Renal Transport of Amino Acids

  • S. Silbernagl
  • E. C. Foulkes
  • P. Deetjen
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 74)


The class of naturally occurring amino acids comprises over 20 compounds, mostly possessing an L-α-amino configuration. In circulating plasma they are present in free form in small but significant amounts, and as such are readily filtered at the glomerulus. Nevertheless, the urine concentration of amino acids is normally very low, due to efficient reabsorptive mechanisms localized mostly in proximal tubules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, D., Kutscher, F.: Über das Vorkommen von Lysin im Harn bei Cystinurie. Z. Biol. 57, (bzw. 39), 355 (1912).Google Scholar
  2. 2.
    Addae, S.K., Lotspeich, D.W.: Relation between glutamine utilization and production in metabolic acidosis. Amer. J. Physiol. 215, 269 (1968).PubMedGoogle Scholar
  3. 3.
    Addae, S.K., Lotspeich, D.W.: Glutamine balance in metabolic acidosis as studied with the artificial kidney. Amer. J. Physiol. 215, 278 (1968).PubMedGoogle Scholar
  4. 4.
    Akedo, H., Christensen, H.N.: Transfer of amino acids across the intestine: a new model amino acid. J. biol. Chem. 237, 113–117 (1962).PubMedGoogle Scholar
  5. 4a.
    Amstrong, W., Nunn, A.S. (Ed.): Intestinal transport of electrolytes, amino acids, and sugars. Springfield-Illinois: C.C. Thomas (1971).Google Scholar
  6. 5.
    Angielski, S., Rogulski, J.: Acta biochim. pol. 6, 411 (1959) quoted from [257].PubMedGoogle Scholar
  7. 6.
    Angielski, S., Niemiro, R., Makarewiez, W., Rogulski, J.: Acta biochim. pol. 5, 431 (1958) quoted from [257].Google Scholar
  8. 7.
    Angielski, S., Rogulski, J., Madonska, L.: Acta biochim. pol. 7, 269 (1960) quoted from [257].PubMedGoogle Scholar
  9. 8.
    Arrow, V.K., Westall, R.G.: Amino acid clearance in cystinuria. J. Physiol. (Lond.) 142, 141 (1958).Google Scholar
  10. 9.
    Asatoor, A.M., Lacey, B.W., London, D.R., Milne, M.D.: Amino acid metabolism in cystinuria. Clin. Sci. 23, 285(1962).PubMedGoogle Scholar
  11. 10.
    Auerbach, V.H., Di George, A.M., Baldridge, R.C., Tourtelotte, C.D., Brigham, M.P.: Histidinemia. A deficiency of histidase resulting in the urinary excretion of histidine and of imidazolepyrovic acid. J. Pediat. 60, 487 (1962).PubMedGoogle Scholar
  12. 11.
    Ausiello, D.A., Segal, S., Thier, S.O.: Cellular accumulation of L-Lysine in rat kidney cortex in vivo. Amer. J. Physiol. 222, 1472 (1972).Google Scholar
  13. 12.
    Ayer, J.L., Schiess, W.A., Pitts, R.F.: Independence of phosphat reabsorption and glomerular filtration in the dog. Amer. J. Physiol. 151, 168 (1947).PubMedGoogle Scholar
  14. 13.
    Baines, DeWitt, A., Morel, F.: Absorption of acidic amino acid from proximal tubule fluid. Proceedings of the IVth International Congress of Nephrology, p. 293, Stockholm, (1969).Google Scholar
  15. 14.
    Bank, H., Crispin, M., Ehrlich, D., Szeinberg, A.: Iminoglycinuria. A defect of renal tubular transport Israel. J. med. Sci. 8, 606 (1972).Google Scholar
  16. 15.
    Bank, N., Aynedjian, H.S.: Techniques of microperfusion of renal tubules and capillaries. Yale J. Biol. Med. 45, 312(1972).PubMedCentralPubMedGoogle Scholar
  17. 16.
