193. Schraudolf, H., and J. Reinert: Interaction of plant growth regulators in regeneration processes. Nature (Lond.) 184, 465–466 (1959).Google Scholar
  194. Schroeder, C. A.: Spirality in Citrus. Bot. Gaz. 114, 350–352 (1953).Google Scholar
  195. SchÜEpp, O.: Wachstum und Formwechsel des Sproßvegetationspunktes der Angiospermen. Ber. dtsch. bot. Ges. 32, 328–338 (1914).Google Scholar
  196. SchÜEpp, O.: Beiträge zur Theorie des Vegetationspunktes. Ber. dtsch. bot. Ges. 34, 847–857 (1916).Google Scholar
  197. SchÜEpp, O.: Meristeme. In: Handbuch der Pflanzenanatomie (K. Linsbauer, ed.), sect. I, pt. 2, vol. 4 (fasc. 16 ). Berlin: Borntraeger 1926.Google Scholar
  198. SchÜEpp, O.: Untersuchungen zur beschreibenden und experimentellen Entwicklungsgeschichte von Acer pseudoplatanus. Jb. wiss. Bot. 70, 743–804 (1929).Google Scholar
  199. SchÜEpp, O.: Über periodische Formbildung bei Pflanzen. Biol. Rev. 13, 59–92 (1938).Google Scholar
  200. Seidl, W.: Wuchsstoffuntersuchungen an Selaginella martensii Spring. Jb. wiss. Bot. 89, 832–861 (1941).Google Scholar
  201. Sifton, H. V.: Developmental morphology of vascular plants. New Phytologist 43, 87–129 (1944).Google Scholar
  202. Simon, S.: Experimentelle Untersuchungen über die Entstehung von Gefäßverbindungen. Ber. dtsch. bot. Ges. 26, 364–396 (1908).Google Scholar
  203. Simon, S.: Experimentelle Untersuchungen über die Differenzierungsvorgänge im Callusgewebe von Holzgewächsen. Jb. wiss. Bot. 45, 351–478 (1908).Google Scholar
  204. Simon, S.: Transplantationsversuche zwischen Solanum melongena und Iresine linden. Jb. wiss. Bot. 72, 137–160 (1930).Google Scholar
  205. Sinnott, E. W., and R. Bloch: Visible expression of cytoplasmic pattern in the differentiation of xylem strands. Proc. nat. Acad. Sci. (Wash.) 30, 388–392 (1944).Google Scholar
  206. Sinnott, E. W., and R. Bloch: The cytoplasmic basis of intercellular patterns in vascular differentiation. Amer. J. Bot. 32, 151–156 (1945).Google Scholar
  207. Sironval, C.: Observations sur la structure et le fonctionnement du méristème en rapport avec le développement chez Fragaria vesca L. var. semper f lorens Duch. Bull. Soc. roy. bot. Belg. 82, 9–26 (1949).Google Scholar
  208. Sxooo, F.: Growth and organ formation in tobacco tissue cultures. Amer. J. Bot. 31, 19–24 (1944).Google Scholar
  209. Sxooo, F.: Chemical control of growth and organ formation in plant tissues. Année biol. 54 (Sér. Iii 26), 545–562 (1950).Google Scholar
  210. Sxooo, F.: Substances involved in normal growth and differentiation. Brookhaven Symp. Biol. 6, 1–21 (1954).Google Scholar
  211. Sxooo, F.: Chemical regulation of growth in plants. In: Dynamics of growth processes (E. F. Boell, ed.), pp. 148–182. Princeton: Univ. Press 1954b.Google Scholar
  212. Sxooo, F.: Growth factors, polarity and morphogenesis. Année biol. 59 (Sér. Iii 31 ), 201–213 (1955).Google Scholar
  213. Skoog, F., and C. O. Miller: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. exp. Biol. 11, 118–130 (1957).PubMedGoogle Scholar
  214. Skoog, F., and C. Tsui: Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Amer. J. Bot. 35, 782–787 (1948).Google Scholar
  215. Skoog, F., and C. Tsui: Growth substances and the formation of buds in plant tissues. In: Plant growth substances (F. Skoog, ed.), pp. 263–287. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  216. Snow, M.: Experiments on spirodistichous shoot apices. I. Phil. Trans. roy. Soc. B 235, 131–162 (1951).Google Scholar
  217. Snow, M.: Spirodistichy re-interpreted. Phil. Trans. roy. Soc. B 239, 45–88 (1955).Google Scholar
  218. Snow, M., and R. Snow: Experiments on phyllotaxis. I. The effect of isolating a primordium. Phil. Trans. roy. Soc. B 221, l-43 (1931).Google Scholar
  219. Snow, M., and R. Snow: Experiments on phyllotaxis. II. The effect of displacing a primordium. Phil. Trans. roy. Soc. B 222, 353–400 (1933).Google Scholar
  220. Snow, M., and R. Snow: Experiments on phyllotaxis. Iii. Diagonal splits through decussate apices. Phil. Trans. roy. Soc. B 225, 63–94 (1935).Google Scholar
  221. Snow, M., and R. Snow: Auxin and leaf formation. New Phytologist 36, 1–18 (1937).Google Scholar
  222. Snow, M., and R. Snow: The determination of axillary buds. New Phytologist 41, 13–22 (1942).Google Scholar
  223. Snow, M., and R. Snow: On the determination of leaves. New Phytologist 36, 5–19 (1947).Google Scholar
  224. Snow, M., and R. Snow: On the determination of leaves. Symp. Soc. exp. Biol. 2, 263–275 (1948).Google Scholar
  225. Snow, M., and R. Snow: On the question of tissue tensions in stem apices. New Phytologist 50, 184–185 (1951).Google Scholar
  226. Snow, M., and R. Snow: Minimum areas and leaf determination. Proc. roy. Soc. B 139, 545–566 (1952).Google Scholar
  227. Snow, M., and R. Snow: Regeneration of the potato shoot apex. Nature (Lond.) 171, 224 (1953).Google Scholar
  228. Snow, M., and R. Snow: Regulation of sizes of leaf primordia by growing-point of stem apex. Proc. roy. Soc. B 144, 222–229 (1955).Google Scholar
  229. Snow, M., and R. Snow: Regulation of sizes of leaf primordia by older leaves. Proc. roy. Soc. B 151, 39–47 (1959).Google Scholar
  230. Snow, R.: The correlative inhibition of the growth of axillary buds. Ann. Bot. 39, 841–859 (1925).Google Scholar
  231. Snow, R.: Upward effects of auxin in coleoptiles and stems. New Phytologist 35, 292–304 (1936).Google Scholar
  232. Snow, R.: Further experiments on whorled phyllotaxis. New Phytologist 51, 108–124 (1942).Google Scholar
  233. Snow, R.: A new theory of leaf formation. Nature (Lond.) 162, 798 (1948).Google Scholar
  234. Snow, R.: A new theory of phyllotaxis. Nature (Lond.) 163, 332 (1949).Google Scholar
  235. Snow, R.: Experiments on bijugate apices. Phil. Trans. roy. Soc. B 235, 291–310 (1951).Google Scholar
  236. Snow, R.: On the shoot apex and phyllotaxis of Costus. New Phytologist 51, 359–363 (1952).Google Scholar
  237. Snow, R.: Phyllotaxis of flowering teasels. New Phytologist 53, 99–107 (1954).Google Scholar
  238. Snow, R.: Problems of phyllotaxis and leaf determination. Endeavour 14, 190–199 (1955).Google Scholar
  239. Snow, R.: Phyllotaxis of Kniphofia and Lilium candidum. New Phytologist 57, 160–167 (1958).Google Scholar
  240. Steeves, T. A., H. P. Gabriel and M. W. Steeves: Growth in sterile culture of excised leaves of flowering plants. Science 126, 350–351 (1957).PubMedGoogle Scholar
  241. Steeves, T. A., and I. M. Sussex: Studies in the development of excised leaves in sterile culture. Amer. J. Bot. 44, 665–673 (1957).Google Scholar
  242. Sterling, C.: Growth and vascular development in the shoot apex of Sequoia sempervirens. Amer. J. Bot. 32, 380–386 (1945).Google Scholar
  243. Steward, F. C., M. O. Mapes and J. Smith: I. Growth and division of freely suspended cells. Amer. J. Bot. 45, 693–703 (1958).Google Scholar
  244. Steward, F. C., R. H. Wetmore and J. K. Pollard: Nitrogenous components of the shoot apex of Adiantum pedatum. Amer. J. Bot. 42, 936–938 (1955).Google Scholar
  245. Steward, F. C., R. H. Wetmore, J. F. Thompson and J. P. Nlrsca: The nitrogen components of certain shoot apical growing regions. Amer. J. Bot. 41, 123–134 (1954).Google Scholar
  246. Stichel, E.: Gleichzeitige Induktion von Sprossen und Wurzeln an in vitro kultivierten Gewebestücken von Cyclamen persicum. Planta (Berl.) 53, 293–317 (1959).Google Scholar
  247. Stoughton, R. H., and W. Plant: Regeneration of root cuttings as influenced by plant hormones. Nature (Lond.) 142, 293–294 (1938).Google Scholar
  248. Stowe, B. B., and T. Yamaki: The history and physiological action of the gibberellins. Ami. Rev. Plant Physiol. 8, 181–216 (1957).Google Scholar
  249. Stowe, B. B., and T. Yamaki: Gibberellins: stimulants of plant growth. Science 129, 807–816 (1959).PubMedGoogle Scholar
  250. Strong, F. M.: Topics in microbial chemistry. New York: Wiley; London: Chapman and Hall (1958).Google Scholar
  251. Struckmeyer, B. E., A C Hildebrandt and A. J. Riker: Histological effects of growth regulating substances on sunflower tissue of crown-gall origin growing in vitro. Amer. J. Bot. 36, 491–495 (1949).Google Scholar
  252. Sunderland, N., and R. Brown: Distribution of growth in the apical region of the shoot of Lupinus albus. J. exp. Bot. 7, 127–145 (1956).Google Scholar
  253. Sunderland, N., J. K. Heyes and R. Brown: Growth and metabolism in the shoot apex of Lupinus albus. In: The growth of leaves (F. L. Milthorpe, ed.), pp. 77–90. London: Butterworth Sci. Public. 1956.Google Scholar
  254. Sunderland, N., J. K. Heyes and R. Brown: Protein and respiration in the apical region of the shoot of Lupinus albus. J. exp. Bot. 8, 55–70 (1957).Google Scholar
  255. Sussex, I. M.: Experiments on the cause of dorsiventrality in leaves. Nature (Lond.) 167, 651–654 (1951).Google Scholar
  256. Sussex, I. M.: Regeneration of the potato shoot apex. Nature (Lond.) 171, 224 (1953).Google Scholar
  257. Sussex, I. M.: Morphogenesis in Solanum tuberosum L.: Apical structure and developmental pattern of the juvenile shoot. Phytomorphology 5, 253–273 (1955).Google Scholar
  258. Sussex, I. M.: Morphogenesis in Solanum tuberosum L.: Experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphology 5, 286–300 (1955).Google Scholar
  259. Sussex, I. M., and T. A. Steeves: Growth of excised fern leaves in sterile conditions. Nature (Lond.) 172, 624–627 (1953).Google Scholar
  260. Tbtmann, K. V.: On the nature of inhibitions caused by auxin. Amer. J. Bot. 24, 407–412 (1937).Google Scholar
  261. Tbtmann, K. V.: Auxins and the inhibition of plant growth. Biol. Rev. 14, 314–334 (1939).Google Scholar
  262. Taimann, K. V., and F. Skoog: Studies on the growth hormone of plants. Iii. The inhibiting action of the growth substance on bud development. Proc. nat. Acad. Sci. (Wash.) 19, 714–716 (1933).Google Scholar
  263. Taimann, K. V., and F. Skoog: On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc. roy. Soc. B 114, 317–339 (1934).Google Scholar
  264. Thoday, D.: Some physiological aspects of differentiation. New Phytologist 32, 274–287 (1933).Google Scholar
  265. Thoday, D.: The interpretation of plant structure. Presid. Addr. (Sect. K), Brit. Ass. Adv. Sci. 1939, 1–21. (1939)Google Scholar
  266. Thomas, M.: Plant physiology, 4th edn., with S. L. Ranson and J. A. Richardson. London: Churchill 1956.Google Scholar
  267. Thompson, W. D’Arcy: On growth and form, 1st and 2nd edns. Cambridge: Univ. Press 1917, 1942.Google Scholar
  268. Torrey, J. G.: Endogenous bud and root formation by isolated roots of Convolvulus grown in vitro. Plant Physiol. 33, 258–263 (1958).PubMedGoogle Scholar
  269. Troll, W.: Vergleichende Morphologie der höheren Pflanzen, vol. 1, pt. 1. Berlin: Borntraeger 1937.Google Scholar
  270. Tucker, S. C.: Ontogeny of the inflorescence and the flower in Drimys winteri var. chilensis. Univ. of Calif. Publ. Bot. 30, 257–336 (1959).Google Scholar
  271. Turing, A. M.: The chemical basis of morphogenesis. Phil. Trans. roy. Soc. B 237, 37–72 (1952).Google Scholar
  272. Vanfleet, D. S.: The significance of oxidation in the endodermis. Amer. J. Bot. 29, 747–755 (1942).Google Scholar
  273. Vanfleet, D. S.: The enzymatic and vitagen properties of unsaturated fats as they influence the differentiation of certain plant tissues. Amer. J. Bot. 30, 678–685 (1943).Google Scholar
  274. Vanfleet, D. S.: The distribution of peroxidase in differentiating tissues of vascular plants. Biodynamica 6, 125–140 (1947).Google Scholar
  275. Vanfleet, D. S.: Cell and tissue differentiation in relation to growth (plants). In: Dynamics of growth processes (E. J. Boell, ed.), pp. 111–129. Princeton: Univ. Press 1954.Google Scholar
  276. Vanfleet, D. S.: Analysis of the histochemical localization of peroxidase related to the differentiation of plant tissues. Canad. J. Bot. 37, 449–458 (1959).Google Scholar
  277. Vanoverbeek, J.: Growth regulating substances in plants. Ann. Rev. Biochem. 13, 631–666 (1944).Google Scholar
  278. Chting, H.: Über Theilbarkeit im Pflanzenreich und die Wirkung innerer und äußerer Kräfte auf Organbildung an Pflanzentheilen. Pflügers Arch. ges. Physiol. 15, 153–190 (1877).Google Scholar
  279. Voeller, B. R., and E. G. Cutter: Experimental and analytical studies of pteridophytes. Xxxviii. Some observations on spiral and bijugate phyllotaxis in Dryopteris aristata Druce. Ann. Bot., N. S. 23, 391–396 (1959).Google Scholar
  280. Vries, H. DE: Die Mutationstheorie, Vol. 2. 1903. Engl. translat.: The mutation theory, Vol. 2. Chicago: Open Court Publ. Comp. 1910.Google Scholar
  281. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. I. Preliminary observations on the development of buds on the rhizome of the ostrich fern (Matteuccia struthiopteris Tod.). Ann. Bot., N. S. 7, 171–184 (1943).Google Scholar
  282. Wardlaw, C. W.: Experimental observations on the development of buds in Onoclea sensibilis and in species of Dryopteris. Ann. Bot., N. S. 7, 357–377 (1943).Google Scholar
  283. Wardlaw, C. W.: Stelar morphology: the initial differentiation of vascular tissue. Ann. Bot., N. S. 8, 173–188 (1944).Google Scholar
  284. Wardlaw, C. W.: Stelar morphology: experimental observations on the relation between leaf development and stelar morphology in species of Dryopteris and Onoclea. Ann. Bot., N. S. 8, 387–399 (1944).Google Scholar
  285. Wardlaw, C. W.: Stelar morphology: the development of the vascular system. Ann. Bot., N. S. 9, 217–233 (1945).Google Scholar
  286. Wardlaw, C. W.: Further observations on bud development in Matteuccia struthiopteris, Onoclea sensibilis, and species of Dryopteris. Ann. Bot., N. S. 10, 117–132 (1946).Google Scholar
  287. Wardlaw, C. W.: Experimental investigations of the shoot apex of Dryopteris aristata. Phil. Trans. roy. Soc. B 232, 343–384 (1947).Google Scholar
  288. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. XI. Preliminary observations on tensile stress as a factor in fern phyllotaxis. Ann. Bot., N. S. 12, 97–109 (1948).Google Scholar
  289. Wardlaw, C. W.: Further experimental investigations of the shoot apex of Dryopteris aristata Druce. Phil. Trans. roy. Soc. B 233, 415–451 (1949).Google Scholar
  290. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Xiv. Leaf formation and phyllotaxis in Dryopteris aristata Druce. Ann Bot., N. S. 13, 163–198 (1949).Google Scholar
  291. Wardlaw, C. W.: Experiments on organogenesis in ferns. Growth 13, Suppl., 93–131 (1949).Google Scholar
  292. Wardlaw, C. W.: The comparative investigation of apices of vascular plants by experimental methods. Phil. Trans. roy. Soc. B 234, 583–604 (1950).Google Scholar
  293. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Xvi. The induction of leaves and buds in Dryopteris aristata Druce. Ann. Bot., N. S. 14, 435 455 (1950).Google Scholar
  294. Wardlaw, C. W.: Phylogeny and morphogenesis. London: Macmillan 1952.Google Scholar
  295. Wardlaw, C. W.: Comparative observations on the shoot apices of vascular plants. New Phytologist 52, 195–208 (1953).Google Scholar
  296. Wardlaw, C. W.: Action of tri-iodobenzoic and trichlorobenzoic acids in morpho-genesis. New Phytologist 52, 210–217 (1953).Google Scholar
  297. Wardlaw, C. W.: A commentary on Turing’S diffusion reaction theory of morphogenesis. New Phytologist 52, 40–47 (1953).Google Scholar
  298. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Xxvi. Ophioglossum vulgatum: comparative morpho-genesis in embryos and induced buds. Ann. Bot., N. S. 18, 397–406 (1954).Google Scholar
  299. Wardlaw, C. W.: Evidence relating to the diffusion-reaction theory of morphogenesis. New Phytologist 54, 39–48 (1955).Google Scholar
  300. Wardlaw, C. W.: The chemical concept of organization in plants. New Phytologist 54, 302–310 (1955).Google Scholar
  301. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Xxviii. Leaf symmetry and orientation in ferns. Ann. Bot., N. S. 19, 389–399 (1955).Google Scholar
  302. Wardlaw, C. W.: Responses of a fern apex to direct chemical treatments. Nature (Lond.) 176, 1098–1100 (1955).Google Scholar
  303. Wardlaw, C. W.: A note on the effect of isolating the fern shoot apex by shallow incisions. Phytomorphology 6, 55–63 (1956).Google Scholar
  304. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Xxxii Further investigations on the effect of undercutting fern leaf primordia. Ann. Bot., N. S. 20, 121–132 (1956).Google Scholar
  305. Wardlaw, C. W.: On the shoot apex of the Bird’s Nest fern, Asplenium nidus L. Ann. Bot., N. S. 20, 363–373 (1956).Google Scholar
  306. Wardlaw, C. W.: Generalizations on the apical meristem. Nature (Lond.) 178, 1427–1429 (1956).Google Scholar
  307. Wardlaw, C. W.: The inception of leaf primordia. In: The growth of leaves (F. L. Miltrorpe, ed.), pp. 53–64. London: Butterworth Scient Publns. 1956.Google Scholar
  308. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Xxxv Effects of direct applications of various substances to the shoot apex of Dryopteris austriaca (D. aristat). Ann Bot., N. S. 21, 85–120 (1957).Google Scholar
  309. Wardlaw, C. W.: A note on the inception of microphylls and macrophylls. Ann. Bot. 21, 427–437 (1957).Google Scholar
  310. Wardlaw, C. W.: On the organization and reactivity of the shoot apex in vascular plants. Amer. J. Bot. 44, 176–185 (1957).Google Scholar
  311. Wardlaw, C. W.: The reactivity of the apical meristem as ascertained by cytological and other techniques. New Phytologist 56, 221–229 (1957).Google Scholar
  312. Wardlaw, C. W.: The floral meristem as a reaction system. Proc. roy. Soc. Edinb. 66, 394–408 (1957).Google Scholar
  313. Wardlaw, C. W.: The inception of shoot organization. Phytomorph. 10, 107–110 (1960).Google Scholar
  314. Wardlaw, C. W.: Apical organization and differential growth in ferns. In: Symp. on “Growth and development in archegoniate plants”. Proc. Linn. Soc. (1962, in press).Google Scholar
  315. Wardlaw, C. W., and E. G. Cutter: Experimental and analytical studies of pteridophytes. Xxx. Further investigations of the formation of buds and leaves in Dryopteris aristata Druce. Ann. Bot., N. S. 19, 515–526 (1955).Google Scholar
  316. Wardlaw, C. W., and E. G. Cutter: The effect of shallow incisions on organogenesis in Dryopteris aristata Druce. Ann Bot., N. S. 20, 39–56 (1956).Google Scholar
  317. Wardlaw, C. W., and G. C. Mitra: Responses of a fern apex to gibberellic acid, kinetin and a-naphthaleneacetic acid. Nature (Lond.) 181, 400–401 (1957).Google Scholar
  318. Wardlaw, C. W., and G. C. Mitra: The response of the shoot apex of Dryopteris aristata (Vili.) Druce and of “detached” meristems of Onoclea sensibilis L. and Matteucia struthiopteris Tod. to physiologically-active substances. Bull. Bot. Soc. Bengal 12, 63–84 (1958).Google Scholar
  319. Wareing, P. F.: Interaction between indole-acetic acid and gibberellic acid in cambial activity. Nature (Loud.) 181, 1744–1745 (1958).Google Scholar
  320. Wareing, P. F., and D. L. Roberts: Photoperiodic control of cambial activity in Robinia pseudoacacia L. New Phytologist 55, 289–388 (1956).Google Scholar
  321. Warmke, H. E., and G. L. Warmke: The role of auxin in differentiation of root and shoot primordia from root cuttings of Taraxacum and Cichorium. Amer. J. Bot. 37, 272–280 (1950).Google Scholar
  322. Weisse, A.: Untersuchungen über die Blattstellung an Cacteen und anderen Stamm-Succulenten. Jb. wiss. Bot. 34, 343–423 (1904).Google Scholar
  323. Went, F. W.: Allgemeine Betrachtungen über das Auxinproblem. Biol. Zbl. 56, 449–463 (1936).Google Scholar
  324. Went, F. W.: Specific factors other than auxin affecting growth and root formation. Plant Physiol. 13, 55–80 (1938).PubMedGoogle Scholar
  325. Went, F. W.: Transplantation experiments with peas. Amer. J. Bot. 25, 44–55 (1938).Google Scholar
  326. Went, F. W.: Bot. Gaz. 104, 460–474 (1943).Google Scholar
  327. Went, F. W.: The development of stems and leaves. In: Plant growth substances (F. Skoog, ed.), pp. 287–297. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  328. Went, F. W., and D. M. Bonner: Growth factors controlling tomato stem growth in darkness. Arch. Biochem. 1, 439–452 (1943).Google Scholar
  329. Went, F. W., and K. V. Tmmann: Phytohormones. New York: Macmillan 1937.Google Scholar
  330. Wershing, H. F., and I. W. Bauey: Seedlings as experimental material in the study of “redwood” in conifers. J. Forestry 40, 411–414 (1942).Google Scholar
  331. Wetmore, R. H.: Leaf-stem relationships in the vascular plants. Torreya 43, 16–28 (1943).Google Scholar
  332. Wetmore, R. H.: Tissue and organ culture as a tool for studies in development. Proc. 7th internat. Bot. Congr. (Stockholm 1950 ), pp. 369–370 (1953).Google Scholar
  333. Wetmore, R. H.: The use of “in vitro” cultures in the investigation of growth and differentiation in vascular plants. Brookhaven Symp. Biol. 6, 22–40 (1954).Google Scholar
  334. Wetmore, R. H.: Differentiation of xylem in plants. Science 121, 626–627 (1955).Google Scholar
  335. Wetmore, R. H.: Growth and development in the shoot system of plants. In: Cellular mechanisms in differentiation and growth, pp. 173–190. Princeton: Univ. Press 1956.Google Scholar
  336. Wetmore, R. H.: Morphogenesis in plants — a new approach. American Scientist 47, 326–340 (1959).Google Scholar
  337. Wetmore, R. H., and G. Morel: Growth and development of Adiantum pedatum L. on nutrient agar. Amer. J. Bot. 36, 805–806 (1949).Google Scholar
  338. Wetmore, R. H., and G. Morel: Sur la culture du gametophyte de Selaginella. C. R. Acad. Sci. (Paris) 233, 430–431 (1951).Google Scholar
  339. Wetmore, R. H., and C. Pratt: The growth and auxin relations of leaves of maidenhair fern, Adiantum pedatum L. (Abstr.) Amer. J. Bot. 36, 806 (1949).Google Scholar
  340. Wetmore, R. H., and S. Sorokin: On the differentiation of xylem. J. Arnold Arboret. 36, 305–317 (1955).Google Scholar
  341. Wetmore, R. H., and C. W. Wardlaw: Experimental morphogenesis in vascular plants. Ann. Rev. Plant Physiol. 2, 269–292 (1951).Google Scholar
  342. Wetter, R., C. Wetter: Studien über das Erstarkungswachstum und das primäre Dickenwachstum bei leptosporangiaten Farnen. Flora (Jena) 141, 598–631 (1954).Google Scholar
  343. White, P. R.: Controlled differentiation in a plant tissue culture. Bull. Torrey bot. Club 66, 507–513 (1939).Google Scholar
  344. Williams, 5: Correlation phenomena and hormones in Selaginella. Nature (Lond.) 139, 966 (1937).Google Scholar
  345. Wirth, K.: Beeinflussung von Stoffleitung und Organneubildung an Blattstücken. Naturwissenschaften 46, 236 (1959).Google Scholar
  346. Wrrrwu.LE, J. W., and J. W. Mitchell: Six new plant growth inhibiting compounds. Bot. Gaz. 111, 491–494 (1950).Google Scholar
  347. Witkus, E. R., and C. A. Berger: Induced vascular differentiation. Bull. Torrey bot. Club 77, 301–305 (1950).Google Scholar
  348. Young, B. S.: The effects of leaf primordia on differentiation in the stem. New Phytologist 53, 445–460 (1954).Google Scholar
  349. Zimmerman, P. W., and A. E. Hitchcock: Adventitious shoots and roots induced by natural influences and synthetic growth substances. Contrib. Boyce Thompson Inst. 11, 127–141 (1940).Google Scholar
  350. Zimmermann, W. A.: Histologische Studien am Vegetationspunkt von Hypericum uralum. Jb. wiss. Bot. 68, 289–344 (1928).Google Scholar
  351. Zimmermann, W. A.: Untersuchungen über die räumliche und zeitliche Verteilung des Wuchsstoffes bei Bäumen. Z. Bot. 30, 209–252 (1936).Google Scholar
  352. Antevs, E.: The Big tree as a climatic measure. Carnegie Inst. Wash. Monogr. No 352, pp. 115–153 (1925).Google Scholar
  353. Avery, G. S., JR., P. R. Burkholder and H. B. Creighton: Production and distribution of growth hormone in shoots of Aesculus and Malus, and its probable role in stimulating cambial activity. Amer. J. Bot. 24, 51–58 (1937).Google Scholar
  354. Bailey, I. W.: The “spruce budworm” biocoenose. I. Frost rings as indicators of the chronology of specific biological events. Bot. Gaz. 80, 93–101 (1925).Google Scholar
  355. Bailey, I. W.: The cambium and its derivative tissues. V. A reconnaissance of the vacuome in living cells. Z. Zellforsch. 10, 651–682 (1930).Google Scholar
  356. Bailey, I. W.: Contributions to plant anatomy. Waltham, Mass.: Chronica bot. 1954.Google Scholar
  357. Bannan, M. W.: Girth increase in white cedar stems of irregular form. Canad. J. Bot. 35, 425–434 (1957).Google Scholar
  358. Bailey, I. W.: The relative frequence of the different types of anticlinal divisions in Conifer cambium. Canad. J. Bot. 35, 875–884 (1957).Google Scholar
  359. Bary, A. DE: Vergleichende Anatomie der Vegetationsorgane. Leipzig: Engelmann 1877.Google Scholar
  360. Beal, J. M.: Histological responses to growth-regulating substances. In: Plant growth substances (F. Skoog, ed.), pp. 155–166. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  361. Bernstein, Z., and A. Fahn: The effect of annual and biannual pruning on the seasonal changes in xylem formation in the grapevine. Ann Bot., N. S. 24, 159–171 (1960).Google Scholar
  362. Besset, J.: Sur la possibilité d’utiliser l’hypocotyle de Radis comme test de substances de division. C. R. Acad. Sci. (Paris) 236, 1068–1070 (1953).Google Scholar
  363. Besset, J.: Sur la prolifération cellulaire des hypo-cotyles de Radis traités par des extraits de tige de Vigne-vierge et de tubercule de Topinambour. C. R. Acad. Sci. (Paris) 237, 198–200 (1953).Google Scholar
  364. Besset, J.: Sur la mise au point d’un test de substance de division: le test Radis. C. R. Acad. Sci. (Paris) 238, 1153–1155 (1954).Google Scholar
  365. Beyer, J. J.: Die Vermehrung der radialen Reihen im Cambium. Rec. Tray. bot. néerl. 24, 631–786 (1927).Google Scholar
  366. Blum, G.: Beiträge zur Kenntnis der Saugkraft des Kambiums von Laubhölzern. Protoplasma 46, 90–103 (1956).Google Scholar
  367. Bortrwick, H. A., K. C. Hamner and M. W. Parker: Histological and microchemical studies of the reaction of tomato plants to indoleacetic acid. Bot. Gaz. 98, 491–519 (1937).Google Scholar
  368. Bosshard, H. H.: Elektronenmikroskopische Untersuchungen im Holz von Fraxinus excelsior L. Ber. schweiz. bot. Ges. 62, 482–508 (1952).Google Scholar
  369. Bradley, M. V., and J. C. Crane: Gibberellin-stimulated cambial activity in stems of apricot spur shoots. Science 126, 972–973 (1957).PubMedGoogle Scholar
  370. Braun, H. J.: Die normalen Verwachsungsvorgänge nach Pfropfung von Laubblättern. II. Die Verfahren des seitlichen Anplattens und der Kopulation. Z. Bot. 47, 145–166 (1959).Google Scholar
  371. Brown, A. B.: Cambial activity, root habit and sucker shoot development in two species of poplar. New Phytologist 34, 163–179 (1935).Google Scholar
  372. Brown, A. B.: Cambial activity in poplar with particular reference to polarity phenomena. Canad. J. Res. C 14, 74–88 (1936).Google Scholar
  373. Brown, A. B.: Activity of the vascular cambium in relation to wounding in the balsam poplar, Populus balsamifera L. Canad. J. Res. C 15, 7–31 (1937).Google Scholar
  374. Brown, A. B., and R. G. H. Cormack: Stimulation of cambial activity, locally in the region of application and at a distance in relation to a wound, by means of heteroauxin. Canad. J. Res. C 15, 433–441 (1937).Google Scholar
  375. Btisgen, M.: Waldbäume, 3rd edn. Jena: Fischer 1927.Google Scholar
  376. Buvat, R.: Variations saisonnières du chondriome dans le cambium de Robinia pseudoacacia. C. R. Acad. Sci. (Paris) 243, 1908–1911 (1956).Google Scholar
  377. Camus, G.: Recherches sur le rôle des bourgeons dans les phénomènes de morphogénèse. Rev. Cyt. et Biol. végét. 11, 1–199 (1949).Google Scholar
  378. Catesson, A. M.: Variations saisonnières du chondriome dans le cambium d’Acer pseudoplatanus. C. R. Acad. Sci. (Paris) 252, 2588–2590 (1961).Google Scholar
  379. Chalk, L.: The growth of the wood of ash (Fraxinus excelsior L. and F. oxyacarpa Willd.) and douglas fir (Pseudotsuga douglasii Carr.). Quart. J. Forest. 21, 102–123 (1927).Google Scholar
  380. Chalk, L.: The formation of spring and summer wood in ash and Douglas fir. Oxford Forest. Mem 10, 1–44 (1930).Google Scholar
  381. Ciiowdhury, K. A.: The formation of growth rings in Indian trees. I—Iii. Ind. For. Records (N. S.), Utilization 2, No 1 (1938); Not (1939); No 3 (1940).Google Scholar
  382. Ciiowdhury, K. A.: Extension and radial growth in tropical perennial plants. Proc. Delhi Univ. Seminar 1957, pp. 138–139 (1958).Google Scholar
  383. Crowdkury, K. A., and K. N. Tandan: Extension and radial growth in trees. Nature (Lond.) 165, 732–733 (1950).Google Scholar
  384. Ciampi, C.: Evoluzione della cerchia legnosa in Quercus suber L. Nuovo Giorn. bot. ital.. N.S. 58, 293–304 (1951).Google Scholar
  385. Coile, T. S.: The effect of rainfall and temperature on the annual radial growth of pine in the southern United States. Ecol. Monogr. 6, 533–562 (1936).Google Scholar
  386. Coster, C.: Zur Anatomie und Physiologie der Zuwachszonen- und Jahresringbildung in den Tropen. Ann Jard. Bot. Buitenzorg 37, 49–160 (1927); 38, 1–114 (1928).Google Scholar
  387. Dagys, J.: Die Hefewucbsstoffe in Knospen und Blättern. Protoplasma 26, 20 11 (1936).Google Scholar
  388. David, R.: Les modifications histologiques provoquées dans les tiges de Erica cinerea L. et Erica tetralix L. par les esters de butylglycol de l’acide 2.4-dichlorophénoxyacétique et de l’acide 2.4.5-trichlorophénoxyacétique. C. R. Soc. Biol. (Paris) 148, 1814–1816 (1954).Google Scholar
  389. Elliott, J. H.: Growth and differentiation in the vascular system during leaf development in the dicotyledon. Proc. Leeds phil. lit. Soc. 2, 440–450 (1933).Google Scholar
  390. Elliott, J. H.: The development of the vascular system in evergreen leaves more than one year old. Ann. Bot., N. S. 1, 107–128 (1937).Google Scholar
  391. Esau, K.: Plant anatomy. New York: Wiley; London: Chapman.and Hall 1953.Google Scholar
  392. Evert, F.: Some aspects of cambial development in Pyrus communia. Amer. J. Bot. 48, 479–488 (1961).Google Scholar
  393. Fann, A.: Annual wood ring development in maquis trees of Israel. Palest. J. Bot. 6, 1–26 0953 ).Google Scholar
  394. Elliott, J. H.: The development of the growth ring in wood of Quercus infectoria and Pistacia.lentiacus in the hill region of Israel. Trop. Woods 101, 52–59 (1955).Google Scholar
  395. Elliott, J. H.: Xylem structure and annual rhythm of development in trees and shrubs of the desert. I. Tamarix aphylla, T. jordanis var. negevensis, T. gallica var. marismortui. Trop. Woods 109, 81–94 (1958).Google Scholar
  396. Elliott, J. H.: Acacia tortilis and A. raddiana. Bull. Res. Conne. Israel 7D, 23–28 (1959).Google Scholar
  397. Elliott, J. H.: Eucalyptus camaldulensis and Acacia cyanophylla. Bull. Res. Comm Israel 7D, 122–131 (1959).Google Scholar
  398. Elliott, J. H.: Annual rhythm of xylem development in trees and shrubs of Israel. (Abstr.) Proc. 9th internat. Bot. Congr. 2, 110 (1959).Google Scholar
  399. Elliott, J. H.: Xylem structure and the annual rhythm of cambial activity in woody species. News Bull. I.A.W.A. 1962, 2–6.Google Scholar
  400. Flscmicn, O.: liber den Einfluß von ß-Indolylessigsäure auf die Blattbewegungen und die Adventivwurzelibildung von Coleus. Planta (Berl.) 24, 552–583 (1935).Google Scholar
  401. Freywyssling, A.: Die pflanzliche Zellwand. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  402. Funke, H.: Über den Nachweis kleiner Wuchsstoffmengen. Jb. wiss. Bot. 88, 373–388 (1939).Google Scholar
  403. Gerola, F. M., e M. Barbesino: L’attività deidrogenasica del cambio in differenti periodi del anno in Corylus, Populus e Prunus. Nuovo Giorn. bot. ital., N.S. 63, 37–45 (1956).Google Scholar
  404. Gill, N.: The relation of flowering and cambial activity. Observations on vascular differentiation and dry-weight changes in the catkins of some early flowering catkin-bearing dicotyledons. New Phytologist 32, 1–12 (1933).Google Scholar
  405. Glock, W. S.: Growth rings and climate. Bot. Rev. 7, 649–713 (1941).Google Scholar
  406. Glock, W. S.: Tree growth. II. Growth rings and climate. Bot. Rev. 21, 73–188 (1955).Google Scholar
  407. Gouwentak, C. A.: Kambiumtätigkeit und Wuchsstoff. I. Meded. Landbouwhogesch. Wageningen 40, No 3 (1936).Google Scholar
  408. Gouwentak, C. A.: Cambial activity as dependent on the presence of growth hormone and the non-resting condition of stems. Proc. kon. ned. Akad. Wet. 54, 654 663 (1941).Google Scholar
  409. Gouwentak, C. A., u. G. Hellinga: Beobachtungen über Wurzelbildung Meded. Landbouwhogesch. Wageningen 39, No 6 (1935).Google Scholar
  410. Gouwentak, C. A., u. A. L. Maas: Kambiumtätigkeit und Wuchsstoff. II. Meded. Landbouwhogesch. Wageningen 44, No 1 (1940).Google Scholar
  411. Haberlandt, G.: Wundhormone als Erreger von Zellteilungen. Beitr. allg. Bot. 2, 1–53 (1921).Google Scholar
  412. Hamner,K. C.: Histological responses of Mirabilis Jalapa to indoleacetic acid. Bot. Gaz. 99, 912–953 (1938).Google Scholar
  413. Hamner, K. C., and E. J. Kraus: Histological reactions of bean plants to growth promoting substances. Bot. Gaz. 98, 735–807 (1937).Google Scholar
  414. Hanson, H. C., and B. Brenke: Seasonal development of growth layers in Fraxinus campestris and Acer saccharinum. Bot. Gaz. 82, 286–305 (1926).Google Scholar
  415. Harris, H. A.: Frost ring formation in some winter-injured deciduous trees and shrubs. Amer. J. Bot. 21, 485–498 (1934).Google Scholar
  416. Harrison, B. F.: Histological responses of Iresine lindenii to indoleacetic acid. Bot. Gaz. 99, 301–338 (1937).Google Scholar
  417. Hartig, R.: Doppelringe als Folge von Spätfrost. Forstl.-naturwiss. Z. 4, 1–8 (1895).Google Scholar
  418. Hartig, TH.: Über die Entwicklung des Jahrringes der Holzpflanzen. Bot. Ztg 11, 553–560, 569–579 (1853).Google Scholar
  419. Hellinga, G.: Heteroauxin und Polarität, morphologische und elektrische, bei Coleus-Stecklingen. Meded. Landbouwhogesch. Wageningen 41, No 1 (1937).Google Scholar
  420. Hemenway, A. F.: Late frost injury to some trees in Central Kentucky. Amer. J. Bot. 13, 364–366 (1926).Google Scholar
  421. Hillis, W. E.: Leucoanthocyanins as the possible precursors of extractives in woody tissues. Austral. J. biol. Sci. 9, 263–280 (1956).Google Scholar
  422. Hillis, W. E.: Shikimic acid in the leaves of Eucalyptus sieberiana F. Muell. J. exp. Bot. 10, 87–89 (1959).Google Scholar
  423. Holdheide, W.: Anatomie mitteleuropäischer Gehölzrinden (mit mikrophotographischem Atlas). In Freunds Handbuch der Mikroskopie in der Technik, sect. V, pt. 1, pp. 195–367. Frankfurt a. M.: Umschau-Verl. 1951.Google Scholar
  424. Huber, B.: Die physiologische Bedeutung der Ring- und Zerstreutporigkeit. Ber. dtsch. bot. Ges. 53, 711–720 (1935).Google Scholar
  425. Huber, B.: Physiologie der Rindenschälung bei Fichte und Eiche. Forstwiss. Zbl. 67, 129–164 (1948).Google Scholar
  426. Huber, B.: Tree Physiology. Ann. Rev. Plant Physiol. 3, 333–346 (1952).Google Scholar
  427. Huber, B., u. W. v. Jazewitsch: Zur Entwicklungsphysiologie der Prunus-Rinde. Acta bot. neerl. 4, 385–388 (1955).Google Scholar
  428. Huber, B., E. Schmidt u. H. Jahnel: Untersuchungen über den Assimilationsstrom. I. Tharandter Forstl. Jb. 88, 1017–1050 (1937).Google Scholar
  429. Husain, A., and W. C. Cooper: Cambiai activity in grapefruit trees as influenced by winter irrigation. Amer. J. Bot. 45, 517–519 (1958).Google Scholar
  430. Jacobs, W. P.: The role of auxin in differentiation of xylem around a wound. Amer. J. Bot. 39, 301–309 (1952).Google Scholar
  431. Jacobs, W. P., and I. B. Morrow: A quantitative study of xylem development in the vegetative shoot apex of Coleus. Amer. J. Bot. 44, 823–842 (1957).Google Scholar
  432. Jacquiot, C.: La culture des tissus végétaux appliquée aux problèmes de la Physiologie de l’arbre. Nature (Paris) 1956, No 3254, 209–212.Google Scholar
  433. Jacquiot, C.: Sur l’existence de facteurs d’organisation des tissus secondaires chez certains arbres forestiers. C. R. Acad. Sci. (Paris) 244, 1246–1248 (1957).Google Scholar
  434. Janssonius, H. H.: De tangentiale groei van eenige pharmaceutische basten. Doct. dissert, Groningen 1918.Google Scholar
  435. Jazewitsch, W. v.: Jahrringchronologie der Spessart-Buchen. Forstwiss. Zbl. 72, 234–247 (1953).Google Scholar
  436. Jost, L.: Über Dickenwachstum und Jahresringbildung. Bot. Ztg 49, 485–495, 501–510, 525–531, 541–547, 557–563, 573–579, 589–596, 605–611, 625–630 (1891).Google Scholar
  437. Jost, L.: Über Beziehungen zwischen der Blattentwicklung und der Gefäßbildung in der Pflanze. Bot. Ztg 51, 89–138 (1893).Google Scholar