    Baron, D.N., Dent, C.E., Harris, H., Hart, E.W., Jepson, J.B.: Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant aminoaciduria and other bizarre biochemical features. Lancet 1956 II, 421.Google Scholar
  18. 17.
    Bartsocas, C.S., Thier, S.O., Crawford, J.D.: Transport of L-methionine in rat intestine and kidney. Pediat. Res. 8, 673 (1974).PubMedGoogle Scholar
  19. 18.
    Bartter, F.C., Lotz, M., Thier, S.O., Rosenberg, L.G., Potts, J.T. Jr.: Cystinuria. Ann. intern. Med. 62, 796(1965).Google Scholar
  20. 19.
    Berger, H.: Die Amino-Stickstoff-Ausscheidung im Harn in Abhängigkeit vom Lebensalter. Ann. paediat. (Basel) 186, 338 (1956).Google Scholar
  21. 20.
    Berger, H.: Hereditäre chronische Hyperaminoacidurien. Mod. Probi. Pädiat. 3, 238 (1957).Google Scholar
  22. 21.
    Berger, E.A., Heppel, L.A.: A binding protein involved in the transport of cystine and diaminopimelic acid in escherichia coli. J. biol. Chem. 247, 7684 (1972).PubMedGoogle Scholar
  23. 22.
    Bergeron, M., Morel, F.: Amino acid transport in rat renal tubules. Amer. J. Physiol. 216, 1139 (1969).PubMedGoogle Scholar
  24. 23.
    Bergeron, M.: Renal amino acid accumulation in maleate-treated rats. Rev. Can. Biol. 30, 267 (1971).PubMedGoogle Scholar
  25. 24.
    Bergeron, M., Vadeboncoer, M.: Antiluminal transport of L-Leucine following microinjections in peritubular capillaries of the rat. Nephron 8, 355 (1971).PubMedGoogle Scholar
  26. 25.
    Bergeron, M., Vadeboncoer, M.: Microinjections of L-Leucine into tubules and peritubular capillaries of the rat. II. The maleic acid model. Nephron 8, 367 (1971).PubMedGoogle Scholar
  27. 26.
    Berglund, F., Lotspeich, W.D.: Effect of various amino acids on the renal tubular reabsorption of inorganic sulphate in the dog. Amer. J. Physiol. 185, 539 (1956).PubMedGoogle Scholar
  28. 27.
    Berliner, R.W., Kennedy, T.J., Hilton, J.G.: Effect of maleic acid on renal function. Proc. Soc. exp. Biol. (N.Y.) 75, 791–794 (1950).Google Scholar
  29. 28.
    Berzelius, J.J.: Calculus urinairs. Traite Chem. 7, 424 (1833) quoted from [335].Google Scholar
  30. 29.
    Beyer, K.H., Wright, L.D., Russo, H.F., Skeggs, H.R., Patch, E.A.: The renal clearance of essential amino acids: tryptophan, leucine, isoleucine and valine. Amer. J. Physiol 146 330(1946).PubMedGoogle Scholar
  31. 30.
    Beyer, K.H., Wright, L.D., Skeggs, H.R., Russo, H.F., Shaner, G.A.: Renal clearance of essential amino acids: their competition for reabsorption by the renal tubules. Amer. J. Physiol 151 202 (1947).PubMedGoogle Scholar
  32. 31.
    Bickel, H., Baar, H.S., Astley, R., Douglad, A., Finch, E., Harris, H., Harvey, C.C., Hickmans, E.M., Philpott, M.G., Smallwood, W.C., Smellie, J.M., Teall, C.G.: Cystine storage disease with amino-aciduria and Dwarfism (Lignac-Fanconi disease). Acta Paediat. 42, 1 (1952).Google Scholar
  33. 32.
    Bickel, H.: Die Entwicklung der biochemischen Läsion bei der Lignac-Fanconischen Krankheit. Helv. paediat. Acta 10, 259 (1955).PubMedGoogle Scholar
  34. 33.
    Bickel, H.: Neuere Erkenntnisse zur hepatocerebralen Degeneration (Wilsonsche Krankheit). Mod. Probi. Pädiat. 3, 215 (1957).Google Scholar
  35. 34.
    Blix, G.: Über die Löslichkeitsverhältnisse von Cystin im Harn. Hoppe-Seylers. Z. physiol. Chem. 178, 109 (1928).Google Scholar
  36. 35.
    Bojesen, E., Leyssak, P.P.: The kidney cortex slice technique as a model for sodium transport in vivo. Acta Physiol. scand. 65, 20 (1965).Google Scholar
  37. 36.
    Bourke, E., Fine, A., Scott, J.: Mechanism of ammoniagenesis in human kidney. Biochem. J. 125, 94P (1971).Google Scholar
  38. 37.
    Brand, E., Harris, M.M., Biloon, S.: Cystinuria. The excretion of a cystine complex which decomposes in the urine with the liberation of free cystine. J. biol. Chem. 86, 315 (1930).Google Scholar
  39. 38.
    Brand, E., Cahill, G.F., Harris, M.M.: Cystinuria. II. The metabolism of cystine, cysteine, methionine, and glutathione. J. biol. Chem. 109, 69 (1935).Google Scholar
  40. 39.
    Brand, E., Cahill, G.F.: Canine cystinuria. III. J. biol. Chem. 114, XV. (1936).Google Scholar
  41. 40.
    Brand, E., Cahill, G.F., Kassell, B.: Canine cystinuria. V. Family history of two cystinuric Irish terriers and cystine determination in dog urine. J. biol. Chem. 133, 431 (1940).Google Scholar
  42. 41.
    Brigham et al.: J. clin. Invest. 39, 1633 (1960), quoted from [92a].PubMedCentralPubMedGoogle Scholar
  43. 42.
    Brodehl, J., Gilissen, K., Kowalewski, S.: Isolierter Defekt der tubulären Cystin-Rückresorp-tion in einer Familie mit idiopathischem Hypoparathyroidismus. Klin. Wschr. 45, 38 (1967).PubMedGoogle Scholar
  44. 43.
    Brown, J.L., Samiy, A.H., Pitts, R.F.: Localisation of aminonitrogen reabsorption in the nephron of the dogs. Amer. J. Physiol. 200, 370 (1961).Google Scholar
  45. 44.
    Brown R.R.: Aminoaciduria resulting from cycloleucine administration in man. Science 157, 432–434 (1967).PubMedGoogle Scholar
  46. 45.
    Burg, M.B., Orloff, J.: Oxygen consumption and active transport in separated renal tubules. Amer. J. Physiol. 203, 327 (1962).PubMedGoogle Scholar
  47. 46.
    Cain, A.R.R., Holton, J.B.: Histidinaemia: a child and his family. Arch. Dis. Childh. 43, 62 (1968).PubMedGoogle Scholar
  48. 47.
    Carton, D., Dhondt, F., De Schrijver, F., Samyn, W., Kint, J., Delbeke, M.J., Hooft, C.: Histidinemia. Helv. paediat. Acta 2, 127 (1970).Google Scholar
  49. 48.
    Chan, Y.L., Huang, K.C.: Microperfusion studies on renal tubular transport of tryptophan derivatives in rats. Amer. J. Physiol. 221, 575 (1971).PubMedGoogle Scholar
  50. 49.
    Chan, Y.L., Huang, K.C.: Renal excretion of D-tryptophan, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid in rats. Amer. J. Physiol. 224, 140 (1973).PubMedGoogle Scholar
  51. 50.
    Childs, B., Nyhan, W.L., Borden, M., Bard, L., Cooke, R.E.: Idiopathic hyperglycinemia and hyperglycinuria: a new disorder of amino acid metabolism. I. Pediatrics 27, 522 (1961).Google Scholar
  52. 51.
    Chinard, F.P., Delea, A.C.: Luminal and anti-luminal transport characteristics of certain amino acids. Proceedings of the IVth International Congress of Nephrology, p. 294, Stockholm, (1969).Google Scholar
  53. 52.