  438. Jost, L.: Periodizität. In: W. Benecke u. L. Jost, Pflanzenphysiologie, vol. 2, pp. 208–209. Jena: Fischer 1923.Google Scholar
  439. Jost, L.: Zur Physiologie der Gefäßbildung. Z. Bot. 35, 114–150 (1939).Google Scholar
  440. Jost, L.: Über Gefäßbrücken. Z. Bot. 38, 161–215 (1942).Google Scholar
  441. Kastens, E.: Beiträge zur Kenntnis der Funktion der Siebröhren. Mitt. Inst. allg. Bot. Hamburg 6, Nr 1, 33–70 (1924). Cited after Coster 1927, 1928.Google Scholar
  442. Kato, Y.: Responses of plant cells to gibberellin. Bot. Gaz. 117, 16–24 (1955).Google Scholar
  443. Keen, F. P.: Climatic cycles in eastern Oregon as indicated by tree rings. Monthly Weather Rev. 65, 175–188 (1937).Google Scholar
  444. Kiermayer, O.: Gesteigerte Xylementwicklung bei Solanum nigrum durch den Einfluß von Gibberellinsäure Ber. dtsch. bot. Ges. 72, 343–348 (1959).Google Scholar
  445. Klebs, G.: Über das Treiben der einheimischen Bäume, speziell der Buche. Abh. Heidelberg. Akad. Wiss. 1914, No. 2.Google Scholar
  446. Kraus, E. J., N. A. Brown and K. C. Hamner: Histological reactions of bean plants to indoleacetic acid. Bot. Gaz. 98, 370–420 (1936).Google Scholar
  447. Xning, H.: Untersuchungen über die Wirkstoffregulation der Kambiumtätigkeit. Planta (Berl.) 38, 36 M (1950).Google Scholar
  448. Ktnning, H., u. H. SÖDing:.Über die Wirkstoffregulation der Kambiumtätigkeit. Z. Naturforsch. 4b, 55 (1949).Google Scholar
  449. Larson, P. R.: Discontinuous growth rings in suppressed slash pine. Trop. Woods 104, 80–99 (1956).Google Scholar
  450. Leroux, R.: Recherches sur les modifications anatomiques de trois espèces d’osiers (Salix viminalis L., Salix purpurea L., Salix fragtilis L.) provoquées par l’acide naphthalèneacétique. C. R. Soc. Biol. (Paris) 148, 284–286 (1954).Google Scholar
  451. Leroux, R.: Recherches sur les modifications anatomiques provoquées chez le bleuet (Centaurea cyanus L.) par l’acide 2.4-dichlorophénoxyacétique. C. R. Soc. Biol. (Paris) 149, 922–925 (1955).Google Scholar
  452. Leroux, R.: Recherches sur les modifications morphologiques et histologiques provoquées chez une nigelle (Nigella dama. cena L.) par l’acide 2.4-dichlorophénoxyacétique (2.4-). Rev. gén. Bot. 64, 299–306 (1957).Google Scholar
  453. Lobzhanidze, E. D.: Initial stages in the formation of annual rings of wood. Dokl. Akad. Nauk Sssr. (Engl. transi., Bot. Sci. Sect.) 121, 179–181 (1958).Google Scholar
  454. Luecke, R. W., C. L. Hamner and H. M. Sell: Effect of 2.4-dichlorophenoxyacetic acid on the content of thiamine, riboflavin, nicotinic acid, pantothenic acid and carotene in stems and leaves of red kidney bean plants. Plant Physiol. 24, 546–548 (1949).PubMedGoogle Scholar
  455. Macdougal, D. T.: Growth in trees. Carnegie Inst. Wash. Monogr. No 307 (1921).Google Scholar
  456. Marshall, R C: Trees of Trinidad and Tobago. Port of Spain ( Trinidad ): Gov. Print. Off. 1934.Google Scholar
  457. Messebi, A.: L’evoluzione della cerchia legnosa in Pinus halepensis Mill. in Bari dal Luglio 1946 al Luglio 1947. Nuovo Giorn. bot. ital., N.S. 55, 111–132 (1948).Google Scholar
  458. Mitchell, J. W. Effect of naphthalene acetic acid and naphthalene acetamide on nitrogenous and carbohydrate constituents of bean plants. Bot. Gaz. 101, 688–699 (1940).Google Scholar
  459. Mollart, D. L.: The control of cambial activity in Robinia p. eulacacia. Dissert. (M. Sc.), Univ. of Manchester 1954. Cited after Wareing 1956.Google Scholar
  460. Moureau, J.: Rhizogénèse chez Coleus, sous l’influence de l hétéroauxine. Bull. Soc. roy. Belg. 73, 142–199 (1940).Google Scholar
  461. Necesaní, V.: Effect of ß-indoleacetic acid on the formation of reaction wood. Phyton (Vicente López, Argent.) 11, 117–127 (1958).Google Scholar
  462. Oppenheimer, H. R.: Cambial wood production in stems of Pinus halepensis. Palest. J. Bot., Rehovot Ser. 5, 22–51 (1945).Google Scholar
  463. Paul, B. H., and R. O. Marts: Controlling the proportion of summerwood in longleaf pine. U. S. Dept. of Agric. For. Serv. For. Prod. Lab. (Madison, Wis., Usa.), Publ. No. 1988 (1954).Google Scholar
  464. Priestley, J. H.: Studies in the physiology of cambial activity. Iii. The seasonal activity of the cambium. New Phytologist 29, 316–355 (1930).Google Scholar
  465. Priestley, J. H., and L. I. Scott: A note upon summer wood production in the tree. Proc. Leeds phil. lit. Soc., Sci. Sect. 3, 235–248 (1936).Google Scholar
  466. Priestley, J. H., L. I. Scott and M. E. Malins: A new method of studying cambial activity. Proc. Leeds phil. lit. Soc., Sci. Sect. 2, 365–374 (1933).Google Scholar
  467. Priestley, J. H., L. I. Scott and M. E. Malins: Vessel development in the Angiosperm. Proc. Leeds phil. lit. Soc., Sci. Sect. 3, 42–54 (1935).Google Scholar
  468. Raadts, E.: Über den Einfluß der Askorbinsäure auf die Auxinaktivierung. Planta (Berl.) 36, 103–130 (1948).Google Scholar
  469. Raadts, E., u. H. SÖDing: Über den Einfluß der Askorbinsäure auf die Auxinaktivierung. Naturwiss. 34, 344–345 (1947).Google Scholar
  470. Rehm, S.: Zur Entwicklungsphysiologie der Gefäße und des trachealen Systems. Planta (Berl.) 26, 255–274 (1936).Google Scholar
  471. Reinders, E.: Handleiding bij de Plantenanatomie. Wageningen: Landbouwhogeschool. 1st edn. 1931, 5th edn. 1961.Google Scholar
  472. Reindersgouwentak, C. A.: Cambiumwerkzaamheid en groeistof. Vakbl. v. Biol. 29, 9–17 (1949).Google Scholar
  473. Reindersgouwentak, C. A.: Non omnia possumus omnes. Inaugural address. Wageningen: Veenman 1957.Google Scholar
  474. Reindersgouwenta, C. A., and F. Bing: Action de l’acide a-naphtylacétique contre la chute des fleurs et des fruits de la tomate et son influence sur la couche séparatrice des pédicelles. Proc. kon. ned. Akad. Wet. 51, 1183–1194 (1948).Google Scholar
  475. Reindersgouwentab:, C. A., and J. H. Vanderveen: Cambial activity in Populus in connection with flowering and growth hormone. Proc. kon. ned. Akad. Wet. C 56, 194–201 (1953).Google Scholar
  476. Rhoads, A. S.: The formation and pathological anatomy of frost rings in conifers injured by late frosts. U. S. Dept. of Agric. Bull. No. 1131 (1923).Google Scholar
  477. Richards, P. W.: The tropical rain forest. Cambridge: Univ. Press 1952.Google Scholar
  478. Roberts, R. H.: Relation of composition to growth and fruitfulness of young apple trees as affected by girdling, shading and photoperiod. Plant Physiol. 2, 273–286 (1927).PubMedGoogle Scholar
  479. Roberts, R. H., and B. E. Struckmeyer: Anatomical and histological changes in relation to vernalization and photoperiodism. In: Vernalization and photoperiodism (A E Murneek, and R. O. Whyte, eds.), pp. 91–100. Waltham, Mass.: Chronica bot. 1948.Google Scholar
  480. Ruhland, W., u. K. Ramshorn: Aerobe Gärung in aktiven pflanzlichen Meristemen. Planta (Berl.) 28, 471–514 (1938).Google Scholar
  481. RunLand, W., u. H. Ullrich: Aerobe Gärung in wachsenden Pflanzengeweben. Ber. sächs. Akad. Wiss., math.-physik. Kl. 88, 1–20 (1936).Google Scholar
  482. Sachs, R. M., C. F. Bretz and A. Lang: Shoot histogenesis: the early effects of gibberellin upon stem elongation in two rosette plants. Amer. J. Bot. 46, 376–384 (1959).Google Scholar
  483. Sachs, R. M., and A. Lang: Effect of gibberellin on cell division in Hyoscyamus. Science 125, 1144–1145 (1957).PubMedGoogle Scholar
  484. Simon, S.: Studien über die Periodizität der Lebensprozesse der in dauernd feuchten Tropengebieten heimischen Bäume. Jb. wiss. Bot. 54, 71–187 (1914).Google Scholar
  485. Snow, R.: The nature of the cambial stimulus. New Phytologist 32, 288–296 (1933).Google Scholar
  486. Snow, R.: Activation of cambial growth by pure hormones. New Phytologist 34, 347–360 (1935).Google Scholar
  487. Ding, H.: Über den Einfluß von Wuchsstoff auf das Dickenwachstum der Bäume. Ber. dtsch. bot. Ges. 54, 291–304 (1936).Google Scholar
  488. Snow, R.: Wuchsstoff und Kambiumtätigkeit der Bäume. Jb. wiss. Bot. 84, 639–670 (1937).Google Scholar
  489. Snow, R.: Die Rolle des Auxins in der höheren Pflanze. Ein zusammenfassender Bericht. Z. Bot. 32, 497–521 (1938).Google Scholar
  490. Snow, R.: Weitere Untersuchungen über die Wuchsstoffregulation der Kambiumtätigkeit. Z. Bot. 36, 113–141 (1940).Google Scholar
  491. Snow, R.: Die Wuchsstofflehre. Stuttgart: Thieme 1952.Google Scholar
  492. Snow, R.: Die Wuchsstoffe und ihre Bedeutung im Leben der höheren Pflanze. Ber. dtsch. bot. Ges. 66, 383–390 (1953).Google Scholar
  493. Ding, H., u. H. Funke: Über die Förderung der Pflanzenentwicklung durch Hefeauszüge. Angew. Bot. 25, 378–390 (1943).Google Scholar
  494. Steinmetz, F. H., and M. T. Nilborn: A histological evaluation of low temperature injury to apple trees. Maine Agric. Exp. Stat. Bull. No. 388 (1937).Google Scholar
  495. Struckmeyer, B. E.: Structure of stems in relation to differentiation and abortion of blossom buds. Bot. Gaz. 103, 182–191 (1941).Google Scholar
  496. Struckmeyer, B. E.: Comparative effects of growth substances on stem anatomy. In: Plant growth substances (F. Skoog, ed.), pp. 167–174. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  497. Strucmeyer, B. E., and R. H. Roberts: Phloem development and flowering. Bot. Gaz. 100, 600–606 (1939).Google Scholar
  498. Strucmeyer, B. E., and R. H. Roberts: Investigations on the time of blossom induction in Wealthy apple trees. Proc. Amer. Soc. hort. Sci. 40, 113–119 (1942).Google Scholar
  499. Studhalter, R. A.: Tree growth. I. Some historical chapters. Bot. Rev. 21, 1–72 (1955).Google Scholar
  500. Thein, M. M.: Survey of anatomical and microchemical changes in the shoot of Xanthium pennsylvanicum in relation to photoperiodism. Amer. J. Bot. 44, 514–522 (1957).Google Scholar
  501. Thimann, K. V., and D. Kaufman: Cytoplasmic streaming in the cambium of white pine. In: The physiology of forest trees (K V Thimann, ed.), pp. 479–492. New York: Ronald Press 1958.Google Scholar
  502. Thorenaar, A.: Onderzoek naar bruikbare kenmerken ter identificatie van boomen naar hun bast. Wageningen: Veenman 1926.Google Scholar
  503. Ursprung, A.: Die Messung der osmotischen Zustandsgrößen pflanzlicher Zellen und Gewebe. In: Handbuch der biologischen Arbeitsmethoden (E. Abderhalden, ed.), sect. XI, vol. 4, pp. 1387–1395. Vienna, Berlin: Urban and Schwarzenberg (1939).Google Scholar
  504. Ursprung, A., G. Blum: Zwei neue Saugkraft-Meßmethoden. Jb. wiss. Bot. 72, 254–334 (1930).Google Scholar
  505. Walter, H.: Einführung in die Phytologie. Iii. Grundlagen der Pflanzenverbreitung. Pt. 1: Standortslehre. Stuttgart: Ulmer 1951.Google Scholar
  506. Wareing, P. F.: Photoperiodism in woody species. Forestry 22, 211–221 (1948).Google Scholar
  507. Wareing, P. F.: Extension and radial growth in trees. Nature (Lond.) 166, 278 (1950).Google Scholar
  508. Wareing, P. F.: Growth studies in woody species. Iii. Further photoperiodic effects in Pinus silvestris. Physiol. Plantarum (Cph.) 4, 41–56 (1951).Google Scholar
  509. Wareing, P. F.: Growth studies in woody species. IV. The initiation of cambial activity in ring-porous species. Physiol. Planta-rum (Cph.) 4, 546–562 (1951).Google Scholar
  510. Wareing, P. F.: Photoperiodism in woody plants. Ann. Rev. Plant Physiol. 7, 191–214 (1956).Google Scholar
  511. Wareing, P. F.: The physiology of cambial activity. J. Inst. Wood Sci. 1, 34–42 (1958).Google Scholar
  512. Wareing, P. F.: Interaction between indoleacetic acid and gibberellic acid in cambial activity. Nature (Lond.) 181, 1744–1745 (1958).Google Scholar
  513. Wareing, P. F., and D. L. Roberts: Photoperiodic control of cambial activity in Robinia pseudacacia L. New Phytologist 55, 356–366 (1956).Google Scholar
  514. Weber, A. PH.: L’influence des hormones cristallisées Sur la croissance de certaines espèces de levure. Doct. dissert. Sorbonne, Paris 1936.Google Scholar
  515. Went, F. W., and K. V. Thimann: Phytohormones. New York: MacMillan 1937.Google Scholar
  516. Wilton, O. C.: Correlation of cambial activity with flowering and regeneration. Bot. Gaz. 99, 854–864 (1938).Google Scholar
  517. Wilton, O. C., and R. H. Roberts: Anatomical structure of stems in relation to the production of flowers. Bot. Gaz. 98, 45–64 (1936).Google Scholar
  518. Winkler, A.: Über den Einfluß der Außenbedingungen auf die Kälteresistenz ausdauernder Gewächse. Jb. wiss. Bot. 52, 467–506 (1913).Google Scholar
  519. Wiiwer, S. H.: Growth substances in fruit setting. In: Plant growth substances (F. Skoog, ed.), pp. 365–377. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  520. Zmmmermann, W. A.: Untersuchungen über the räumliche und zeitliche Verteilung des Wuchsstoffes bei Bäumen. Z. Bot. 30, 209–252 (1936).Google Scholar
  521. Allary, S.: Rôle respectif des feuilles et de la tige dans la production d’auxine diffusible chez le Lilas C R Acad. Sci. (Paris) 254, 981–983 (1957).Google Scholar
  522. Allary, S.: Remarques sur l’inhibition des bourgeons axillaires sur la pousse herbacée des végétaux ligneux. C. R. Acad. Sci. (Paris) 255, 1071–1073 (1958).Google Scholar
  523. Allary, S.: La liberation d’auxine diffusible par les organes aériens des végétaux ligneux. C. R. Acad. Sci. (Paris) 247, 1606–1608 (1958).Google Scholar
  524. Allary, S.: Substances de croissance et dormance des bourgeons de Quercus pedunculata Ehrh. C. R. Acad. Sci. (Paris) 249, 1557–1559 (1959).Google Scholar
  525. Allary, S.: Evolution annuelle des substances inhibitrices acides des bourgeons de Quercus pedunculata Ehrh. C. R. Acad. Sci. (Paris) 250, 911–913 (1960).Google Scholar
  526. Allen, R M: Changes in acid growth substances in terminal buds of longleaf pine saplings during the breaking of winter dormancy. Physiol. Plantarum (Cph.) 13, 555–558 (1960).Google Scholar
  527. Allsopp, A.: Apical dominance in Marsilia with particular references of the effects of 3. Indolylacetic acid, 3-indolylacetonitrile and coumarin on lateral bud development. J. exp. Bot. 7, 14–24 (1956).Google Scholar
  528. Avery, G. S., JR., P. R. Burkholder and H. B. Creighton: Production and distribution of growth hormone in shoots of Aesculus and Malus and its probable role in stimulating cambial activity. Amer. J. Bot. 24, 51–58 (1937).Google Scholar
  529. Bald, J. G., and E. M. Hutton: Some effects of leaf roll virus on development and growth of the tomato plant. Austral. J. agric. Res. 1, 3–13 (1950).Google Scholar
  530. Barlow, H. W. B., C. R. Hancock and H. J. Lacey: Some observations on growth inhibitors extracted from woody shoots. Ann. Rep. East Mailing Res. Stat. for 1954 /1955, pp. 115–121 (1955).Google Scholar
  531. Bennett, J. P., and F. Skoog: Preliminary experiments on the relation of growth promoting substances to the rest period of fruit trees. Plant Physiol. 13, 219–224 (1958).Google Scholar
  532. Bonner, J.: The role of toxic substances in the interactions of higher plants. Bot. Rev. 16, 51–65 (1950).Google Scholar
  533. Bonner, J., and A. W. Galston: Toxic substances from the culture media of guayule which may inhibit growth. Bot. Gaz. 106, 185–198 (1954).Google Scholar
  534. Borriss, H.: Die Wirkung allseitiger und einseitiger Wuchsstoffgaben auf das Wachstum etiolierter DikotylenKeimlinge. Z. Bot. 38, 337–392 (1943).Google Scholar
  535. Bouillenne, R.: La rhizogenèse. Année biol. 54 (Sér. Iii 26 ), 597–628 (1950).Google Scholar
  536. Burton, W. G.: Some observations on the growth substances in ether extract of the potato tuber. Physiol. Plantarum (Cph.) 9, 567–587 (1956).Google Scholar
  537. Camus, G.: Recherches sur le rôle des bourgeons dans les phénomènes de morphogenèse. Rev. Cytol. et Biol. végét. 11, 1–199 (1949).Google Scholar
  538. Champagnat, M., J. Berthier: Remarques sur l’absence de bourgeons axillaires chez les Angiospermes. Bull. Soc. bot. France 104, 451–456 (1958).Google Scholar
  539. Champagnat, P.: Ramification à régime rythmique et anisophyllie chez les végétaux supérieurs. Lilloa 16, 161–191 (1949).Google Scholar
  540. Champagnat, P.: La taille des arbres fruitiers. Paris: Maison Rustique 1949.Google Scholar
  541. Champagnat, P.: Variabilité des corrélations entre la feuille cotylédonaire et son bourgeon axillaire chez Bidens pilosus L. suivant l’intensité de l’éclairement. Bull. Assoc. philomat. Alsace et Lorraine 9, 31–32 (1950).Google Scholar
  542. Champagnat, P.: Rôle du bourgeon terminal dans l’action exercée par le cotylédon de Bidens pilosus L. var. radiatus sur son bourgeon axillaire. C. R. Soc. Biol. (Paris) 145, 1374–1376 (1951).Google Scholar
  543. Champagnat, P.: Les départs de bourgeons axillaires sur la partie moyenne des pousses. Étude d’une plante herbacée: Cicer arietinum L. Comparaison avec les rameaux anticipés» des végétaux ligneux. C. R. Acad. Sci. (Paris) 235, 389–391 (1952).Google Scholar
  544. Champagnat, P.: Les levées d’inhibition de la base des pousses chez Cicer arietinum L. C. R. Acad. Sci. (Paris) 235, 630–632 (1952).Google Scholar
  545. Champagnat, P.: Recherches sur les rameaux anticipés des végétaux ligneux. Rev. Cytol. et Biol. vét. 15, 1–51 (1954).Google Scholar
  546. Champagnat, P.: Les corrélations sur rameau d’un an des végétaux ligneux. Phyton (Vicente López, Argent.) 4, 1–104 (1954).Google Scholar
  547. Champagnat, P.: Les corrélations entre feuilles et bourgeons sur la pousse herbacée du lilas. Rev. gén. Bot. 62, 325–372 (1955).Google Scholar
  548. Champagnat, P.: Inhibitions et stimulations dans les corrélations entre bourgeons. Bull. Soc. franç. Physiol. végét. 5, 95–107 (1959).Google Scholar
  549. Champagnat, P., G. Afpraix: Influence du bourgeon épicotylaire sur les corrélations entre la feuille et son bourgeon axillaire chez les dicotylédones. Rev. gén. Bot. 65, 653–667 (1958).Google Scholar
  550. Champagnat, P., M. Dalzon: Inhibitions par carence sur les plantules de dicotylédones. Rev. Cytol. et Biol. végét. 15, 337–343 (1958).Google Scholar
  551. Champagnat, P., L. Dassonval: Synergisme entre acides organiques et kinétine pour la levée d’inhibition des bourgeons. C. R. Soc. Biol. (Paris) 154, 2265–2268 (1960).Google Scholar
  552. Caa Mpagnat, P., CL. Pigeret: Action du glycocholate de sodium et l’acide triiodobenzoique sur la stimulation exercée par le cotylédon du lin sur son bourgeon axillaire. Rev. gén. Bot. 64, 307–315 (1957).Google Scholar
  553. Champagnat, P., A. Randier et S. Allary: La ramification de la pousse herbacée du Charme. Bull. Soc. bot. France 108, 81–92 (1961).Google Scholar