    Christensen, H.N., Riggs, T.R.: Structural evidences for chelation and Schiffs base formation in amino acid transfer into cells. J. biol. Chem. 220, 265–278 (1956).PubMedGoogle Scholar
  54. 53.
    Christensen, H.N., Clifford, J.B.: Excretion of 1-aminocyclopentanecarboxylic acid in man and the rat. Biochim. biophys. Acta (Amst.) 62, 160 (1962).Google Scholar
  55. 54.
    Christensen, H.N., Jones, J.C.: Amino acid transport models: renal reabsorption and resistance to metabolic attack. J. biol. Chem. 237, 1203 (1962).PubMedGoogle Scholar
  56. 55.
    Christensen, H.N.: Some transport lessons taught by the organic solute, in: Biological transport. Perspect. Biol. Med. 10, 471 (1967).Google Scholar
  57. 56.
    Christensen, H.N., Handlogten, M.E., Thomas, E.L.: Proc. nat. Acad. Sci. (Wash.) 63, 948 (1969).Google Scholar
  58. 57.
    Christensen, H.N.: Electrolyte effects on the transport of cationic amino acids. In: Na-linked transport of organic solutes. (Heinz, E., ed.), p. 39, Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  59. 58.
    Christophel, W., Deetjen, P.: Mikroperfusionsuntersuchungen zum tubulären Transport von Glycin. Pflügers Arch. ges. Physiol. 297, R52 (1967).Google Scholar
  60. 59.
    Christopher W.: Der tubuläre Transport der Aminosäure Glycin: Mikroperfusionsuntersuchungen am proximalen Konvolut der Rattenniere in vivo et situ. Dissertation, München (1969).Google Scholar
  61. 60.
    Christopher W., Chan, Y.L., Williams, W.M., Huang, K.C.: Microperfusion and stop-flow studies on renal tubular transport of phenylalanine. Fed. Proc. 31, (1972).Google Scholar
  62. 61.
    Clarance, G.A., Bowman, J.K.: Further case of histidinemia. Brit. med. J. 1, 1019 (1966).PubMedGoogle Scholar
  63. 62.
    Cohen, J.J., Whitman, E.: Renal utilization and excretion of α-ketoglutarate in dog: effect of alkalosis. Amer. J. Physiol. 204, 795 (1963).PubMedGoogle Scholar
  64. 63.
    Colindres, R.E., Lechene, C.: Technical problems associated with collection of distal tubular fluid in the rat Yale J. Biol. Med. 45, 233 (1972).PubMedCentralPubMedGoogle Scholar
  65. 64.
    Cornelius, C.E., Bishop, J.A., Schaffer, M.H.: A quantitative study of amino aciduria in Dachshunds with a history of cystine urolithiasis. Cornell Vet. 177, 177 (1967).Google Scholar
  66. 65.
    Corner, B.D., Holton, J.B., Norman, R.M., Williams, P.M.: A case of histidinemia controlled with a low histidine diet. Pediatrics 41, 1074 (1968).PubMedGoogle Scholar
  67. 66.
    Cox, B.D., Cameron, J.S.: Homoarginine in cystinuria. Clin. Sci. 46, 173–182 (1974).Google Scholar
  68. 67.
    Crane, C.W., Turner, A.W.: Amino acid patterns of urine and blood plasma in a cystinuric Labrador dog. Nature (Lond.) 177, 237 (1956).Google Scholar
  69. 68.
    Crawhall, J.C., Scowen, E.F.: Effect of penicillamine on cystinuria. Brit. med. J. I, 588 (1963).Google Scholar
  70. 69.
    Crawhall, J.C., Scowen, E.F., Watts, R.W.: Further observation on use of D-penicillamine in cystinuria. Brit. med. J. 1, 1411 (1964).Google Scholar
  71. 70.
    Crawhall, J.C., Segal, S.: Sulphocysteine in the urine of the blotched kenya genet. Nature (Lond.) 208, 1320(1965).Google Scholar
  72. 71.
    Crawhall, J.C., Thomson, C.J.: Renal secretion of cystine in cystinuria. J. clin. Invest. 44, 1038 (1965).Google Scholar
  73. 72.
    Crawhall, J.C., Thomson, C.J.: Cystinuria: effect of D-penicillamine on plasma and urinary cystine concentrations. Science 147, 1459 (1965).PubMedGoogle Scholar
  74. 73.
    Crawhall, J.C., Segal, S.: Dithiothreitol in the study of cysteine transport. Biochim. biophys. Acta (Amst.) 121, 215(1966).Google Scholar
  75. 74.
    Crawhall, J.C., Segal, S.: The intracellular cysteine/cystine ratio in kidney cortex. Biochem. J. 99, 1965 (1966).Google Scholar
  76. 75.
    Crawhall, J.C., Scowen, E.F., Thompson, C.J., Watts, R.W.E.: The renal clearance of amino acids in cystinuria. J. clin. Invest. 46, 1162 (1967).PubMedCentralPubMedGoogle Scholar
  77. 76.
    Crawhall, J.C., Segal, S.: The intracellular ratio of cysteine and cystine in various tissues. Biochem. J. 105, 891 (1967).PubMedGoogle Scholar
  78. 77.
    Crawhall, J.C., Watts, R.W.E.: Cystinuria. Amer. J. Med. 45, 736 (1968).PubMedGoogle Scholar
  79. 78.
    Cross, R.J., Taggart, J.V.: Renal tubular transport: accumulation of PAH by rabbit kidney slices. Amer. J. Physiol. 161, 181 (1950).PubMedGoogle Scholar
  80. 79.
    Cusworth, D.C., Dent, C.E.: Renal clearance of amino acids in normal adults and in patients with aminoaciduria. Biochem. J. 74, 550 (1960).PubMedGoogle Scholar
  81. 80.
    Damian, A.C., Pitts, R.F.: Rates of glutaminase I and glutamine synthetase in rat kidney in vivo. Amer. J. Physiol. 218, 1249 (1970).PubMedGoogle Scholar
  82. 81.
    Datta, S.P., Harris, H.: Urinary amino-acid patterns of some mammals. Ann. Eugen. (Lond) 18, 107 (1953).Google Scholar
  83. 82.
    Davidman, M., Lalone, R.C., Alexander, E.A., Levinsky, N.G.: Some micropuncture techniques in the rat. Amer. J. Physiol. 221, 1110 (1971).PubMedGoogle Scholar
  84. 83.
    Davies, H.E., Robinson, M.J.: A case of histidinemia. Arch. Dis. Childh. 43, 62 (1968).Google Scholar
  85. 84.
    Debré, R., Marie, J., Cleret, F., Messimy, R.: Rachitisme tardif coexistant avec une nephrite chronique et une glycosurie. Arch. Méd. Enf. 37, 597 (1934).Google Scholar
  86. 85.
    Deetjen, P., Boylan, J.W.: Glucose reabsorption in the rat kidney: microperfusion studies. Pflügers Arch. ges. Physiol. 299, 19 (1968).Google Scholar
  87. 86.
    Deetjen, P., Silbernagl, S.: Some new developments in continuous microperfusion technique Yale J. Biol. Med. 45, 301 (1972).Google Scholar
  88. 87.
    Dent, C.E., Rose, G.A.: Amino acid metabolism in cystinuria. Abstr. Commun. 1st Int. Congr. Biochem. Cambridge (1949).Google Scholar
  89. 88.
    Dent, C.E., Rose, G.A.: Amino acid metabolism in cystinuria. Quart. J. Med. 20, 205 (1951).PubMedGoogle Scholar
  90. 89.
    Dent, C.E., Senior, B., Walshe, J.M.: The pathogenesis of cystinuria. II. Polarographic studies of the metabolism of sulphur-containing amino-acids. J. clin. Invest. 33, 1216 (1954).PubMedCentralPubMedGoogle Scholar
  91. 90.