  554. Champagnat, P., M. Remy, E. Hjgon et G. Roche-Cellarier: Interactions entre substances inhibitrices et substances stimulatrices dans les corrélations entre bourgeons. C. R. Soc. Biol. (Paris) 154, 2262–2265 (1960).Google Scholar
  555. Champagnat, P., P. Rondet: Corrélations induites par des substances réputées inactives. Congr. internat. Bot. (Paris), C. R. et Rapp. et Comm. déposés lors du Congr., Sect. 11 /12, pp. 119–120 (1954).Google Scholar
  556. Child, C. and A. Beraamy: Physiological isolation by low temperature in Bryo-phyllum and other plants. Science 50, 362–385 (1919).PubMedGoogle Scholar
  557. Chouard, P.: Dormance et inhibition des graines et des bourgeons. Préparation au forçage et au thermopériodisme. Paris: Centre docum. Universit. 1951.Google Scholar
  558. Chouard, P.: Vernalization and its relations to dormancy. Ann. Rev. Plant Physiol. 11, 191 238 (1960).Google Scholar
  559. Chouard, P., A. LounTIoux: Corrélations et réversions de croissance et de mise â fleurs sur la plante amphicarpique Scrofularia arguta. C. R. Acad. Sci. (Paris) 249, 889–891 (1959).Google Scholar
  560. Clark, W. G.: Polar transport of auxin and electrical polarity in coleoptile of Avena. Plant Physiol. 12, 737–754 (1937).PubMedGoogle Scholar
  561. Courduroux, J C: Inhibition et stimulation chez Scrofularia nodosa L. Bull. Soc. bot. France 104, 457–461 (1958).Google Scholar
  562. Courduroux, J C: Influence comparée de l’acide triiodobenzoique sur l’inhibition et la stimulation foliaires de Scrofularia nodosa. Bull. Soc. bot. France 105, 491–493 (1958).Google Scholar
  563. Delisle, A. F.: The influence of auxin in secondary branching in two species of Aster. Amer. J. Bot. 24, 159–167 (1937).Google Scholar
  564. DostÂL, R.: Die Korrelationsbeziehnng zwischen dem Blatt und seiner Axillarknospe. Ber. dtsch. bot. Ges. 27, 547–554 (1909).Google Scholar
  565. DostÂL, R.: Über die wachstumsregulierende Wirkung des Laubblattes. Acta Soc. Sci. nat. moray. (Brno) 3, 83–209 (1926).Google Scholar
  566. DostÂL, R.: Korrelationswirkung der Speicherorgane und Wuchsstoffe. Ber. dtsch. bot. Ges. 54, 418–429 (1936).Google Scholar
  567. DostÂL, R.: Vergleich der Hemmungswirkung von ß-Indolylessigsäure mit den natürlichen Korrelationshemmungen. Acta Soc. Sci. nat. moray. (Brno) 10, No. 5 (1937).Google Scholar
  568. DostÂL, R.: Über die Auslösung der Korrelation zwischen den Kotylaren von Pisum sativum. Ber. dtsch. bot. Ges. 57, 204–230 (1939).Google Scholar
  569. DostÂL, R.: Wuchsstoffstudien betreffend die Korrelationen zwischen Wurzel und Sproß bei Pisum sativum. Acta Soc. Sci. nat. moray. (Brno) 13, No. 5 (1951).Google Scholar
  570. DostÂL, R.: Die Anisophyllie der Seitensprosse als Hemmungserscheinung. Ber. dtsch. bot. Ges. 61, 238–249 (1943).Google Scholar
  571. DostÂL, R.: Dalai experimentàlné morphologické studie. I. Versuche zur apikalen Dominanz in der Pflanzenmorphogenese. Acta Acad. Sci. Cechoslov. Basis brunens. 31, 1–48 (1959).Google Scholar
  572. DostÂL, R.: Über die korrelative Bedingtheit der Winterknospenbildung bei Syringia vulgaris. Acta Acad. Sci. Cechoslov. Basis brunens. 31, 49–76 (1959).Google Scholar
  573. DostÂL, R.: Weitere morphologische Wuchsstoffversuche an Pisum- und Linum-Keimlingen. Acta Acad. Sci. Cechoslov. Basis brunens. 32, 425–471 (1960).Google Scholar
  574. Errera, L.: Conflits de préséance et excitations inhibitoires chez les végétaux. Bull. Soc. roy. bot. Belg. 42, 27–43 (1904).Google Scholar
  575. Esau, K.: Plant anatomy. New York: Wiley 1953; London: Chapman and Hall.Google Scholar
  576. Evenari, M.: Germination inhibitors. Bot. Rev. 15, 153–194 (1949).Google Scholar
  577. Faldorf, M. I.: Growth correlation and inhibition in Pisum sativum L. Thèse (Maître), Iowa State Coll., Ames 1939. Cité d’après Looms 1953.Google Scholar
  578. Ferman, J. H.: The role of auxin in the correlative inhibition of the development of lateral buds and shoots. Rec. Tray. bot. néerl. 85, 177–287 (1938).Google Scholar
  579. Galston, A. W.: Riboflavin sensitized photo-oxidation of indoleacetic acid and related compounds. Proc. nat. Acad. Sci. (Wash.) 35, 10–17 (1949).Google Scholar
  580. Galston, A. W., and L. Y. Dalberg: The adaptative formation and physiological significance of indoleacetic acid oxidase. Amer. J. Bot. 41, 373–380 (1954).Google Scholar
  581. Garner, W. W., and H. A. Allard: Further studies in photoperiodism. The response of the plant to relative length of day and night. J. agric. Res. 23, 871–920 (1923).Google Scholar
  582. Gautheret, R. J.: Recherches sur la polarité des tissus végétaux. Rey. Cytol. et Cytophysiol. végét. 7, 45–217 (1944).Google Scholar
  583. Goebel, K.: Beiträge zur Morphologie und Physiologie des Blattes. Bot. Ztg 38, 754–760, 768–778, 785–795, 801–815, 817–826, 833–845 (1880).Google Scholar
  584. Goebel, K.: Über die Verzweigung dorsiventraler Sprosse. Arb. bot. Inst. Würzburg 2, 353–377 (1882).Google Scholar
  585. Goebel, K.: Einleitung in die experimentelle Morphologie der Pflanzen. Leipzig: Teubner 1908.Google Scholar
  586. Goldacre, P. L., and W. Bottomley: A kinin in apple fruitlets. Nature (Lund.) 184, 555–556 (1959).Google Scholar
  587. Gorter, C. J.: Nutrition and auxin-production in seedlings of Raphanus 8ativus and Zea mays. Proc. kon. ned. Akad. Wet. Ser. C 57, 617–620 (1954).Google Scholar
  588. Gourley, J. H.: Anatomy of the transition region of Pisum sativum. Bot. Gaz. 92, 367–383 (1931).Google Scholar
  589. Gregory, F. C., and J. A. Veale: A reassessment of the problem of apical dominance. Symp. Soc. exp. Biol. 11, 1–20 (1957).PubMedGoogle Scholar
  590. Guncrel, J. E., and K. V. Tbimann: Studies of development in long shoots and short shoots of Ginkgo biloba L. Iii. Auxin production in shoot growth. Amer. J. Bot. 36, 145–151 (1949).Google Scholar
  591. Guttenberg, H. V., u. K. Steinweg: Die Anisophyllie in Abhängigkeit vom Wirkstoffgehalt der Pflanze, untersucht an Centradenia floribunda und Centradenia grandiflora. Protoplasma 46, 284–300 (1956).Google Scholar
  592. Guttenberg, H. v., u. H. MÜLler: Die laterale Anisophyllie von Coleus hybridus als Korrelationsphänomen. Planta (Bed.) 49, 271–279 (1957).Google Scholar
  593. Guttenberg, H. v., u. H.LEixE: Untersuchungen über den Wuchs- und Hemmstoffgehalt ruhender und treibender Knospen von Syringa vulgaris L. Planta (Berl.) 52, 96–120 (1958).Google Scholar
  594. Hancock, C. R., and H. W. B. Barlow: The assay of growth substances by a-modified straight growth method. Ann. Rep. East Mailing Res. Stat. for 1952 /53, pp. 88–94 (1953).Google Scholar
  595. Harvey, E. N.: An experiment on regulation in plants. Amer. Naturalist 54, 362–368 (1920).Google Scholar
  596. Haupt, W.: Gibt es Beziehungen zwischen Polarität und Blütenbildung? Ber. dtsch. bot. Ges. 69, 61–66 (1956).Google Scholar
  597. Hegi, G.: Illustrierte Flora von Mittel-Europa, 2e édn. Munich: Lehmann 1935.Google Scholar
  598. Hemberg, T.: Studies of auxins and growth inhibiting substances in the potato tuber and their significance with regard to its rest period. Acta Hort. Berg. 14, 133–220 (1948).Google Scholar
  599. Growth inhibiting substances in the terminal buds of Fraxinus. Physiol. Plantarum (Cph.) 2, 37–44 (1949).Google Scholar
  600. Hering, F.: Über Wachstumskorrelationen infolge mechanischer Hemmung des Wachsens. Jb. wiss. Bot. 29, 132–170 (1896).Google Scholar
  601. Huglin, P.: Recherches sur les bourgeons de la vigne: initiation florale et développement végétatif. Ann. épiphyt. Inst. Nat. Agron. 8, 173–272 (1959).Google Scholar
  602. Hugon, E.: Influence de l’acide-9-anthroïque sur les corrélations entre le cotylédon et son bourgeon axillaire. C. R. Acad. Sci. (Paris) 245, 2072–2074 (1957).Google Scholar
  603. Hugon, E.: Interactions entre saccharose, thiamine et auxine dans les corrélations entre bourgeons cotylédonaires chez Cicer arietinum L. C. R. Acad. Sci. (Paris) 247, 339–341 (1958).Google Scholar
  604. Hugon, E.: Influences stimulatrices capables de s’opposer il une dominance apicale chez Cicer arietinum L. C. R. Acad. Sci. (Paris) 250, 1334–1336 (1960).Google Scholar
  605. Jacobs, W. P.: Acropetal auxin transport and xylem regeneration. A quantitative study. Amer. Naturalist 88, 327–337 (1954).Google Scholar
  606. Jacobs, W. P., and B. Bullwinxel: Compensatory growth in Coleus shoots. Amer. J. Bot. 40, 385–392 (1953).Google Scholar
  607. Jacobs, W. P., J. Danielson, V. Hurt and P. Adams: What substance normally controls a given biological process ? II. The relation of auxin to apical dominance. Develop. Biol. 1, 534–554 (1959).Google Scholar
  608. Jacobs, W. P., R. V. Davisjr. and B. Bullwinkel: Some interrelations of compensatory growth flowering, auxin and day length in Coleus blumei Benth. In: Photoperiodism and related phenomena in plants and animals. (R. B. Withrow, éd.; Amer. Assoc. Adv. Sci., Publ. No. 55), pp. 393–407. Washington, D. C. 1959.Google Scholar
  609. Jerebzoffquintrn, S.: Blocage de la synthèse de quelques acides organiques chez Nectria galligena soumis it des doses inhibitrices d’auxine. Reprise des processus par action de la biotine. C. R. Acad. Sci. (Paris) 248, 727–729 (1959).Google Scholar
  610. Jerebzoffquintrn, S.: Sur le rôle de certains acides organiques comme antagonistes de l’action inhibitrice de l’auxine chez Nectria galligena. C. R. Acad. Sci. (Paris) 248, 1389–1392 (1959).Google Scholar
  611. Jerebzoffquintrn, S.: Croissance de Rhizopus nigricans Ehr. et de Nectria galligena cultivés avec ou sans auxine et synthèse de quelques acides organiques et aminés. C. R. Acad. Sci. (Paris) 250, 1337–1339 (1960).Google Scholar
  612. Jost, L.: Über Dickenwachsthum und Jahresringbildung. Bot. Ztg 49, 485–630 (1891).Google Scholar
  613. Jost, L.: Über die Beziehungen zwischen Blattentwicklung und Gefäßbildung in der Pflanze. Bot. Ztg 51, 98–138 (1893).Google Scholar
  614. Klnbs, G.: Über das Verhältnis der Außenwelt zur Entwicklung der Pflanzen. Eine theoretische Betrachtung. S.-B. Heidelberg. Akad. Wiss., Math. Kl. 1914, No 3.Google Scholar
  615. Kny, L.: Über die Verdoppelung des Jahresringes. Verh. bot. Ver. Prov. Brandenburg 21 (Abh.), 1–10 (1879).Google Scholar
  616. KomÂRek, V.: Zur experimentellen Beeinflussung der Korrelationstätigkeit von epigäischen Keimblättern. Flora (Jena) 124, 301–314 (1930).Google Scholar
  617. KOÄFnek, J.: Sur les corrélations entre le cotylédon et son bourgeon axillaire. Publ. Fac. Sci. Univ. Masaryk (Brno) 16, 1–17 (1922).Google Scholar
  618. KOÄFnek, J.: Sur la sensibilité des corrélations chez les plantes. Bull. int. Acad. Sci. Prague 28, 59–64 (1923).Google Scholar
  619. Ster, E.: Über das Wachstum der Knospen während des Winters. Beitr. wiss. Bot. 2, 401–413 (1898).Google Scholar
  620. Kuse, G.: Effects of 2.3.5- triiodobenzoic acid on the growth of lateral buds and on tropism of petiole. Mem. Coll. Sci. Univ. Kyoto B 20, 207–215 (1953).Google Scholar
  621. Kuse, G.: Bud inhibition and correlative growth of petiole in sweet potato stem. Mem. Coll. Sci. Univ. Kyoto B 21, 107–114 (1954).Google Scholar
  622. Lagarde, J.: Dormance et corrélations entre germes dans le tubercule de pomme de terre. C.mportement de la variété Belle de Fontenay. C. R. Acad. Sci. (Paris) 247, 832–834 (1958).Google Scholar
  623. Lagarde, J.: Influence comparée de l’ethylène chlorhydrine et de la gibberelline sur l’évolution des germes de pomme de terre (variété Bintj). C. R. Acad. Sci. (Paris) 248, 582–585 (1959).Google Scholar
  624. Lagarde, J.: Influences comparées de la kinétine et de la gibberelline dans le tubercule de Crosne du Japon. C. R. Acad. Sci. (Paris) 251, 266–269 (1960).Google Scholar
  625. LE Fanu, B.: Auxin and correlative inhibition. New Phytologist 85, 205–220 (1936).Google Scholar
  626. Leopold, A. C.: The control of tillering in grasses by auxin. Amer. J. Bot. 86, 437–440 (1949).Google Scholar
  627. Leopold, A. C.: Auxins and plant growth. Berkeley, Los Angeles: Univ. of California Press 1955.Google Scholar
  628. Libbert, E.: Zur Frage nach der Natur der korrelativen Hemmung. Flora (Jena) 141, 271–297 (1954).Google Scholar
  629. Libbert, E.: Das Zusammenwirken von Wuchs- und Hemmstoffen bei der korrelativen Knospenhemmung I, II. Planta (Berl.) 44, 286–318 (1954b); 45, 68–81 (1955).Google Scholar
  630. Libbert, E.: Nachweis und chemische Trennung des Korrelationshemmstoffes und seiner Hemmstoffvorstufe. Planta (Berl.) 45, 405–425 (1955).Google Scholar
  631. Libbert, E.: Die Hydrolyse des „Korrelationshemmstoffes“ zu Auxin. Planta (Berl.) 46, 256–271 (1955).Google Scholar
  632. Libbert, E.: Der Einfluß von Blatt und Wurzel auf die Auxin-induzierte korrelative Knospenhemmung. Flora (Jena) 142, 619–628 (1955).Google Scholar
  633. Libbert, E.: Die hormonale und korrelative Steuerung der Adventivwurzelbildung. Wiss. Z. Humboldt-Univ. Berlin 6, 315–347 (1957).Google Scholar
  634. Libbert, E.: Der primäre Angriffsort pflanzeneigener Hemmstoffe. Physiol. Plantarum (Cph.) 11, 516–523 (1958).Google Scholar
  635. Libbert, E.: Trijodbenzoesäure und die Stoffleitung bei höheren Pflanzen. Planta (Berl.) 53, 612–6127 (1959).Google Scholar
  636. Libbert, E.: Some special aspects of the function of endogenous inhibitors in dormancy. Proc. IX. internat. Bot. Congr. (Montréal), vol. Iia, p. 226 (1959).Google Scholar
  637. Libbert, E.: Paper chromatography of the enzymatic generation of auxin from tryptophane changed by an endogenous inhibitor. Proc. IX. internat. Bot. Congr. (Montréal), vol. II A, p. 226 (1959).Google Scholar
  638. Libbert, E.: Das Indolessigsäure-bildende Enzymsystem aus Erbsenpflanzen. Z. Bot. 48, 365–380 (1960).Google Scholar
  639. Libbert, E., u. H. LÜBke: Physiologische Wirkung des Scopoletins. Iii. Scopoletin und korrelative Knospenhemmung. Flora (Jena) 146, 579–585 (1958).Google Scholar
  640. Loeb, J.: Rules and mechanism of inhibition and correlation in the regeneration of the stem of Bryop1 yllum calycinum. Bot. Gaz. 60, 249–276 (1915).Google Scholar
  641. Loeb, J.: The chemical basis of axial polarity in regeneration. Science 46, 547–551 (1917).PubMedGoogle Scholar
  642. Loeb, J.: Regeneration from a physicochemical viewpoint. New York: McGraw 1924.Google Scholar
  643. Lona, F., A. Boccm: Effetti morfogenetici ed organo-genetici provocati dalla cinetina (Kinetin) su plante erbacee in condizioni esterne controllate. Nuovo Giorn. bot. ital. 64, 236–246 (1957).Google Scholar
  644. Longman, K. A., and P. F. Wareing: Gravimorphism in trees. Effects of gravity on flowering and shoot growth in japanese larch (Larix leptolepis Murray). Nature (Lond.) 182, 380–381 (1958).Google Scholar
  645. Loomis, W. E.: Growth correlation. Dans: Growth and differentiation in plants (W. E. Loomis, éd.), p. 197–217. Ames: Iowa State Coll. Press 1953.Google Scholar
  646. Luckwill, L. C.: Hormonal aspects of fruit development in higher plants. Symp. Soc. exp. Biol. 11, 63–85 (1957).Google Scholar
  647. Marinos, N. G., and T. Hemberg. Observations On a possible mechanism of action of the inhibitor complex. Physiol. Plantarum (Cph.) 13, 571–581 (1960).Google Scholar
  648. Massart, J.: La coopération et le conflit des réflexes qui déterminent la forme du corps chez Araucaria excella R. Br. Mém. Acad. roy. Belg., Cl. Sci., Sér. I I 5, No 8 (1924).Google Scholar
  649. Massart, J.: Recherches expérimentales sur la spécialisation et l’orientation des tiges dorsiventrales. Mém. Acad. roy. Belg., Cl. Sci., Sér. I I 5, No 11 (1924).Google Scholar
  650. Meinl, G., u. H. v. Guttenberg: Über Fôrderung und Hemmung der Entwicklung von Axillarsprossen durch Wirkstoffe. Planta (Berl.) 44, 121–135 (1954).Google Scholar
  651. Mock, W.: Untersuchungen über Korrelationen von Knospen und Sprossen. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 38, 584–681 (1913).Google Scholar
  652. Moreland, C. F.: Factors affecting the development of the cotyledonary buds of the common bean, Phaseolus vulgaris. Cornell Univ. Agr. Exp. Stat. Mem. No 167 (1934). Cité d’après Loomis 1953.Google Scholar
  653. Mitchell, K. J.: Influence of light and temperature on growth of Ryegrass (Lolium sp.). I. Pattern of vegetative development. Physiol. Plantarum (Cph.) 6, 21–46 (1953).Google Scholar
  654. Mitchell, K. J.: The control of lateral bud development. Physiol. Plantarum (Cph.) 6, 425143 (1953).Google Scholar
  655. Mothes, K., L. Engelbrecht U. O. Kulajeva: Über die Wirkung des Kinetins auf Stickstoffverteilung und Eiweißsynthese in isolierten Blättern. Flora (Jena) 147, 445–464 (1959).Google Scholar
  656. Ller, A. M.: Über den Einfluß von Wuchsstoff auf das Austreiben der Seitenknospen und die Wurzelbildung. Jb. wiss. Bot. 81, 497–540 (1935).Google Scholar
  657. Munch, E.: Untersuchungen über die Harmonie der Baumgestalt. Jb. wiss. Bot. 86, 581–673 (1938).Google Scholar
  658. Nanda, K. K.: Effect of photoperiod on stem elongation and lateral bud development in Panicum miliaceum and its correlation with flowering. Phyton (Vicente López, Argent.) 10, 7–16 (1958).Google Scholar
  659. Nitsch, J. P.: Plant hormones in the development of fruits. Quart. Rev. Biol. 27, 33–57 (1952).PubMedGoogle Scholar
  660. Nitsch, J. P.: The physiology of fruit growth. Ann. Rev. Plant Physiol. 4, 199–236 (1953).Google Scholar
  661. Nitsch, J. P., C. Nitsch: Le problème de l’action des auxines sur la division cellulaire: présence d’un cofacteur de division dans le tubercle de Topinambour. Ann. Physiol. végét. 2, 261–268 (1960).Google Scholar
  662. Nordhausen, M.: Untersuchungen über Asymmetrie von Laubblättern höherer Pflanzen nebst Bemerkungen zur Anisophyllie. Jb. wiss. Bot. 37, 12–86 (1902).Google Scholar
  663. Nysterakis, F.: La sensibilité inégale de Nectria galligena et Neurospora tetrasperma aux doses élevées d’auxine serait due à leur capacité différente de synthétiser des corps antagonistes de l’activité inhibitrice de l’auxine. C. R. Acad. Sci. (Paris) 242, 1056–1058 (1956).Google Scholar
  664. Nysterakis, F.: Antagonisme entre auxine et citrulline sur le test Nectria galligena. C. R. Acad. Sci. (Paris) 246, 818–821 (1958).Google Scholar
  665. Olszewska, M. S.: Autoradiographic study of the action of kinetin on the incorporation of adenine into the cells of the root meristem of Allium cepa. Exp. Cell Res. 16, 193–201 (1959).PubMedGoogle Scholar
  666. Pfirsch, E.: Influence du cotylédon sur le développement de son bourgeon axillaire. Etude de quelques cas nouveaux. Bull. Soc. bot. France 101, 124–128 (1954).Google Scholar
  667. Plch, B.: Über den Einfluß einiger Phytohormone auf die Korrelationswirkung der Keimblätter bei Pisum sativum. Beih. bot. Zbl. 55A, 358–415 (1936).Google Scholar
  668. Pohl, R.: Das Wuchsstoff-Hemmstoff-Problem der höheren Pflanzen. Naturwiss. 31, 1–3 (1952).Google Scholar
  669. Rauh, W.: Beiträge zur Morphologie und Biologie der Holzgewächse. I. Entwicklungsgeschichte und Verzweigungsverhältnisse arktisch-alpiner Spaliersträucher. Nova Acta Leopoldina, N.F. 5, 289–348 (1937).Google Scholar
  670. Rauh, W.: Über die Verzweigung ausläuferbildender Sträucher mit besonderer Berücksichtigung ihrer Beziehungen zu den Staxden. Hercynia 1, 187–231 (1938).Google Scholar
  671. Rauh, W.: Über Gesetzmäßigkeit der Verzweigung und deren Bedeutung für die Wuchs-formen der Pflanzen. Mitt. dtsch. dendrol. Ges. 52, 86–111 (1939).Google Scholar
  672. Remy, M.: Corrélations entre bourgeon cotylédonaire et épicotyle chez le Pois. Rev. Cytol. et Biol. végét. 15, 306–311 (1954).Google Scholar
  673. Remy, M.: Influence de l’intensité lumineuse sur les corrélations entre épicotyle et bourgeons cotylédonaires chez le Pois. C. R. Acad. Sci. (Paris) 243, 400 401 (1956).Google Scholar
  674. Remy, M., S. Allary: Rôle inhibiteur des feuilles adultes chez le Pois. C. R. Acad. Sci. (Paris) 243, 1663–1665 (1956).Google Scholar
  675. Rlcmiuonn, A., and A. Lang: Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125, 650–651 (1957).Google Scholar
  676. Roussel, J.: Contribution à l’étude des corrélations entre cotylédon et bourgeons axillaires chez le pois. Thèse ( Dipl. d’Etudes sup.), Univ., Clermont 1955.Google Scholar
  677. Sachs, J.: Stoff und Form der Pflanzenorgane. I, II. Arb. bot. Inst. Würzburg 2, 452 à 488 (1880); 689–718 (1882).Google Scholar
  678. Sachs, J.: Gesammelte Abhandlungen über Pflanzenphysiologie. Leipzig: Engelmann 1893.Google Scholar
  679. Schwabe, W. W.: Factors controlling flowering of the Chrysanthemum. I. Effects of photoperiod and temporary chilling. J. exp. Bot. 1, 329–343 (1950).Google Scholar
  680. Skoog, F.: Further experiments on the inhibition of the development of lateral buds by growth hormones. Proc. nat. Acad. Sci. (Wash.) 20, 480–485 (1934).Google Scholar
  681. Skoog, F.: Experiments on bud inhibition with indole-3-acetic acid. Amer. J. Bot. 26, 702–707 (1939).Google Scholar
  682. Skoog, F.: Chemical control of growth and organ formation in plant tissues. Année biol. 54 (Sér. Iii 26), 545–562 (1950).PubMedGoogle Scholar
  683. Skoog, F., and C. O. Miller: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. exp. Biol. 11, 118–130 (1957).PubMedGoogle Scholar
  684. Snow, R.: The correlative inhibition of the growth of axillary buds. Ann. Bot. 39, 841–859 (1925).Google Scholar
  685. Snow, R.: The young leaf as the inhibiting organ. New Phytologist 28, 345–358 (1929).Google Scholar
  686. Snow, R.: Experiments on growth and inhibition. I., II. Proc. roy. Soc. B 108, 209–223, 305–316 (1931).Google Scholar
  687. Snow, R.: Upward effects of auxin in coleopiles and stems. New Phytologist 35, 292–304 (1936).Google Scholar
  688. Snow, R.: On the nature of correlative inhibition. New Phytologist 36, 283–300 (1937).Google Scholar
  689. Snow, R.: A second factor involved in inhibition by auxin in shoots. New Phytologist 38, 210–223 (1939).Google Scholar
  690. Snow, R.: A hormone for correlative inhibition. New Phytologist 39, 177–184 (1940).Google Scholar
  691. Snow, R.: Plagiotropism and correlative inhibition. New Phytologist 44, 110–117 (1945); 46, 254–257 (1947).Google Scholar
  692. Ning, H.: Die Wuchsstofflehre. Stuttgart: Thieme 1952.Google Scholar
  693. SPÄTH, H. L.: Der Johannis-trieb. Thèse (Doct.), Univ., Berlin 1912.Google Scholar
  694. Steeves, T. A., G. Morel and R. H. Wetmore: A technique for preventing inactivation at the cut surface in auxin diffusion studies. Amer. J. Bot. 40, 534–538 (1953).Google Scholar
  695. Thimann, K. V.: On the nature of inhibition caused by auxins Amer. J. Bot. 24, 407–412 (1937).Google Scholar
  696. Thimann, K. V.: Auxin and the inhibition of plant growth. Biol. Rev. 14, 314–337 (1939).Google Scholar
  697. Thimann, K. V.: The action of hormones in plants and invertebrates. New York: Acad. Press 1952.Google Scholar
  698. Thimann, K. V.: Correlations of growth by humoral influences. 8e Congr. internat. Bot. (Paris), Rapp. et Comm., parvenus avant le Congr., Sect. 11 /12, pp. 114–128 (1954).Google Scholar
  699. Thimann, K. V.: Plant growth substances. Dans: Fundamental aspects of normal and malignant growth (W. W. Nowinshi, ed.), pp. 748–822. Amsterdam: Elsevier 1960.Google Scholar
  700. Thimann, K. V., and W. D. Bonner JR.: Inhibition of plant growth by protoanemonin and coumarin, and its prevention by Bal. Proc. nat. Acad. Sci. (Wash.) 35, 272–276 (1949).Google Scholar
  701. Thimann, K. V., J. E. Guncrel and R. H. Wetmore: Studies of development in long shoots and short shoots of Ginkgo biloba. IV. Growth habit, shoot expression and the mechanism of its control. Amer. J. Bot. 36, 309–318 (1949).Google Scholar
  702. Thimann, K. V., and M. M. Laloraya: Changes in nitrogen in pea stem sections under the action of kinetin. Physiol. Plantarum (Cph.) 13, 165–178 (1960).Google Scholar
  703. Thmann, K. V., and F. Skoog: Studies on the growth hormone of plants. Iii. The inhibiting action of the growth substance on bud development. Proc. nat. Acad. Sci. (Wash.) 19, 714–716 (1933).Google Scholar
  704. Thmann, K. V., and F. Skoog: On the inhibition of bud development and other functions of growth sub. stances in Vicia faba. Proc. roy. Soc. B 114, 317–339 (1934).Google Scholar
  705. Titman, P. W., and R. H. Wetmore: The growth of long and short shoots in Cercidiphyllum. Amer. J. Bot. 42, 364–372 (1955).Google Scholar
  706. Troll, W.: Vergleichende Morphologie der höheren Pflanzen, vol. I, part 1. Berlin: Borntraeger 1937.Google Scholar
  707. Troll, W.: Um ovk, A.: Über die hormonale latur der Hemmungswirkung der Blätter bei Bryophyllum crenatum. Planta (Berl.) 22, 411–427 (1934).Google Scholar
  708. Vonmaltzahn, K. E.: Interaction between kinetin and Iaa in the control of bud reactivation in Splachnum ampullaceum (L.) Hedw. Nature (Lond.) 183, 3–4 (1959).Google Scholar
  709. Vanoverbeeb., J: Auxin distribution in seedlings and its bearing on the problem of bud inhibition. Bot. Gaz. 100, 133–160 (1938).Google Scholar
  710. Wareing, P. F., and T. Nasr: Gravimorphism in trees. Effects of gravity on growth, apical dominance and flowering in fruit trees. Nature (Lond.) 182, 379–380 (1958).Google Scholar
  711. Wassink, E. C., and J. H. Wiersma: Daylength responses of some forest trees. Acta bot. néerl. 4, 657–670 (1955).Google Scholar
  712. Weisskopf, B.: Sur les conditions corrélatives de la croissance en longueur des bourgeons quez quelques Papilionacées en voie de germination. Publ. biol. Ecole vétér. Brno 6, 67–102 (1927).Google Scholar
  713. Went, F. W.: Allgemeine Betrachtungen über das Auxinproplem. Biol. Zbl. 56, 449–463 (1936).Google Scholar
  714. Went, F. W.: Specific factors other than auxin affecting growth and root formation. Plant Physiol. 13, 55–80 (1938).PubMedGoogle Scholar
  715. Went, F. W.: Experiments on bud growth. Amer J Bot. 26, 109–117 (1939).Google Scholar
  716. Went, F. W.: Morphological observations on the tomato plant. Bull. Torrey bot. Club 71, 77–84 (1944).Google Scholar
  717. Went, F. W.: Plant growth under controlled conditions. II. Thermoperiodicity in growth and fruiting of the tomato plant. Amer J bot. 31, 135–150 (1944).Google Scholar
  718. Went, F. W.: Correlation between various physiological processes and growth in the tomato plant. Amer. J. bot. 31, 597–618 (1944).Google Scholar
  719. Went, F. W.: The development of stems and leaves. Dans: Plant growth substances (Rd. F. SKooa), pp. 287–298. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  720. Went, F. W., and K. V. Thlann: Phytohormones. New York: MacMillan 1937.Google Scholar
  721. White, D. J. B.: Anisophylly of lateral shoots. Ann Bot., N.S. 21, 247–255 (1957).Google Scholar
  722. Wicgson, M., and K. V. Thimann: The antagonism of auxin and kinetin in apical dominance. [I]. Physiol. Plantarum (Cph.) 11, 62–74 (1958).Google Scholar
  723. Wicgson, M., and K. V. Thimann: The transport of Iaa in pea stems in relation to apical dominance. Physiol. Plantarum (Cph.) 13, 539–554 (1960).Google Scholar
  724. Wilhelm, K.: Die Verdoppelung des Jahresringes. Ber. dtsch. bot. Ges. 1, 216–220 (1883).Google Scholar
  725. Zimmermann, W. A.: Untersuchungen über die räumliche und zeitliche Verteilung des Wuchsstoffes bei Bäumen. Z. Bot. 30, 209–252 (1936).Google Scholar
  726. Abbe, E. C., and B. O. Phinney: The growth of the shoot apex in Maize: external features. Amer. J. Bot. 38, 737–744 (1951).Google Scholar
  727. Abbe, E. C., B. O. Phinney and D. F. Baer: The growth of the shoot apex in Maize: internal features. Amer. J. Bot. 38, 744 751 (1951).Google Scholar
  728. Abbe, E. C., L. F. Randolph and J. Einset: The developmental relationship between shoot apex and growth pattern of leaf blade in diploid maize. Amer. J. Bot. 28, 778–784 (1941).Google Scholar
  729. Abbe, E. C., and O. L. Stein: The growth of the shoot apex in maize: Embryogeny. Amer. J. Bot. 41, 285–293 (1954).Google Scholar
  730. Abero, B.: Physiologische und ökologische Studien über die pflanzliche Photomorphose. Symb. bot. upsal. 8, No 1 (1943).Google Scholar
  731. Alexandrov, V., O. Alexandrov and A. TimoEev: The water supply of leaves and their structure. Scient. Pap. Applied Sect., Tiflis Bot. Gard. 2, 85–106 (1921). Cited after Maximov 1929.Google Scholar
  732. Allsopp, A.: Experimental and analytical studies of pteridophytes. Xvii. The effect of various physiologically active substances on the development of Marsilea in sterile culture. Ann. Bot., N. S. 16, 165–183 (1952).Google Scholar
  733. Allsopp, A.: Investigations on Marsilea. 2. Induced reversion to juvenile stages. Ann. Bot., N. S. 17, 37–55 (1953).Google Scholar
  734. Allsopp, A.: The effect of various sugars on development and morphology. Ann. Bot., N. S. 17, 447–463 (1953).Google Scholar
  735. Allsopp, A.: A comparison of the effects of 3-indolylacetic acid and 3-indolylacetonitrile on the development of sporelings of Marsilea in aseptic culture. J. exp. Bot. 5, 16–23 (1954).Google Scholar
  736. Allsopp, A.: Experimental and analytical studies of pteridophytes. Xxiv Investigations on Marsilea. 4. Anatomical effects of changes in sugar concentration. Ann. Bot., N. S. 18, 449–461 (1954).Google Scholar
  737. Allsopp, A.: Juvenile stages of plants and the nutritional status of the shoot apex. Nature (Lond.) 173, 1032–1033 (1954).Google Scholar
  738. Allsopp, A.: Experimental and analytical studies of pteridophytes. Xxvii. Investigations on Marsilea. 5. Cultural conditions and morphogenesis, with special reference to the origin of land and water forms. Ann. Bot., N. S. 19, 247–264 (1955).Google Scholar
  739. Allsopp, A.: Morpho-genetic effects of 3-indolylactonitrile on sporelings of Marsilea in aseptic culture. J. exp. Bot. 7, 1–13 (1956).Google Scholar
  740. Allsopp, A.: Effects of gibberellic acid on juvenility in Marsilea and certain other plants. Nature (Lond.) 184, 1575–1576 (1959).Google Scholar
  741. Arney, S. E.: Studies of growth and development in the genus Fragaria. Iii. The growth of leaves and shoot. Ann. Bot., N. S. 18, 349–365 (1954).Google Scholar
  742. Allsopp, A.: Studies of growth and development in the genus Fragaria. Vii. The effect of defoliation on leaf growth. Phyton (Vicente López, Argent.) 5, 93–105 (1955).Google Scholar
  743. Allsopp, A.: The effect of defoliation on leaf initiation and early growth of the leaf initials. Phyton (Vicente López, Argent.) 6, 109–120 (1955).Google Scholar
  744. Allsopp, A.: The effect of photo-period and temperature on leaf size. J. exp. Bot. 7, 65–79 (1956).Google Scholar
  745. Ashby, E.: Studies in the morphogenesis of leaves. I. An essay on leaf shape. New Phytologist 47, 153–176 (1948).Google Scholar
  746. Ashby, E.: The area, cell size and cell number of leaves of Ipomoea in relation to their position on the shoot. New Phytologist 47, 177–195 (1948).Google Scholar
  747. Ashby, E.: Some effects of length of day upon leaf shape of Ipomoea caerulea. New Phytologist 49, 375–387 (1950).Google Scholar
  748. Ashby, E., and E. Wangermann: Studies in the morphogenesis of leaves. IV. Further observations on area, cell size and cell number of leaves of Ipomoea in relation to their position on the shoot. New Phytologist 49, 23–35 (1950).Google Scholar
  749. Ashby, E., and E. Wangermann: A note on the origin of differences in cell size among leaves at different levels of insertion on the stem. New Phytologist 49, 189–192 (1950).Google Scholar
  750. Astruc, L.: Phyllotaxie et point végétatif de Sedum maximum. Rev. gén. Bot. 56, 141–171 (1949).Google Scholar
  751. Avery, G. S.JR.: Structural responses to the practice of topping tobacco plants: a study of cell size, cell number, leaf size and veinage of leaves at different levels on the stalk. Bot. Gaz. 96, 314–329 (1934).Google Scholar
  752. Ball, E.: The development of the shoot apex and of the primary thickening meristem in Phoenix canariensis Chaub., with comparisons to Washingtonia filifera Wats. and Trachycarpus excella Wendl. Amer. J. Bot. 28, 820–832 (1941).Google Scholar
  753. Ball, E.: The shoot apex and normal plant of Lupinus albus L., bases for experimental morphology. Amer. J. Bot. 36, 440–454 (1949).Google Scholar
  754. Barthelmess, A.: Über den Zusammenhang zwischen Blattstellung und Stelen-bau unter besonderer Berücksichtigung der Koniferen. Bot. Arch. 37, 207–260 (1935).Google Scholar
  755. Bary, A. DE: Vergleichende Anatomie der Vegetationsorgane der Phanerogamen und Farne. Leipzig 1877; English translat. Oxford 1884.Google Scholar
  756. Bersu.Lon, G.: Recherches sur les Papavéracées. Contribution it l’étude du developpement des dicotyledones herbacées. Ann Sci. nat., Bot., Sér. XI, 16, 225–447 (1955).Google Scholar
  757. Bierhorst, D. W.: Systematic changes in the shoot apex of Psilotum. Bull. Torrey Bot. Club 85, 231–241 (1958).Google Scholar
  758. Bierhorst, D. W.: Symmetry in Equisetum. Amer. J. Bot. 46, 170–179 (1959).Google Scholar
  759. Binnloss, E. A.: A developmental analysis of cell length as related to stem length. Amer. J. Bot. 29, 179–188 (1942).Google Scholar
  760. Binet, P.: La morphogenèse des feuilles: photopériode et développement hétéroblastique chez Ulex europaeus L. Rev. gén. Bot. 65, 365–389 (1958).Google Scholar
  761. Bower, F. O.: Size, a neglected factor in stelar morphology. Proc. roy. Soc. Edinb. B 41, 1–25 (1921).Google Scholar
  762. Bower, F. O.: The ferns, vol. 1. Cambridge: Univ. Press 1923.Google Scholar
  763. Bower, F. O.: Size and form in plants. London: Macmillan 1930.Google Scholar
  764. Bower, F. O.: Primitive land plants. London: Macmillan 1935.Google Scholar
  765. Bower, F. O.: Organographic effect of the size-relation in plants. Bot. Mag. (Tokyo) 51, 183–191 (1937).Google Scholar
  766. Briggs, W. R., and T.A. Steeves: Morphogenetic studies on Osmunda cinnamomea L. The expansion and maturation of vegetative fronds. Phytomorphology 8, 234–248 (1958).Google Scholar
  767. Brown, S. W.: Studies of development in larkspur. I. Form sequence in the first ten mature leaves. Bot. Gaz. 106, 103–108 (1944).Google Scholar
  768. Buchholz, J. T.: Cone formation in Sequoia gigantea. I. The relation of stem size and tissue development to cone formation. Amer. J. Bot. 25, 296–305 (1938).Google Scholar
  769. Nning, E.: Entwicklungs- und Bewegungsphysiologie der Pflanze, 3rd edn. Berlin: Springer 1953.Google Scholar
  770. Burrholder, P. R., and I. Mcveigh: Growth and differentiation of maize in relation to nitrogen supply. Amer. J. Bot. 27, 414–424 (1940).Google Scholar
  771. Burrill, I. H.: The ontogeny of the stem of the common bryony Tams communia L. J. L.nn Soc. Lond., Bot. 53, 313–382 (1949).Google Scholar
  772. Busse, W.: Beiträge zur Kenntnis der Morphologie und Jahresperiode der Weißtanne (Abies alba Mill.). Flora (Jena) 77, 113–175 (1893).Google Scholar
  773. Buvat, R.: Structure, évolution et fonctionnement du meristème apical de quelques dicotyledones. Ann. Sci. nat., Bot., Sér. XI 13, 199–300 (1952).Google Scholar
  774. Camefort, H.: Etude de la structure du point végétatif et des variations phyllotaxiques chez quelques Gymnospermes. Ann. Sci. nat., Bot., Sér. XI 17, 1–185 (1956).Google Scholar
  775. Carton, A.: Etudes phyllotaxiques sur quelques espèces de Linum. Rev. gén. Bot. 55, 137–168 (1948).Google Scholar
  776. Catesson, A. M.: Structure, évolution et fonctionnement du point végétatif d’une monocotyledone: Luzula pedemontana Boiss. et Reut. (Joncacées). Ann. Sci. nat., Bot., Sér. XI 14, 253–291 (1953).Google Scholar
  777. Chakravarti, S. C.: Organisation of shoot apex during the ontogeny of Brassica campestris L. Nature (Lond.) 171, 223–224 (1953).Google Scholar
  778. Champagnat, M.: Analyse expérimentale des caractères morphologiques de quelques Linaires C. R. Acad. Sci. (Paris) 247, 1642–1645 (1958).Google Scholar
  779. Church, A. H.: On the relation of phyllotaxis to mechanical laws. London: Williams and Norgate 1904.Google Scholar
  780. Cockayne, L.: On the significance of spines in Discaria toumatou, Raoul. (Rhamnace). New Phytologist 4, 79–85 (1905).Google Scholar
  781. Cockayne, L.: Observations concerning evolution derived from ecological studies in New Zealand. Trans. New Zealand Inst. 44, 1–50 (1911).Google Scholar
  782. Cross, G. L. A.: A comparison of the shoot apices of the sequoias. Amer. J. Bot. 30, 130–142 (1943).Google Scholar
  783. Crotty, W. J.: Trends in the pattern of primordial development with age in the fern Acrostichum daneaefolium. Amer J Bot. 42, 627–636 (1955).Google Scholar
  784. Cushman, J. A.: Study of localised stages of growth in some common New England plants. Amer. Naturalist 36, 865–885 (1902).Google Scholar