    Dent, C.E., Senior, B.: Studies on the treatment of cystinuria. Brit. J. Urol. 27, 317 (1955).PubMedGoogle Scholar
  92. 91.
    Dent, C.E.: Klassifikation der Aminoacidurie. Scand. J. clin. Lab. Invest. Suppl. 13, 21 (1957).Google Scholar
  93. 92.
    De Toni: Remarks upon the relation between renal rickets (renal dwarfism) and renal diabetes. Acta paediat. (Uppsala) 16, 479 (1933).Google Scholar
  94. 92a.
    Diem, K., Lentner, C. (Geigy A.G.): Documenta Geigy, Wissenschaftliche Tabellen. 7. Auflage, Basel, J.R. Geigy A.G. (1968).Google Scholar
  95. 93.
    Dies, F., Sandoval, G., Martinez, R., Garza, R., Ordonez, A.: Effects of probenecid, alkalosis and glycine on net renal uptake and on tubular reabsorption of lactate in dogs. Rev. Invest. clin. 26, 111–123(1974).PubMedGoogle Scholar
  96. 94.
    Dixon, M., Webb, E.C.: Enzymes. 2nd ed., p. 114, London: Longmans 1964.Google Scholar
  97. 95.
    Doolan, P.D., Harper, H.A., Hutchin, M.E., Shreeve, W.W.: Renal clearance of eighteen individual amino acids in human subjects. J. clin. Invest. 34, 1247 (1955).PubMedCentralPubMedGoogle Scholar
  98. 96.
    Doolan, P.D., Harper, H.A., Hutchin, M.E., Alpen, E.L.: The renal tubular response to amino acid loading. J. clin. Invest. 35, 888 (1956).PubMedCentralPubMedGoogle Scholar
  99. 97.
    Doolan, P.D., Harper, H.A., Hutchin, M.E., Alpen, E.L.: Renal clearance of lysine in cystinuria. Amer. J. Med. 23, 416 (1957).PubMedGoogle Scholar
  100. 98.
    Doty, J.R.: Reabsorption of certain amino acids and derivatives by the kidney tubules. Proc. Soc. exp. Biol. (N.Y.) 46, 129 (1941).Google Scholar
  101. 99.
    Drummond, K.N., Michael, A.F.: Specificity of the inhibition by certain amino acids. Nature (Lond.) 201, 1333 (1964).Google Scholar
  102. 100.
    Eaton, A.G., Ferguson, F.P., Byer, F.T.: The renal reabsorption of amino acids in dogs: valine, leucine, and isoleucine. Amer. J. Physiol. 145, 491 (1946).PubMedGoogle Scholar
  103. 101.
    Efron, M.L.: Treatment of hydroxyprolinemia and hyperprolinemia. Amer. J. Dis. Child 113, 166 (1967).PubMedGoogle Scholar
  104. 102.
    Efron, M.L.: Familial hyperprolinemia. Report of a second case, associated with congenital renal malformations, hereditary hematuria and mild mental retardation, with demonstration of an enzyme defect. New. Engl. J. Med. 272, 1243 (1965).PubMedGoogle Scholar
  105. 103.
    Efron, M.L.: Aminoaciduria. New. Engl. J. Med. 272, 1058 (1965).PubMedGoogle Scholar
  106. 104.
    Emery, F.A., Goldic, L., Stern, J.: Hyperprolinemia: clinical and biochemical family study. J. ment. Defic. Res. 12, 187 (1968).PubMedGoogle Scholar
  107. 105.
    Ettinger, B., Kolb, F.O.: Factors involved on crystal formation in cystinuria. In vivo and in vitro crystallization dynamics and a simple, quantitative colorimetric assay for cystine. J. Urol. (Baltimore) 106, 106 (1971).Google Scholar
  108. 106.
    Evered, D.F.: Species differences in amino acid excretion by mammals. Comp. Biochem. Physiol. 23, 163(1967).PubMedGoogle Scholar
  109. 107.