  785. Cushman, J. A.: Studies of localised stages in some plants of the botanic gardens of Harvard University. Amer. Naturalist 37, 243–259 (1903).Google Scholar
  786. Cushman, J. A.: Localised stages in common roadside plants. Amer Naturalist 38, 819–832 (1904).Google Scholar
  787. Cutter, E. G.: Experimental and analytical studies of pteridophytes. Xxix The effect of progressive starvation of the shoot apex of Dryopteris aristata Druce. Ann. Bot., N. S. 19, 485–499 (1955).Google Scholar
  788. Cutter, E. G.: Studies of morphogenesis in the Nymphaeaceae. I. Introduction: some aspects of the morphology of Nuphar lutea (L.) Sm. and Nymphaea alba L. Phytomorphology 7, 45–56 (1957).Google Scholar
  789. Dale, H. M.: Developmental studies of Elodea canadensis Mich. II. Experimental studies on morphological effects of darkness. Canad. J. Bot. 35, 51–64 (1957).Google Scholar
  790. Daoud, H. S., and W. V. Brown: Histological studies on xeromorphism in grasses: the relation of leaf position to structure. Phytomorphology 6, 186–195 (1956).Google Scholar
  791. Davies, P. A.: Leaf position in Ailanthus altissima in relation to the Fibonacci series. Amer. J. Bot. 26, 67–74 (1939).Google Scholar
  792. Delisle, A. F.: Morpho-genetic studies in the development of successive leaves in Aster with respect to relative growth, cellular differentiation and auxin relationships. Amer. J. Bot. 25, 420–430 (1938).Google Scholar
  793. Denne, M. P.: Leaf development in Narcissus pseudonarcissus L. I. The stem apex. Ann. Bot., N. S. 23, 121–129 (1959).Google Scholar
  794. Diels, L.: Jugendformen und Bliitenreife im Pflanzenreich. Berlin: Borntraeger 1906.Google Scholar
  795. Doorenbos, J.: “Rejuvenation” of Hedera helix in graft combinations. Proc. kon. ned. Akad. Wet. C 57, 99–102 (1954).Google Scholar
  796. Postal, R.: Einige Rekapitulationsversuche mit Pflanzen. Biol. Zbl. 79, 343–346 (1960).Google Scholar
  797. Eckhardt, T.: Über zweizählige Wirtelstellungen bei den Monokotylen und die Bedeutung der Symmetrieverhältnisse für ihr Verständnis. Bot. Archiv 42, 44–99 (1941).Google Scholar
  798. Eckhardt, T.: Kritische Untersuchungen über das primäre Dickenwachstum bei Monokotylen mit Ausblick auf dessen Verhältnis zur sekundären Verdickung. Bot. Archiv 42, 289–334 (1941).Google Scholar
  799. Edwards, P. ST. J.: The effects of various nitrogenous substances on growth and development in Marsilea drummondii A. Br. Dissert. ( Master’s), Univ., Manchester 1955.Google Scholar
  800. Edwards, P. ST. J., and A. Allsopp: The effects of changes in the inorganic nitrogen supply on the growth and development of Marsilea in aseptic culture. J. exp. Bot. 7, 194–202 (1956).Google Scholar
  801. Fahrenholtz, H.: Über den Einfluß von Licht und Schatten auf Sprosse von Holzpflanzen. Beih. bot. Zbl. 31 (I), 90–118 (1914).Google Scholar
  802. Familler, J: Die verschiedenen Blattformen von Campanula rotundifolia L. Flora (Jena) 87, 95–97 (1900).Google Scholar
  803. Farkas, G. L., T. Rajhathy: Untersuchungen über die xeromorphischen Gradienten einiger Kulturpflanzen. Planta (Berl.) 45, 535–548 (1955).Google Scholar
  804. FerrÉ, Y.DE: La signification des formes de jeunesse dans l’étude de l’évolution. Coll. internat. Ctre. nation. Rech. scient. 41, Evolution et phylogénie chez les végétaux, chpt. 12. 1952.Google Scholar
  805. Fisher, F. J. F.: Effect of temperature on leaf shape in Ranunculus. Nature (Lond.) 173, 406–407 (1954).Google Scholar
  806. Foster, A. S.: Structure and growth of the shoot apex of Cycas revoluta. Amer. J. Bot. 26, 372–385 (1939).Google Scholar
  807. Foster, A. S.: Further studies on zonal structure and growth of the shoot apex of Cycas revoluta Thunb. Amer. J. Bot. 27, 487–501 (1940).Google Scholar
  808. Foster, A. S.: Zonal structure and growth of the shoot apex in Microcycas calocoma. Amer. J. Bot. 30, 56–73 (1943).Google Scholar
  809. Foster, A. S.: Morphology and venation of the leaf in Quiina acutangula. Amer. J. Bot. 37, 159–171 (1950).Google Scholar
  810. Foster, A. S.: Venation and histology of the leaflets in Touroulia guianensis Aubl. and Froesia tricarpa Pires. Amer. J. Bot. 37, 848–862 (1950).Google Scholar
  811. Frank, H., O. Renner: Über Verjüngung bei Hedera helix L. Planta (Berl.) 47, 105–114 (1956).Google Scholar
  812. Frazer, H. L.: Seasonal changes in the shoot apex of Dryopteris aristata. Ann Bot., N. S. 10, 391–408 (1946).Google Scholar
  813. Gates, F. C.: The region of greatest stem thickness in Raphidophora. Amer. J. Bot. 3, 65–67 (1916).Google Scholar
  814. Gaussen, H.: L’évolution pseudocyclique. Coll. internat. Ctre. nation. Rech. scient. 41, Evolution et la phylogénie chez les végétaux, chpt. 13. 1952.Google Scholar
  815. Gifford, E. M.: The structure and development of the shoot apex of Ephedra altissima Desf. Bull. Torrey Bot. Club 70, 15–25 (1943).Google Scholar
  816. Gifford, E. M.: The structure and development of the shoot apex in certain woody Ranales. Amer. J. Bot. 37, 595–611 (1950).Google Scholar
  817. Gifford, E. M.: The shoot apex in angiosperms. Bot. Rev. 20, 477–529 (1954).Google Scholar
  818. Goebel, K.: Über die Jugendzustände der Pflanzen. Flora (Jena) 72, 1–44 (1889).Google Scholar
  819. Goebel, K.: Pflanzenbiologische Schilderungen, vol. 2, pt. 2. Marburg: Elwert 1893.Google Scholar
  820. Goebel, K.: Über die Jugendformen von Pflanzen und deren künstliche Wiederhervorrufung. S.-B. kg1. bayer. Akad Wiss., Math.-physik. Kl. 26, 447–497 (1896).Google Scholar
  821. Goebel, K.: Die Abhängigkeit der Blattform von Campanula rotundifolia von der Lichtintensität, und Bemerkungen über die Abhängigkeit der Heterophyllie anderer Pflanzen von äußeren Faktoren. Flora (Jena) 82, 1–13 (1896).Google Scholar
  822. Goebel, K.: Organographie der Pflanzen, pt. 1: Allgemeine Organographie. Jena: Fischer 1898. Engl. transln Organography of plants, pt. 1. Oxford: Univ. Press 1900.Google Scholar
  823. Goebel, K.: Einleitung in die experimentelle Morphologie der Pflanzen. Leipzig 1908.Google Scholar
  824. Goebel, K.: Organographie der Pflanzen, pt. 1: Allgemeine Organographie. Jena: Fischer, 3rd edn. 1913; 2nd edn. 1928.Google Scholar
  825. Goodwin, R. H.: The role of auxin in leaf development in Solidago species. Amer. J. Bot. 24, 43–51 (1937).Google Scholar
  826. Goebel, K.: Studies on the seedling development of Solidago rugosa Mill, Solidago sempervirens L., and the reciprocal hybrids between them. Amer. J. Bot. 24, 627–640 (1937).Google Scholar
  827. Gottlieb, J. E.: Development of the bracken Pteridium aquilinum (L.) Kuhn. 1. General morphology of the spore-ling. Phytomorphology 8, 184–194 (1958).Google Scholar
  828. Grif, L.: Die Entwicklung des Leitungssystems im Stengel von Bidens tripartitus L. Flora (Jena) 132, 151–173 (1938).Google Scholar
  829. Griffiths, B. M.: A note on the periodicity of leaf form in Taraxacum officinale. New Phytologist 23, 153–156 (1924).Google Scholar
  830. Groom, P.: Longitudinal symmetry in Phanerogamia. Philos. Trans. roy. Soc. B 200, 57–115 (1909).Google Scholar
  831. Grupe H.: Morphologischer, anatomischer und entwicklungsgeschichtlicher Vergleich zwischen verbänderten und unverbänderten Erbsen. Z. Bot. 44, 222–252 (1956).Google Scholar
  832. Rtel, K.: Studien an Vegetationspunkten einheimischer Lycopodien. Beitr. Biol. Pflanz. 25, 125–168 (1938).Google Scholar
  833. Hamilton, H. H.: A developmental study of the apical meristem in four varieties of Avena sativa grown at two temperatures. Amer. J. Bot. 35, 656–665 (1948).Google Scholar
  834. Hammond, D.: The expression of genes for leaf shape in Gossypium hirsutum L. and Gossypium arboreum L. I. The expression of genes for leaf shape in Gossypium hirsutum L. Amer. J. Bot. 28, 124–138 (1941).Google Scholar
  835. Hammond, D.: The expression of genes for leaf shape in Gossypium arboreum L. Amer. J. Bot. 28, 138–150 (1941).Google Scholar
  836. Heimsoh, C., G. S. Rabideau and W. G. Whaley: Vascular development and differentiation in two maize inbreds and their hybrid. Amer. J. Bot. 37, 84–93 (1950).Google Scholar
  837. Helm, J.: Das Erstarkungswachstum der Palmen und einiger anderer Monokotylen, zugleich ein Beitrag des Erstarkungswachstums der Monokotylen überhaupt. Planta (Berl.) 26, 319–364 (1936).Google Scholar
  838. Heslopharrison, J.: Auxin and sexuality in Cannabis sativa. Physiol. Plantarum (Cph.) 9, 588–597 (1956).Google Scholar
  839. Hess, C. W.: A physiological analysis of rooting in cuttings of juvenile and mature Hedera helix L. Doct. dissert., Cornell Univ., Ithaca, N.Y. See Dissert. Abstr. 17, 940.Google Scholar
  840. Hill, A. W.: Resupination studies of flowers and leaves. Ann Bot., N. S. 3, 871–887 (1939).Google Scholar
  841. Hofmeister, W.: Beiträge zur Kenntnis der Gefäßkryptogamen. II. Abh. kgl. sächs. Ges. Wiss. 5 (Math.-phys. Cl. 3), 603 (1857).Google Scholar
  842. Hudson, J. P., and I.I.I. Williams: Juvenility phenomena associated with crown gall. Nature (Lond.) 175, 814 (1955).Google Scholar
  843. Huxley, J. S.: Constant differential growth-ratios and their significance Nature (Loud.) 114, 895 (1924).Google Scholar
  844. Huxley, J. S.: Problems of relative growth. New York: McVeagh, Dial Press 1932.Google Scholar
  845. Iterson, G. Van: Mathematische und mikroscopisch-anatomische Studien über Blattstellungen. Jena: Fischer 1907.Google Scholar
  846. Jacobs, W. P., and B. Bullwinkel: Compensatory growth in Coleus shoots. Amer. J. Bot. 40, 385–392 (1953).Google Scholar
  847. Jacobs, W.P., R. V. Davis JR. and B. Bullwinkel: Some interrelations of compensatory growth, flowering, auxin, and day length in Coleus blumei Benth. In: Photoperiodism and related phenomena in plants and animals (R. B. Withrow, ed.; Amer. Assoc. Adv. Sci. Publ. No. 44), pp. 393–407. Washington, D.C. 1959.Google Scholar
  848. Jonnson, M. A.: Structure of the shoot apex in Zamia. Bot. Gaz. 101, 189–203 (1939).Google Scholar
  849. Kasapligil, B.: Morphological and ontogenetic studies of Umbellularia californica Nutt. and Laurus nobilis L. Univ. Calif. Publ. Bot. 25, 115–240 (1951).Google Scholar
  850. Kemp, M.: Morphological and ontogenetic studies on Torreya californica Torr. I. The vegetative apex of the megasporangiate tree. Amer. J. Bot. 30, 504–517 (1943).Google Scholar
  851. Klebs, G.: Über Probleme der Entwickelung. Biol. Zbl. 24, 257–267, 289–305, 481–501, 545–559, 601–614 (1904).Google Scholar
  852. Kliem, F: Vegetationspunkt und Blattanlage bei Avena sativa. Beitr. Biol. Pflanz. 24, 281–310 (1936).Google Scholar
  853. Knapp, R.: Über Wechselwirkung zwischen den Einflüssen von Temperatur, Licht und Nährstoffkonzentration auf die Pflanzenentwicklung. Ber. dtsch. bot. Ges. 70, 173–190 (1957).Google Scholar
  854. Hler, D.: Die Entwicklung von Cannabis sativa unter dem Einfluß verschiedener Tageslängen. Physiol. Plantarum (Cph.) 11, 249–259 (1958).Google Scholar
  855. Korody, E.: Studien am Sproßvegetationspunkt von Abies concolor, Picea excelsa und Pinus montana. Beitr. Biol. Pflanz. 25, 23–59 (1938).Google Scholar
  856. Kranz, G.: Zur Kenntnis der wechselnden Blattform des Efeus und ihrer Ursachen. Flora (Jena) 125, 289–320 (1931).Google Scholar
  857. Lakon, G.: Über die Bedingungen der Heterophyllie bei Petroselinum sativum Hoffm. Flora (Jena) 110, 34–51 (1918).Google Scholar
  858. Lance, A.: Évolution histologique de l’apex d’Aster sinensis L. C. R. Acad. Sci. (Paris) 238, 1442–1444 (1954).Google Scholar
  859. Lance, A.: Évolution histologique du point végétatif de Chrysanthemum indicum L. C. R. Acad. Sci. (Paris) 239, 80–82 (1954).Google Scholar
  860. Lance, A.: Observations cytologiques sur l’évolution et le fonctionnement du méristème apical de Chrysanthemum segetum L. C. R. Acad. Sci. (Paris) 239, 1664–1666 (1954).Google Scholar
  861. Lance, A.: Recherches cytologiques sur l’évolution de quelques méristèmes apicaux et sur ses variations provoquées par des traitements photoperiodiques. Ann. Sci. nat., Bot,. Sér. XI 18, 91–421 (1957).Google Scholar
  862. Ledin, R. B.: The vegetative shoot apex of Zea mays. Amer. J. Bot. 41, 11–17 (1954).Google Scholar
  863. Libber, H., u. R. Kirschner: Zur Beeinflussung der Blattbildung durch Morphoregulatoren. I. Die Einwirkung von 2,4-Dichlorophenoxyessigsäure auf Erodium cicutarium. Planta (Berl.) 50, 211–237 (1957).Google Scholar
  864. Loiseau, J. E.: Observations et expérimentation sur la phyllotaxie et le fonctionnement du sommet végétatif chez quelques Balsaminacées. Ann. Sci. nat., Bot., Sér. XI 20, 1–214 (1959).Google Scholar
  865. Lothelier, A.: Recherches sur les plantes à piquants. II. Influence de l’état hygrometrique et de l’éclairement sur les tiges et les feuilles des plantes it piquants. Rev. gén. Bot. 5, 518–528 (1893).Google Scholar
  866. LundeoÂRdh, H.: Experimentell-morphologische Beobachtungen. Flora (Jena) 107, 433–449 (1915).Google Scholar
  867. Martinovsky, J. O.: Beitrag zur Morphologie, Phylogenesis und Entwicklungsgeschichte der Gattung Gagea Salisb. Beih. bot. Zbl. 46 I, 435–459 (1930).Google Scholar
  868. Maximov, N. A.: The plant in relation to water [Russian 1925]. English transln London: Allen and Unwin 1929.Google Scholar
  869. Mcnair, J. B.: Some comparisons of chemical ontogeny with chemical phylogeny in vascular plants. Lloydia 8, 145–169 (1945).Google Scholar
  870. MtOhelini, F. J.: The plastochron index in developmental studies of Xanthium italicum Moretti. Amer. J. Bot. 45, 525–533 (1958).Google Scholar
  871. Millener, L. H.: An experimental demonstration of the dependence of phyllotaxis on rate of growth. Nature (tond.) 169, 1052–1053 (1952).Google Scholar
  872. Millington, W. F., and E. L. Fisr: Shoot development in Xanthium pennsylvanicum. I. The vegetative plant. Amer. J. Bot. 43, 655–665 (1956).Google Scholar
  873. Molisch, H.: Die Lebensdauer der Pflanzen. Jena: Fischer 1929. English edn. by E. H. Fulling: The longevity of plants. New York: The translator 1938.Google Scholar
  874. Moll, J. W.: De invloed van celdeeling en celstreckung of den groei. Diss. Utrecht 1876. Cited in Tammes 1903.Google Scholar
  875. Morton, A. G., and D. J. Watson: A physiological study of leaf growth. Ann. Bot., N. S. 12, 281–310 (1948).Google Scholar
  876. Mullendore, N.: Seedling anatomy of Brachypodium distachyum. Bot. Gaz. 109, 341–348 (1948).Google Scholar
  877. Njoku, E.: Studies in the morphogenesis of leaves. XI. The effect of light intensity on leaf shape in Ipomoea caerulea. New Phytologist 55, 91–110 (1956).Google Scholar
  878. Njoku, E.: The effect of defoliation on leaf shape in Ipomoea caerulea. New Phytologist 55, 213–228 (1956).Google Scholar
  879. Njoku, E.: The effect of mineral nutrition and temperature on leaf shape in Ipomoea caerulea. New Phytologist 56, 154–171 (1957).Google Scholar
  880. Njoku, E.: Effect of gibberellic acid on leaf form. Nature (tond.) 182, 1097–1098 (1958).Google Scholar
  881. Nordhausen, M.: Über Sonnen- und Schattenblätter. II. Ber. dtsch. bot. Ges. 30, 433–503 (1912).Google Scholar
  882. Olsen, C.: The significance of concentration for the rate of ion adsorption by higher plants in water culture. II. Experiments with aquatic plants. Physiol. Plantarum (Cph.) 6, 837–843 (1953).Google Scholar
  883. Orshansky, G.: Seasonal dimorphism in Ononis natrix L. Palestine J. Bot., Jerusalem Ser. 1, 233–234 (1938).Google Scholar
  884. OrsÓS, O.: Die Gewebeentwicklung bei der Kohlrabiknolle. Flora (Jena) 135, 6–20 (1941).Google Scholar
  885. Parke, R. V.: Growth periodicity and the shoot tip of Abies concolor. Amer. J. Bot. 46, 110–118 (1959).Google Scholar
  886. Paxman, G. J.: Differentiation and stability in the development of Nicotiana rustica. Ann. Bot., N. S. 20, 331–347 (1956).Google Scholar
  887. Pearsall, W. H., and A. M. Hanby: Growth studies. V. Factors affecting the development and form of leaves. Ann. Bot. 40, 85–103 (1926).Google Scholar
  888. Penon, G.: Parastiques et hélices foliaires chez deux Filicinées: Polystichum filix-mas Roth et Athyrium filix-femina Roth. Rev. gén. Bot. 51, 616–656 (1951).Google Scholar
  889. Phelouzat, R.: Disposition des feuilles dans les premiers stades du développement chez quelques dicotylédones. Rev. gén. Bot. 62, 454–497 (1955).Google Scholar
  890. Philipson, W. R.: The ontogeny of the shoot apex in dicotyledons. Biol. Rev. 24, 21–50 (1959).Google Scholar
  891. Popham, R. A.: Cytogenesis and zonation in the shoot apex of Chrysanthemum morifolium. Amer. J. Bot. 45, 198–206 (1958).Google Scholar
  892. Popham, R. A.: Variability among vegetative shoot apices. Bull. Torrey Bot. Club 87, 139–150 (1960).Google Scholar
  893. Pound, G. S.: The effect of air temperature on virus concentration and leaf morphology of mosaic infested horseradish. J. agric. Res. 78, 161–170 (1939).Google Scholar
  894. Priestley, J. H., and L. I. Scott: The vascular anatomy of Helianthus annuus L. Proc. L.eds Philos. Soc. (Sci.) 3, 159–173 (1936).Google Scholar
  895. Rauh, W., F. Rappert: Über das Vorkommen und die Histogenese von Scheitelgruben bei krautigen Dicotylen, mit besonderer Berücksichtigung der Ganz- und Halbrosettenpflanzen. Planta (Berl.) 43, 325–360 (1954).Google Scholar
  896. Rauh, W., H. Reznik: Histogenetische Untersuchungen an Blüten- und Infloreszenzachsen. I. Die Histogenese becherförmiger Blüten- und Infloreszenzachsen sowie der Blütenachsen einiger Rosoideen. S.-B. Heidelberg. Akad. Wiss., Math.-nat. Kl. 1951, No. 3 (1951).Google Scholar
  897. Rauh, W., H. Reznik: Die Histogenese der Achsen köpfchenförmiger Infloreszenzen. Beitr. Biol. Pflanz. 29, 233–296 (1953).Google Scholar
  898. Rea, M. W.: Stomata and hydathodes in Campanula rotundifolia L. and their relation to environment. New Phytologist 20, 56–72 (1921).Google Scholar
  899. Reeve, R. M.: The “tunica-corpus” concept and development of shoot apices in certain dicotyledons. Amer. J. Bot. 35, 65–75 (1948).Google Scholar
  900. Reeve, R. M.: Late embryogeny and histogenesis in Pisum. Amer. J. Bot. 35, 591–602 (1948).Google Scholar
  901. Richards, F. J.: On the use of simultaneous observations on successive leaves for the study of physiological change in relation to leaf age. Ann Bot. 48, 497–504 (1934).Google Scholar
  902. Richards, F. J.: The geometry of phyllotaxis and its origin. Symp. Soc. exp. Biol. 2, 217–245 (1948).Google Scholar