    Evered, D.F.: The excretion of amino acids by the human: a quantitative study with ion-exchange chromatography. Biochem. J. 62, 416 (1956).PubMedGoogle Scholar
  110. 108.
    Fanconi, G.: Die nicht-diabetischen Glykosurien und Hyperglykämien des älteren Kindes. Jb. Kinderheilk. 133, 17 (1931).Google Scholar
  111. 109.
    Fanconi, G.: Der nephrotisch-glykosurische Zwergwuchs mit hypophosphatämischer Rachitis. Jb. Kinderheilk. 147, 199 (1936).Google Scholar
  112. 110.
    Fanconi, G.: Der nephrotisch-glykosurische Zwergwuchs mit hypophosphatämischer Rachitis. Dtsch. med. Wschr. 62, 1169 (1936).Google Scholar
  113. 111.
    Ferguson, F.P., Eaton, A.G., Ashman, J.S.: Renal reabsorption of methionine in normal dogs. Proc. Soc. exp. Biol. (N.Y.) 66, 582 (1947).Google Scholar
  114. 112.
    Foulkes, E.C., Miller, B.F.: Steps in PAH transport by kidney slices. Amer. J. Physiol. 196, 86 (1959).PubMedGoogle Scholar
  115. 113.
    Foulkes, E.C., Forster, R.P.: Potassium transport by kidney slices of lophius americanus. Bull. Mt. Des. Island Biol. Lab. 4, 44 (1959).Google Scholar
  116. 114.
    Foulkes, E.C., Paine, C.M.: The uptake of monocarboxylic acid by rat diaphragm. J. biol. Chem. 236, 1019(1961).PubMedGoogle Scholar
  117. 115.
    Foulkes, E.C.: Effects of heavy metals on renal aspartate transport and the nature of solute movement in kidney cortex slices. Biochim. biophys. Acta (Amst.) 241, 815 (1971).Google Scholar
  118. 116.
    Foulkes, E.C.: Renal aspartate transport. Fred. Proc. 31, (1972).Google Scholar
  119. 117.
    Foulkes, E.C., Gieske, T.: Specificity and metal sensitivity of renal amino acid transport. Biochim. biophys. Acta (Amst.) 318, 439 (1973).Google Scholar
  120. 118.
    Foulkes, E.C.: Site of the functional lesion responsible for amino aciduria after administration of organo mercurials and other metal compounds. In: Mercury, Mercurials and Mercaptans, 4th Rochester International Conference on Environmental Toxicity. (Miller, M.W., Clarkson, T.W., eds), Springfield: C.C. Thomas 1973.Google Scholar
  121. 119.
    Foulkes, E.C.: Peritubular transport of urate and amino acids in rat kidney. In: Amino acid transport (ed. Silbernagl, S.) and uric acid (ed. Lang, F., Greger, R.). Stuttgart: Thieme 1975 (in press).Google Scholar
  122. 120.
    Foulkes, E.C.: Cellular localisation of amino acid carriers in renal tubules. Proc. Soc. exp. Biol. (N.Y.) 139, 1032(1972).Google Scholar
  123. 121.
    Fowler, D.J., Harris, H., Warren, F.: Plasma cystine levels in cystinuria. Lancet 1952 I, 544.Google Scholar
  124. 122.
    Fox, M., Thier, S., Rosenberg, L.E., Kiser, W., Segal, S.: Evidence against a single renal transport defect in cystinuria. New. Engl. J. Med. 270, 556 (1964).PubMedGoogle Scholar
  125. 123.
    Frame, E.G.: The levels of individual free amino acids in plasma of normal man at various intervals after a high protein meal. J. clin. Invest. 37, 1719 (1958).Google Scholar
  126. 124.
    Fraser, G.R., Friedman, A.I., Patton, V.M., Wade, D.N., Woolf, L.I.: Iminoglycinuria. A “harmless” inborn error of metabolism?. Hum. Genet. 6, 362 (1968).Google Scholar
  127. 125.