  903. Richards, F. J.: Phyllotaxis: its quantitative expression and relation to growth in the apex. Philos. Trans. roy. Soc. B 235, 509–564 (1951).Google Scholar
  904. Rippel, A.: Der Einfluß der Bodentrockenheit auf den anatomischen Bau der Pflanzen. Beih. bot. Zbl. 36 I, 187–260 (1919).Google Scholar
  905. Robbrns, W. J.: Physiological aspects of ageing in plants. Amer. J. Bot. 44, 289–294 (1957).Google Scholar
  906. Robbrns, W. J.: Gibberellic acid and the reversal of adult Hedera to a juvenile state. Amer. J. Bot. 44, 743–746 (1957).Google Scholar
  907. Robbrns, W. J.: Further observations on juvenile and adult Hedera. Amer. J. Bot. 47, 485–491 (1960).Google Scholar
  908. Bbelen, G.: Über Heterophyllie bei Arabidopsis thaliana (L.) Heynh. Ber. dtsch. bot. Ges. 70, 39–44 (1957).Google Scholar
  909. Sler, P.: Histologische Studien am Vegetationspunkt von Triticum vulgare. Planta (Berl.) 5, 28–69 (1928).Google Scholar
  910. Rohrer, G.: Experimentelle Untersuchungen über die Entwickelung hyperotropher und verzwergter Primärblätter und Kotyledonen. Beih. bot. Zbl. 32 I, 373–430 (1915).Google Scholar
  911. Sacher, J. A.: The structure and seasonal activity of the shoot apices of Pinus lambertiana and Pinus ponderosa. Amer. J. Bot. 41, 749–759 (1954).Google Scholar
  912. Salisbury, E. J.: On the causes and ecological significance of stomatal frequency with special reference to the woodland flora. Philos. Trans. roy. Soc. B 216, 1–65 (1927).Google Scholar
  913. Schaffalitzkydemuckadell, M.: Investigations on aging of apical meristems in woody plants and its importance in silviculture. Forst. Forsegsvaes. Danmark 25, 310–455 (1959).Google Scholar
  914. Schaffner, J. H.: The change from opposite to alternate phyllotaxy and repeated rejuvenations in hemp by means of changed photoperiodicity. Ecology 7, 315–325 (1926).Google Scholar
  915. Schaffner, J. H.: Further experiments in repeated rejuvenations in hemp and their bearing on the general problems of sex. Amer. J. Bot. 15, 177–185 (1928).Google Scholar
  916. Schneider, R.: Histogenetische Untersuchungen über den Bau der Laubblätter, insbesondere ihres Mesophylls. Ost. bot. Z. 99, 252–285 (1952).Google Scholar
  917. Schramm, R.: Über die anatomischen Jugendformen der Blätter einheimischer Holzpflanzen. Flora (Jena) 104, 225–295 (1912).Google Scholar
  918. SchÜEpp, O.: Über periodische Formbildung bei Pflanzen. Biol. Rev. 13, 59–92 (1938).Google Scholar
  919. Scurfield, G., and C. W. E. Moore: Effects of gibberellic acid on species of Eucalyptus. Nature (Loud.) 181, 1276–1277 (1958).Google Scholar
  920. Senohas, K.: Histogenetisehe Studien an Sproßbegetationspunkten dicotyler Pflanzen. I. Bau und Histogenese des Sproß-Scheitelmeristems einiger Cruciferen. Beitr. Biol. Pflanz. 33, 85–113 (1957).Google Scholar
  921. Senohas, K.: Gestalt und Architektonik des ruhenden, embryonalen Vegetationspunktes. Beitr. Biol. Pflanz. 33, 325–370 (1957).Google Scholar
  922. Sengupta, J. C., and S. K. Payne: Leaf heteromorphism and photoperiods in Sesamum orientale L. Nature (Lond.) 160, 510 (1947).Google Scholar
  923. Sharman, B. C.: Leaf and bud initiation in the Gramineae. Bot. Gaz. 106, 269–289 (1945).Google Scholar
  924. Shull, G. H.: Stages in the development of Sium cicutaefolium. Carnegie Inst. Wash. Monogr. No. 30 (1905).Google Scholar
  925. Sinnott, E. W.: The relation between body size and organ size in plants. Amer. Naturalist 55, 385–403 (1921).Google Scholar
  926. Skutch, A. F.: Anatomy of leaf of banana, Musa sapientum L. var. hort. Gros Michel. Bot. Gaz. 84, 337–391 (1927).Google Scholar
  927. Snow, R.: Phyllotaxis of Kniphofia and Lilium candidum. New Phytologist 57, 160–167 (1958).Google Scholar
  928. Steeves, T. A., H. P. Gabriel and M. W. Steeves: Growth in sterile culture of excised leaves of flowering plants. Science 126, 350–351 (1957).PubMedGoogle Scholar
  929. Steeves, T. A., and I. M. Sussex: Studies on the development of excised leaves in sterile culture. Amer. J. Bot. 44, 665–673 (1957).Google Scholar
  930. Steeves, T. A., and R. H. Wetmore: Morphogenetic studies on Osmunda cinnamomea L.: Some aspects of the general morphology. Phytomorphology 3, 339–354 (1953).Google Scholar
  931. Stein, O. L., and E. C. Abbe: Application of SchÜEpp’S method to form analysis of the shoot apex in maize. Proc. Minnesota Acad. Sci. 17, 97–103 (1949).Google Scholar
  932. Stephens, S. G.: The genetic organization of leaf shape development in the genus Gossypium. J. Genet. 46, 28–51 (1944).Google Scholar
  933. Stephens, S. G.: A genetic survey of leaf shape in New World cottons — a problem in critical identification of alleles. J. Genet. 46, 313–344 (1944).Google Scholar
  934. Stephens, S. G.: The modifier concept. A developmental analysis of leaf shape `modification’ in New World cottons. J. Genet. 46, 331–344 (1944).Google Scholar
  935. Stephens, S. G.: Canalization of gene action in the Gossypium leaf shape system and its bearing on certain evolutionary mechanisms. J. Genet. 46, 345–357 (1944).Google Scholar
  936. Sterling, C.: Organization of the shoot of Pseudotsuga taxo f ilia (Lamb) Britt. I. Structure of the shoot apex. Amer. J. Bot. 33, 742–750 (1946).Google Scholar
  937. Sterling, C.: Growth and vascular development in the shoot apex of Sequoia sempervirens (Lamb.) Endl. I. Structure and growth of the shoot apex. Amer. J. Bot. 32, 118–126 (1945).Google Scholar
  938. Sterling, C.: Dormant apical bud of Agathis lanceolata. Bot. Gaz. 120, 49–53 (1958).Google Scholar
  939. Sussex, I. M.: A morphological and experimental study of leaf development in Leptopteris hymenophylloides (A. Rich.) Presl. Phytomorphology 8, 96–107 (1958).Google Scholar
  940. Sussex, I. M., and M. E. Clutter: A study of the effect of externally supplied sucrose on the morphology of excised fern leaves in vitro. Phytomorphology 10, 87–99 (1960).Google Scholar
  941. Sussex, I. M., and T. A. Steeves: Growth of excised fern leaves in sterile culture. Nature (Lond.) 172, 624 (1953).Google Scholar
  942. Experiments on the control of fertility of fern leaves in sterile culture. Bot. Gaz. 119, 203–208 (1958).Google Scholar
  943. Tammes, T.: Die Periodicität morphologischer Erscheinungen bei den Pflanzen. Verh. kon. ned. Akad Wet., Sect. II 9, 1–148 (1903).Google Scholar
  944. Troll, W.: Vergleichende Morphologie der höheren Pflanzen. Berlin: Borntraeger. Vol. 1, pt. 1 (1937); pt. 2, 1st fasc. (1938); pt. 2, 2nd and 3rd fasc. (1939).Google Scholar
  945. Troll, W., U. W. Rauh: Das Erstarkungswachtums krautiger Dicotylen, mit besonderer Berücksichtigung der primären Verdickungsvorgänge. S.-B. Heidelb. Akad. Wiss., Math.-nat. Kl. 1950, No. 1.Google Scholar
  946. Vischer, W.: Experimentelle Beiträge zur Kenntnis der Jugend- und Folgeformen xerophiler Pflanzen. Flora (Jena) 108, 1–72 (1915).Google Scholar
  947. Vonmaltzahn, K. E.: A study of size differences in two strains of Cucurbita pepo L. I. Gross size differences. Canad. J. Bot. 35, 809–830 (1957).Google Scholar
  948. Vonmaltzahn, K. E.: Histological and cellular size differences. Canad. J. Bot. 35, 831–843 (1957).Google Scholar
  949. Wagner, W. H.: Types of foliar dichotomy in living ferns. Amer. J. Bot. 39, 578–592 (1952).Google Scholar
  950. Wagner, W. H.: Heteroblastic leaf morphology in juvenile plants of Dicranopteris linearis (Gleicheniace). Phytomorphology 7, 1–6 (1957).Google Scholar
  951. Wardlaw, C. W.: Size in relation to internal morphology. I. Distribution of the xylem in the vascular system of Psilotum, Tmesipteris and Lycopodium. Trans. roy. Soc. Edinb. 53, 503–532 (1924).Google Scholar
  952. Wardlaw, C. W.: The vascular system of Selaginella. Trans. roy. Soc. Edinb. 54, 281–308 (1925).Google Scholar
  953. Wardlaw, C. W.: The vascular system of roots. Trans. roy. Soc. Edinb. 56, 19–55 (1928).Google Scholar
  954. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Iii. Stelar morphology: the initial differentiation of vascular tissue. Ann. Bot., N. S. 8, 173–188 (1944).Google Scholar
  955. Wardlaw, C. W.: The size-structure correlation in the Filicinean vascular system. Ann Bot., N. S. 11, 203–217 (1947).Google Scholar
  956. Wardlaw, C. W.: On the shoot apex in a tree fern, Cyathea manniana Hooker. Ann. Bot., N. S. 12, 371–384 (1948).Google Scholar
  957. Wardlaw, C. W.: The nutritional status of the apex and morphogenesis. Ann. Bot., N. S. 16, 207–218 (1952).Google Scholar
  958. Wardlaw, C. W.: Phylogeny and morphogenesis. London: Macmillan 1952.Google Scholar
  959. Wardlaw, C. W.: Morphogenesis in plants. London: Methuen 1952.Google Scholar
  960. Wardlaw, C. W.: Experimental and analytical studies of pteridophytes. Xxxiv. On the shoot apex of the bird’s nest fern, A splenium nidus L. Ann Bot., N. S. 20, 363–374 (1956).Google Scholar
  961. Wareing, P. F.: Problems of juvenility and flowering in trees. J. Linn. Soc. Lond., Bot. 56, 282–289 (1959).Google Scholar
  962. Weber, H.:Histogenetische Untersuchungen am SproBscheitel von Espeletia mit einem Überblick über das Scheitelwachstum überhaupt. Akad. d. Wiss. u. Lit. Mainz, Abh. Math.-nat. Kl. 1956, No. 9.Google Scholar
  963. Wenck, U.: Die Wirkung von Wuchs- und Hemmstoffen auf die Blattform. Z. Bot. 40, 33–51 (1952).Google Scholar
  964. Went, F. W.: The development of stems and leaves. In: Plant growth substances (F. SxooG, ed.), pp. 287–298. Madison: Univ. of Wisconsin Press 1951.Google Scholar
  965. Wetmore, R. H.: Carbohydrate supply and leaf development in sporeling ferns. Science 118, 578 (1953).Google Scholar
  966. Wetmore, R. H.: The use of “in vitro” cultures in the investigation of growth and differentiation in vascular plants. Brookhaven Symp. Biol. 6, 22–40 (1954).Google Scholar
  967. Wetter, R., C. Wetter: Studien über das Erstarkungswachstum und das primäre Dickenwachstum bei leptosporangiaten Farnen. Flora (Jena) 141, 598–631 (1954).Google Scholar
  968. Whaley, W. G.: Developmental changes in apical meristems. Proc. nat. Acad. Sci. (Wash.) 25, 445–448 (1939).Google Scholar
  969. Whaley, W. G.: A developmental analysis of heterosis in Lycopersicon. I. The relation of growth rate to heterosis. Amer. J. Bot. 26, 609–616 (1939).Google Scholar
  970. Whaley, W. G.: The role of the apical meristem in heterosis. Amer. J. Bot. 26, 682–690 (1939).Google Scholar
  971. White, D. J. B.: The architecture of the stem apex and the origin and development of the axillary buds in seedlings of Acer pseudoplatanus L. Ann. Bot., N. S. 19, 437–449 (1955).Google Scholar
  972. Yapr, R. H.: Spiraea ulmaria L., and its bearing on the problem of xeromorphy in marsh plants. Ann. Bot. 26, 815–871 (1912).Google Scholar
  973. Zalenski, V.: Über die Ausbildung der Nervation bei verschiedenen Pflanzen. Ber. dtsch. bot. Ges. 20, 433–440 (1902).Google Scholar
  974. Zalenski, V.: Materials for the study of the quantitative anatomy of different leaves of the same plant. [In Russ.] Mem. polytech. Inst. Kiev 4, 1–203 (1904).Cited after Maximov 1929.Google Scholar
  975. Allsopp, A.: Juvenile stages of plants and the nutritional states of the shoot apex. Nature (Lund.) 173, 1032–1035 (1954).Google Scholar
  976. Ashby, E.: Studies in the morphogenesis of leaves. I. An essay on leaf shape. New Phytologist 47, 153–176 (1948).Google Scholar
  977. Baldini, E., and B. Mosse: Observations on the origin and development of sphaeroblasts in the apple. J. hort. Sci. 31, 156–162 (1956).Google Scholar
  978. Baldini, E., F. Scaramuzzi: Indagini et osservazioni sugli sferoblasti dell’olivo. Ann Sper. agrar., N. S. 11, 723–740 (1957).Google Scholar
  979. Ballard, W. R.: Methods and problems in pear and apple breeding. Maryland Agric. Exp. Stat. Bull. No 196 (1916).Google Scholar
  980. Beissner, L.: Über Jugendformen von Pflanzen, speciell Coniferen. Ber. dtsch. bot. Ges. 6, Lxxxiii-Lxxxvi (1888).Google Scholar
  981. Benedict, H.M.: Senile changes in leaves of Vitis vulpin L. and certain other plants. Mem. N. Y. (Cornell) Agric. Exp. Stat. No 7, pp. 277–278, 281–370 (1915).Google Scholar
  982. Benedict, H.M.: Further considerations of the size of vein islets of leaves as an age-determinant Science 55, 399–400 (1922).Google Scholar
  983. Beijerinck, M. N.: Beissners Untersuchungen bezüglich der Retinosporafrage. Bot. Ztg 48, 517–524, 533–541 (1890).Google Scholar
  984. Braddick, J.: Letter to the secretary. Trans. hort. Soc. Lond. 4, 410–411 (1822).Google Scholar
  985. Chase, S. B.: Propagation of thornless honey locust. J. Forestry 45, 715–722 (1947).Google Scholar
  986. Cooper, W. C., and A. Peynado: Effect of gibberellic acid on growth and dormancy in citrus. Proc. Amer. Soc. hort. Sci. 72, 284–289 (1958).Google Scholar
  987. Dewier, H.: Chimeral apple sports and their propagation through adventitious buds. J. Hered. 39, 235–242 (1948).Google Scholar
  988. Diels, L.: Jugendformen und Bliitenreife im Pflanzenreich. Berlin: Borntraeger 1906.Google Scholar
  989. Doorenbos, J.: “Rejuvenation” of Hedera helix in graft combinations. Proc. kon. ned. Akad. Wet. C 57, 99–102 (1954).Google Scholar
  990. Doorenbos, J.: Shortening the breeding cycle of Rhododendron. Euphytica 4, 141–146 (1955).Google Scholar
  991. Frank, H., O. Renner: Über Verjüngung bei Hedera helix L. Planta (Berl.) 47, 105–114 (1956).Google Scholar
  992. Fritzsche, R.: Untersuchungen über die Jugendformen des Apfel- und Birnbaumes und ihre Konsequenzen für die Unterlagen- und Sortenzüchtung. Ber. schweiz. bot. Ges. 58, 207–268 (1948).Google Scholar
  993. Frost, H. B.: Genetics and breeding. Chpt. IX in Webber and Batchelor 1948, pp. 817–913.Google Scholar
  994. Furlani, J.: Zur Heterophyllie von Hedera helix L. Österr. bot. Z. 5, 153–169 (1914).Google Scholar
  995. Furr, J. R., W. C. Cooper and P. C. Reece: An investigation of flower formation in adult and juvenile citrus trees. Amer. J. Bot. 34, 1–8 (1947).Google Scholar
  996. Gardner, F. E.: The relationship between tree age and the rooting of cuttings. Proc. Amer. Soc. hort. Sci. 26, 101–104 (1929).Google Scholar
  997. Garner, R. J.: Propagation by cuttings and layers. Imp. Bur. of Hort., Techn. Comm. No 14 (1944).Google Scholar
  998. Garner, R. J., and E. S. J. Hatcher: The interplay of factors influencing rooting behaviour of shoot cuttings. Rep. 14th internat. Hort. Congr. (The Hague-Scheveningen 1955 ), pp. 204–214 (1956).Google Scholar
  999. Goebel, K.: Über Jugendformen von Pflanzen und deren künstliche Wiederhervorrufung. S.-B. kgl.-bayer. Akad. Wiss., math.-phys. Kl. 26, 447–497 (1896).Google Scholar
  1000. Goebel, K.: Organographie der Pflanzen, vol. I. Jena: Fischer. 1st edn. 1898, 2nd edn. 1913, 3rd edn. 1928.Google Scholar
  1001. Gregory, L. E.: Una nota sobre el enraizamiento de clones de Hevea. Turrialba 1, 201–203 (1951).Google Scholar
  1002. Harwood, W. S.: New creations in plant life, 2nd edn. New York: Macmillan 1919.Google Scholar
  1003. Hatcher, E. S. J., and R. J. Garner: The production of sphaeroblast shoots of apple for cuttings. Rep. East Mailing Res. Stat. for 1954, pp. 73–75 (1955).Google Scholar
  1004. Hiemeleers, J.: Les hormones en fruticulture. Rev. Agric. Bruxelles 6, 1030–1053 (1953).Google Scholar
  1005. Hudson, J. P., and I. H. Williams: Juvenility phenomena associated with crown gall. Nature (Lond.) 175, 814 (1955).Google Scholar
  1006. Jontersson, H.: Hereditary precocious flowering in Betula verrucosa and Betula pubescens. Hereditas 35, 112–114 (1940).Google Scholar
  1007. Kemmer, E.: Über Blattmodifikationen bei Apfelgehölzen. Züchter 17 /18, 378–382 (1947).Google Scholar
  1008. Kemmer, E.: Beitrag zur Frage der „Jugendform“ bei Apfelgehölzen. Züchter 20, 302–305 (1950).Google Scholar
  1009. Kemmer, E.: Über das primäre und das fertile Stadium bei Apfelgehölzen. Züchter 23, 122–127 (1953).Google Scholar
  1010. Kemmer, E.: Stadienbeobachtungen an Kernobstgehölzen. Züchter 28, 367–377 (1958).Google Scholar
  1011. Kemmer, E., I. Tae: Entwicklungsfragen bei Apfelgehölzen. Züchter 24, 346–352 (1954).Google Scholar
  1012. Knight, T. A.: Observations on the method of producing new and early fruit. Trans. hort. Soc. London 1, 30 40 (1820).Google Scholar
  1013. Koloiiec, I. A.: On phasic readiness for fruit bearing and the pre-fruit bearing period in fruit tree seedlings. [Russ.] Izv. Akad. Nauk Sssr., Ser. biol. 1952, No 3, 89–104.Google Scholar
  1014. Kranz, G.: Zur Kenntnis der wechselnden Blatt form des Efeus und ihrer Ursachen. Flora (Jena) 125, 289–320 (1931).Google Scholar
  1015. Krick, F.: Über die Rindenknollen der Rotbuche. Biblioth. bot. No 25 (1891).Google Scholar
  1016. Lindley, J.: The theory of horticulture. London 1840.Google Scholar
  1017. Longman, K. A., and P. F. Wareing: Early induction of flowering in birch seedlings. Nature (Lond.) 184, 2037–2038 (1959).Google Scholar
  1018. Maurer, K. J.: Zur Frage des „primären“ und „fertilen” Stadiums bei Apfelsämlingen. Mitt. Klosterneuburg, Ser. B 7, 187–191 (1957).Google Scholar
  1019. Michaelis, P.: Über die Jugendform der Nachkommen von Chamaecyparis pisifera f. squarrosa and f. typica und ihre Stabilität. Dtsch. Baumschule 3, 219–221 (1951).Google Scholar
  1020. Micnurin, I. V.: Selected works. Moscow: Foreign Lang. Publ. House 1949.Google Scholar
  1021. Molisch, H.: Pflanzenphysiologie als Theorie der Gärtnerei, 3rd edn. Jena: Fischer 1920.Google Scholar
  1022. Murawski, H.: Untersuchungen zur Stadienentwicklung an Apfelsämlingen als Grundlage für die Obstzüchtung. Arch. Gartenb. 3, 255–273 (1955).Google Scholar
  1023. Muzik, T. J., and H. J. Cruzado: Formation and rooting of adventitious shoots in Hevea brasiliensis. Amer. J. Bot. 43, 503–508 (1956).Google Scholar
  1024. Muzik, T. J., and H. J. Cruzado: Transmission of juvenile rooting ability from seedlings to adults of Hevea brasiliensis. Nature (Lond.) 181, 1288 (1958).Google Scholar
  1025. Natividade, J. V.: Juvenilidade na Olea europea. Agron. lusit. 19, 145–159 (1957).Google Scholar
  1026. Nillesen, G. A., and W. K. H. Karstens: Remarks on the morphology and anatomy of the dimorphous leaves of Marcgravia umbellata Jacq. Proc. kon. ned. Akad. Wet. C 58, 554–566 (1955).Google Scholar
  1027. Nordhausen, M.: Über Sonnen- und Schattenblätter. II. Ber. dtsch. bot. Ges. 30, 483–503 (1912).Google Scholar
  1028. O’Rourke, F. L.: The effect of juvenility on plant propagation. Nat. hort. Mag. 31, 278–282 (1952).Google Scholar
  1029. Paardekooper, E. C.: The occurrence, properties and possible application of juvenile type buddings. Arch. Rubber Cult. 33, 141–157 (1956).Google Scholar
  1030. Passecker, F.: Entwickelnngsphasen und vegetative Vermehrung holziger Gewächse. Zbl. ges. Forst-u. Holzwirtsch. 70, 270–292 (1947).Google Scholar
  1031. Passecker, F.: Die Entwicklungsphasen der Gehölzpflanzen und ihre praktische Bedeutung. Angewandte Pflanzensoziologie, Festschr. E. Aichinger, S. 88–102. Wien: Springer 1954.Google Scholar
  1032. PoTapenko, J. (I.): Acceleration of development and fruiting of fruit-tree seedlings C R (Dokl.) Acad. Sci. U.R.S.S. 28, 839–842 (1939).Google Scholar
  1033. RÉMY, P.: L’étude de la période juvénile chez les arbres fruitiers. (Bibliographie.) Rev. horticole 1951, No 2138, 543–547.Google Scholar
  1034. Robbins, W. J.: Physiological aspects of aging in plants. Amer. J. Bot. 44, 289–294 (1957).Google Scholar
  1035. Robbins, W. J.: Gibberellic acid and the reversal of adult Hedera to a juvenile state. Amer. J. Bot. 44, 743–746 (1957).Google Scholar
  1036. Robbins, W. J.: Further observations on juvenile and adult Hedera. Amer. J. Bot. 47, 485–491 (1960).Google Scholar
  1037. Rohmeder, E.: Altersphasenentwicklung der Waldbäume und Forstpflanzenzüchtung. Silvae Genet. 6, 136–142 (1957).Google Scholar
  1038. Romberg L. D.: Some characteristics of the juvenile and the bearing pecan tree. Proc. Amer. Soc. hort. Sci. 44, 255–259 (1944).Google Scholar
  1039. Rudloff C. F.: Einiges über die Obstzüchtung in Deutschland. Züchter 3, 197–204 (1931).Google Scholar
  1040. Sax, K.: The control of vegetative growth and the induction of early fruiting in apple trees. Proc. Amer. Soc. hort. Sci. 69, 68–74 (1957).Google Scholar
  1041. Sax, K., and A. G. Jonxson: Induction of early flowering of ornamental apple trees. J. Arnold Arboret. 36, 110–114 (1955).Google Scholar
  1042. Schaffalttzkydemuckadell, M.: Juvenile stages in woody plants. Physiol. Plantarum (Cph.) 7, 782–796 (1954).Google Scholar
  1043. Schaffalttzkydemuckadell, M.: Investigations on aging of apical meristems in woody plants and its importance in silviculture. Forstl. Forsögsv. i Danmark 25, 309–455 (1959).Google Scholar
  1044. Schramm, R.: Über die anatomischen Jugendformen der Blätter einheimischer Holzpflanzen. Flora (Jena) 104, 225–297 (1912).Google Scholar
  1045. Snort, E.: Procesos de „envejecimiento“ en los vegetales. Cie. e Investig. (B. Aires) 12, 388–404 (1955).Google Scholar
  1046. Sheets, L.: A note on shortening of the juvenile phase in cherry seedlings. Euphytica (Wageningen) 5, 117–118 (1956).Google Scholar
  1047. Sorauer, P., O. Appel: Handbuch der Pflanzenkrankheiten, 6th edn., vol. 1, pt. 2. Berlin: Parey 1934.Google Scholar
  1048. Spinks, G. T.: The treatment of seedling apple trees to induce early fruiting. J. Pomol. hort. Sci. 4, 141–145 (1925).Google Scholar
  1049. Stokes, P., and K. Verkerk: Flower formation in Brussels sprouts. Med. Landbouwhogesch. Wageningen 50, 141–160 (1951).Google Scholar
  1050. Stoutemyer, V. T.: Regeneration in various types of apple wood. Iowa Agric. Exp. Stat. Res. Bull. No 220, pp. 307–352 (1937).Google Scholar
  1051. Stoutemyer, V. T., and O. K. Brrrt: Effect of temperature and grafting on vegetative growth phases of Algerian ivy. Nature (Lond.) 189, 854–855 (1961).Google Scholar
  1052. Swingle, W. T.: Neophyosis or rejuvenescence of nucellar bud seedlings in citrus. (Abstr.) Amer. J. Bot. 19, 839 (1932).Google Scholar
  1053. Tobler, F.: Die Gartenformen der Gattung Hedera. Mitt. dtsch. dendrol. Ges. 38, 1–33 (1927).Google Scholar
  1054. Tydeman, H. M.: Experiments on hastening the fruiting of seedlings apple. Ann. Rep. East Mailing Res. Stat. for 1936, pp. 92–99 (1937).Google Scholar
  1055. Wareing, P. F.: Problems of juvenility and flowering in trees. J. Linn. Soc. Lond., Bot. 56, 282–289 (1959).Google Scholar
  1056. Webber, H. J., and L. D. Batchelor: The citrus industry, vol. I: History, botany and breeding. Berkeley, Los Angeles: Univ. of Calif. Press 1948.Google Scholar
  1057. WEissE, A.: Blattstellungsstudien an Hedera helix. Ber. dtsch. bot. Ges. 42, 391–396 (1924); 48, 11–15 (1925).Google Scholar
  1058. Wellensiek, S. J.: Rejuvenation of woody plants by formation of sphaeroblasts. Proc. kon. ned. Akad. Wet. C 55, 567–573 (1952).Google Scholar
  1059. Wiersum, L. K.: Observations on the rooting of Hevea cuttings. Arch. Rubber Cult. 82, 213–243 (1955).Google Scholar
  1060. Woycxcia, S.: On the origin of the Retinospora forms in Thuja, Biota and Chamaecyparis. Acta Soc. Bot. Polon. 23, 443–458 (1954).Google Scholar
  1061. Aberg, B: Physiologische und ökologische Studien über die pflanzliche Photomorphose. Symb. bot. upsal. 8, No 1 (1943).Google Scholar
  1062. Allsorr, A.: Experimental and analytical studies of pteridophytes. Xvii. The effect of various physiologically active substances on the development of Marsilea in sterile culture. Ann. Bot., N. S. 16, 165–183 (1952).Google Scholar
  1063. Allsorr, A.: Investigations on Marsilea. 2. Induced reversion to juvenile stages. Ann. Bot., N. S. 17, 37–55 1953 ).Google Scholar
  1064. Allsorr, A.: The effect of various sugars on development and morphology. Ann. Bot., N. S. 17, 447–463 (1953).Google Scholar
  1065. Allsorr, A.: A comparison of the effects of 3-indolylacetic acid and 3-indolylacetonitrile on the development of sporelings of Marsilea in aseptic culture. J. exp. Bot. 5, 16–23 (1954).Google Scholar
  1066. Allsorr, A.: Experimental and analytical studies of pteridophytes. Xxiv Investigations on Marsilea. 4. Anatomical effects of changes in sugar concentration. Ann. Bot., N. S. 18, 449–461 (1954).Google Scholar
  1067. Allsorr, A.: Cultural conditions and morphogenesis, with special reference to the origin of land and water forms. Ann Bot., N. S. 19, 247–264 (1955).Google Scholar
  1068. Allsorr, A.: Morpho-genetic effects of 3-indolylacetonitrile on sporelings of Marsilea in aseptic culture. J. exp. Bot. 7, 1–13 (1956).Google Scholar
  1069. Allsorr, A.: Effects of gibberellic acid on juvenility in Marsilea and certain other plants. Nature (Lond.) 184, 1575–1576 (1959).Google Scholar
  1070. Allsorr, A.: The effects of gibberellic and on morphogenesis in Marsilea drummondii A. Br. Phytomorphology 12, 1–10 (1962).Google Scholar
  1071. Arber, A.: Water plants. Cambridge: Univ. Press 1920.Google Scholar
  1072. Askenasy, E.: Veber den Einfluß des Wachsthumsmedium auf die Gestalt der Pflanzen. Bot. Ztg 28, 193–201, 209–219, 225–231 (1870).Google Scholar
  1073. Bauer, L.: Studien zum Heterophyllieproblem. Planta (Berl.) 40, 515–528 (1952).Google Scholar
  1074. Tticher, R., L. Behlino: Licht, Transpiration, Salzaufnahme und Blattstruktur. Ein Beitrag zum Problem der Sonnen- und Schattenblätter. Flora (Jena) 134, 1–44 (1940).Google Scholar
  1075. Burns, G. P.: Heterophylly in Proserpinaca palustris L. Ann. Bot. 18, 579–587 (1904).Google Scholar
  1076. Combes, R.: Production expérimentale chez une plante immergée des caractères de structure propres aux organes aériens. C. R. Acad. Sci. (Paris) 203, 680–682 (1936).Google Scholar
  1077. Combes, R.: La forme des végétaux et le milieu. Paris: Librairie A. Colin 1946.Google Scholar
  1078. Combes, R.: La mécanisme de l’action du milieu aquatique sur les végétaux. Rôle du facteur température. Rev. gén. Bot. 54, 249–268 (1947).Google Scholar
  1079. Combes, R.: L’accumulation des nitrates dans les tissus végétaux formés en immersion dans l’eau. Rev. gén. Bot. 54, 429–439 (1947).Google Scholar
  1080. Combes, R., A. Brunel et A. Chabert: Action du milieu aquatique sur le métabolisme des protides. C. R. Acad. Sci. (Paris) 215, 69–71 (1942).Google Scholar
  1081. Combes, R., J. CRÉPet, P. Binet, R. FÉJard: Contribution à l’étude du mécanisme d’action du milieu exterieur sur la morphogénèse. C. R. Acad. Sci. (Paris) 231, 313–316 (1950).Google Scholar
  1082. Combes, R., M.-T. Gertrude: Contribution l’étude des possibilités biochemiques d’une espèce végétale. C. R. Acad. Sci. (Paris) 208, 1107–1109 (1939).Google Scholar
  1083. Combes, R., M.-T. Gertrude, G. LÉVrnne: Action du milieu aquatique sur l’absorption des matières minérales par les végétaux. C. R. Acad. Sci. (Paris) 230, 1812–1815 (1950).Google Scholar
  1084. Combes, R., M.-T. Gertrude, G. LÉVrnne: Action du milieu aquatique et action de la lumière atténuée sur l’accumulation des minéraux chez plantes amphibies. Rev. gén. Bot. 59, 525–543 (1952).Google Scholar
  1085. Combes, R., M. Malzieu: Action de la concentration du milieu sur l’accumulation de l’azote minéral par les tissue végétaux. C. R. Acad. Sci. (Paris) 216, 816–818 (1943).Google Scholar
  1086. Combes, R., Y. Martin, M. R. Brunel: Action du milieu aquatique sur l’absorption des mineraux chez deux plantes amphibies, Lysimachia nummularia et Alisma Plantago. C. R. Acad. Sci. (Paris) 234, 1655–1657 (1952).Google Scholar
  1087. Constantin, J.: Recherches sur la structure de la tige des plantes aquatiques. Aim. Sci. nat., Bot., Sér. VI 19, 287–331 (1884).Google Scholar
  1088. Constantin, J.: Études sur les feuilles des plantes aquatiques. Ann. Sci. nat., Bot., Sér. Vii 3, 94–162 (1886).Google Scholar
  1089. Conway, V. M.: Studies in the autecology of Cladium mariscus R. Br. Iii. The aeration of the subterranean parts of the plant. New Phytologist 36, 64–96 (1937).Google Scholar
  1090. Conway, V. M.: Aeration and plant growth in wet soils Bot. Rev. 6, 149–163 (1940).Google Scholar
  1091. Crafts, A. S., H. B. Currier and C. R. STocxrxa: Water in the physiology of plants. Waltham, Mass.: Chronica bot. 1949.Google Scholar
  1092. Dale, H. M.: Developmental studies of Elodea canadensis Mich. I. Morphological development at the shoot apex. Canad. J. Bot. 35, 13–24 (1957).Google Scholar
  1093. Dale, H. M.: Experimental studies on morphological effects of darkness. Canad. J. Bot. 35, 51–64 (1957).Google Scholar
  1094. Devaux, H.: Recherches sur les lenticelles. Ann Sci. nat., Bot., Sér. Viii 12, 1–240 (1900).Google Scholar
  1095. Drawert, H.: Elektive Färbung der Hydropoten an fixierten Wasserpflanzen. Flora (Jena) 132, 234–252 (1938).Google Scholar
  1096. Esenbeck, E.: Beiträge zur Biologie der Gattungen Potamogeton und Scirpus. Flora (Jena) 107, 151–122 (1915).Google Scholar
  1097. Feeling, E.: Die Wirkungen des erhöhten hydrostatischen Druckes auf Wachstum und Differenzierung submerser Blütenpflanzen. Planta (Berl.) 49, 235–270 (1957).Google Scholar
  1098. Funke, G. L.: On the influence of light of different wave lengths on the growth of plants. Rec. Tray. bot. néerl. 28, 431–485 (1931).Google Scholar
  1099. Gamma, H.: Zur Kenntnis der Saugkraft und des Grenzplasmolyse-Wertes der Submersen. Protoplasma 16, 489–575 (1932).Google Scholar
  1100. Gertrude, M.-T.: Action du milieu extérieur sur le métabolisme végétale. Viii. Métabolisme et morphogénèse en milieu aquatique. Rev. gén. Bot. 49, 161–181, 243–268, 328–352, 375–400, 449 466 (1937).Google Scholar
  1101. Gertrude, M.-T., M. BoiLoux: Action du milieu aquatique sur la formation des constituents de la membrane chez une plante amphibie. Rev. gén. Bot. 60, 81–89 (1953).Google Scholar
  1102. Gessner, F.: Beiträge zur Biologie amphibischer Pflanzen. Ber. dtsch. bot. Ges. 58, 2–22 (1940).Google Scholar
  1103. Gessner, F.: Die Hydropoten der Wasserpflanzen. Mikrokosmos 41, 1–6 (1952).Google Scholar
  1104. Gessner, F.: Der Druck in seiner Bedeutung für das Wachstum submerser Wasserpflanzen. Planta (Berl.) 40, 391–397 (1952).Google Scholar
  1105. Gessner, F.: Hydrobotanik. I. Energiehaushalt. Berlin: Dtsch. Verl. d. Wiss. 1955.Google Scholar
  1106. Gessner, F.: Die Kompensation der Wassertiefe durch das Wachstum der Blatt- und Blütenstiele der Seerosen. Ber. dtsch. bot. Ges. 69, 505–508 (1956).Google Scholar
  1107. Gessner, F., G. Vorz: Die Cuticula der Hydropoten von Nymphaea. Planta (Berl.) 39, 171–174 (1951).Google Scholar
  1108. GLÜCK, H.: Biologische und morphologische Untersuchungen über Wasser- und Sumpfgewächse. I. Die Lebensgeschichte der europäischen Alismaceen. Jena: Fischer 1905.Google Scholar
  1109. GLÜCK, H.: Untersuchungen über die mitteleuropäischen Utricularia-Arten, über Turionenbildung bei Wasserpflanzen, sowie über Ceratophyllum. Jena: Fischer 1906.Google Scholar
  1110. GLÜCK, H.: Die Uferflora. Jena: Fischer 1911.Google Scholar
  1111. GLÜCK, H.: Untergetauchte und Schwimmblattflora. Jena: Fischer 1924.Google Scholar
  1112. Goebel, K.: Pflanzenbiologische Schilderungen, vol. 2, part 2. Marburg: Elwert 1893.Google Scholar
  1113. Goebel, K.: Über die Jugendformen von Pflanzen und deren künstliche Wiederhervorrufung. S.-B. kgl. bayer. Akad. Wiss., Math.physik. Kl. 26, 447–497 (1896).Google Scholar
  1114. Goebel, K.: Einleitung in die experimentelle Morphologie der Pflanzen. Leipzig, Berlin: Teubner 1908.Google Scholar
  1115. Jones, H.: Heterophylly in some species of Callitriche, with especial reference to Calli-triche intermedia. Ann Bot., N. S. 19, 225–245 (1955).Google Scholar
  1116. Jones, H.: Further studies on heterophylly in Callitriche intermedia. Leaf development and experimental induction of ovate leaves. Ann. Bot., N. S. 19, 369–388 (1955).Google Scholar
  1117. Klebs, G.: Willkürliche Entwickelungsänderungen bei Pflanzen. Jena: Fischer 1903.Google Scholar
  1118. Klebs, G.: Über Probleme der Entwickelung. Biol. Zbl. 24, 257–267, 289–305, 481–501, 545–559, 601–614 (1904).Google Scholar
  1119. Ster, E.: Pathologische Pflanzenanatomie, 2. edn. Jena: Fischer 1916.Google Scholar
  1120. Laing, H. E.: The composition of the internal atmosphere of Nuphar advenum and other water plants. Amer. J. Bot. 27, 861–868 (1940).Google Scholar
  1121. Lamarck, J. B. P. A.: Philosophie zoologique. Paris 1809.Google Scholar
  1122. Leitgeb, H.: Die Luftwege der Pflanzen. Abh. kais. Akad. Wiss. Wien, Math.-naturw. Kl. 18, 334–363 (1855).Google Scholar
  1123. Levakovskylewakoffski, N.: On the effect of water the growth of shoots and roots of some plants. [In Russ.] Uchen. Zapiski imp. Kazansk. Univ. 1873(a), No 5. Abstr. in Just’s bot. Jber. 1, 594.Google Scholar
  1124. Levakovskylewakoffski, N.: On the question of the effect of the medium on plant form. [In Russ.] Uchen. Zapiski imp. Kazansk. Univ. 1873(b), No 6. Abstr. in Just’s bot. Jber. 1, 594–595.Google Scholar
  1125. Levakovskylewakoffski, N.: On the effect of water on the development of some Salix species. [In Russ.] Kazan 1877. Abstr. in JunT’s bot. Jber. 5, 575–576.Google Scholar
  1126. Lye, H., H. Streitberg: Die Verbreitung von Hydropoten in verschiedenen Verwandtschaftskreisen der Wasserpflanzen. Wiss. Z. Univ. Halle, Math.-naturw. Kl. 4, 471–484 (1955).Google Scholar
  1127. Mayr, F.: Hydropoten an Wasser- und Sumpfpflanzen. Beih. bot. Zbl. 32 I, 278–371 (1915).Google Scholar
  1128. Mccallum, W. B.: On the nature of the stimulus causing the change of form and structure in Proserpinaca palustris. Bot. Gaz. 34, 93–108 (1902).Google Scholar
  1129. Mcpherson, D. C.: Cortical air spaces in the roots of Zea mays L. New Phytologist 38, 190–202 (1939).Google Scholar
  1130. Meyer. B. S., F. H. Bell, L. C. THoMrsoN and E. I. Clay: Effect of depth of immersion on apparent photosynthesis in submersed vascular aquatics. Ecology 3, 393–399 (1943).Google Scholar
  1131. Montesantos, N.: Morphologische und biologische Untersuchungen über einige Hydrocharideen. Flora (Jena) 105, 1–32 (1913).Google Scholar
  1132. Pearsall, W. H., and A. M. Hanby: The variation of leaf form in Potamogeton perfoliatus. New Phytologist 24, 112–120 (1925).Google Scholar
  1133. Perrot, E.: Sur une particularité de structure de l’épiderme inférieure de la feuille chez certaines Gentianées aquatiques. J. de Bot. 11, 195–211 (1897).Google Scholar
  1134. Riede, W.: Untersuchungen über Wasserpflanzen. Flora (Jena) 114, 1–118 (1921).Google Scholar
  1135. Schenck, H.: Über Structuränderung submers vegetierender Landpflanzen. Ber. dtsch. bot. Ges. 2, 481–486 (1884).Google Scholar
  1136. Schenck, H.: Die Biologie der Wassergewächse. Verh. naturhist. Ver. preuB.-rheinl.-westfäl. Reg.-Bez. Osnabrück 42, 217–380 (1885).Google Scholar
  1137. Schenck, H.: Vergleichende Anatomie der submersen Gewächse. Biblioth. bot. No 1 (1886).Google Scholar
  1138. Schenck, H.: Über das Aërenchym, ein dem Kork homologes Gewebe bei Sumpfpflanzen. Jb. wiss. Bot. 20, 526–574 (1889).Google Scholar
  1139. Shoor, G. H. J. Van: Action de lumières colorées sur le comportement de Sagittaria sagittifolia L. Bull. Soc. roy. bot. Belg. 84, 5–12 (1951).Google Scholar
  1140. Shull, G. H.: Stages in the development of Sium cicuiaefolium. Carnegie Inst. Wash. Monogr. No 30 (1905).Google Scholar
  1141. Sifton, H. B.: Air-space tissue in plants. Bot. Rev. 11, 108–143 (1945).Google Scholar
  1142. Sifton, H. B.: Air-space tissue in plants. II. Bot. Rev. 23, 303–312 (1957).Google Scholar
  1143. Streitberg, H.: Über die Heterophyllie bei Wasserpflanzen mit besonderer Berücksichtigung ihrer Bedeutung für die Systematik. Flora (Jena) 141, 567–597 (1954).Google Scholar
  1144. Troll, W.: Vergleichende Morphologie der höheren Pflanzen, vol. 1, part 2, fasc. 3. Berlin: Borntraeger 1939.Google Scholar
  1145. Verduin, J.: A table of photosynthetic rates under optimal, near-natural conditions. Amer. J. Bot. 40, 675–679 (1953).Google Scholar
  1146. Chter, W.: Beiträge zur Kenntniss einiger Wasserpflanzen. I. Über die Abhängigkeit der Heterophyllie einiger Monocotylen von äußeren Einflüssen. Flora (Jena) 83, 367–382 (1897).Google Scholar
  1147. Chter, W.: Über die Abhängigkeit der Heterophyllie einiger Nymphaea-Arten von äußeren Einflüssen. Flora (Jena) 84, 343–348 (1897).Google Scholar
  1148. Went, F. W.: The development of stems and leaves. In: Plant growth substances (F. Skoog, ed.), pp. 287–298. Wisconsin: Univ. Press 1951.Google Scholar
  1149. Woltereck, I.: Experimentelle Untersuchungen über die Blattbildung amphibischer Pflanzen. Flora (Jena) 123, 30–61 (1928).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1965

Authors and Affiliations

  • C. W. Wardlaw
  • Cornelia A. Reinders-Gouwentak
  • P. Champagnat
  • J. Doorenbos
  • A. Allsopp

There are no affiliations available

Personalised recommendations