    Freedman, B.S., Young, J.A.: Microperfusion study of L-histidine transport by the rat nephron. Austr. J. exp. Biol. med. Sci. 47, 10 (1969).Google Scholar
  128. 126.
    Friedmann, E.: Der Kreislauf des Schwefels in der organischen Natur. Ergebn. Physiol. 1, 15 (1902).Google Scholar
  129. 127.
    Frimpter, G.W., Horwith, M., Furth, E., Fellows, R.E., Thompson, D.D.: Inulin and endogenous amino acid renal clearance in cystinuria: evidence for tubular secretion. J. clin. Invest. 41, 281 (1962).PubMedCentralPubMedGoogle Scholar
  130. 128.
    Frimpter, G.W.: Cystinuria: metabolism of the disulfide of cysteine and homocysteine. J. clin. Invest. 42, 1956 (1963).PubMedCentralPubMedGoogle Scholar
  131. 129.
    Frimpter, G.W.: Cystinuria: intravenous administration of (S 35) cystine and (S 35) cysteine. Clin. Sci. 31, 207 (1966).PubMedGoogle Scholar
  132. 130.
    Frömter, E., Lüer, K.: Free flow pontential profile along rat proximal tubule. Pflügers Arch. 339, R47 (1973).Google Scholar
  133. 131.
    Frömter, E., Rumrich, G., Ullrich, K.J.: Phenomenologic description of Na+, Cl- and HCO3 absorption from proximal tubules of the rat kidney. Pflügers Arch. 343, 189–220 (1973).PubMedGoogle Scholar
  134. 132.
    Frömter, E., Gessner, K.: Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubules. Pflügers Arch. 351, 85–98 (1974).PubMedGoogle Scholar
  135. 133.
    Gaitonde, M.K., Gaull, G.: A procedure for the quantitative analysis of the sulphur amino acids of the rat tissue. Biochem. J. 102, 959 (1967).PubMedGoogle Scholar
  136. 134.
    Garrod, A.: Inborn errors of metabolism. Lancet 1908 II, 1.Google Scholar
  137. 135.
    Gasser, G., Preisinger, A.: Cystinsteine. Klin. Wschr. 38, 1130 (1960).PubMedGoogle Scholar
  138. 136.
    Gayer, J., Gerok, W.: Die Lokalisierung der L-Aminosäuren-Rückresorption in der Niere durch Stop-flow-Analysen. Klin. Wschr. 39, 1054 (1961).PubMedGoogle Scholar
  139. 137.
    Gerok, W., Gayer, J.: Investigation on the reabsorption of amino acids in the kidney of the dog. Proc. 1st. Int. Congr. Nephrol. (Evian) p. 720 (1961).Google Scholar
  140. 138.
    Gerok, W., Gayer, J.: Die tubuläre Rückresorption der L-Aminosäuren in der Niere des Hundes. Transportmaxima und competitive Hemmung. Klin. Wschr. 39, 540 (1961).PubMedGoogle Scholar
  141. 139.
    Gerok, W., Gayer, J.: Investigation on the reabsorption of L-amino acids in the kidney of the dog with special reference to diamino-monocarbonic acids. Excerpta Medica, Intern. Congr. 29, 572 (1964).Google Scholar
  142. 140.
    Gerok, W., Nieth, H.: Untersuchungen über die renale arteriovenöse Aminosäuredifferenz am Menschen. In: Normale und pathologische Funktion des Nierentubulus. 3. Symp. Dtsch. Ges. Nephrol., Berlin (1964), Bern, Huber (1965).Google Scholar
  143. 141.
    Gerok, W.: Primäre Tubulopathien. Stuttgart: Thieme 1969.Google Scholar
  144. 142.
    Gerok, W.: Defekte renaltubulärer Transportsysteme für Aminosäuren. Med. Klin 70 301–312 (1975).PubMedGoogle Scholar
  145. 143.
    Gertz, K.H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol. 267, 336 (1963).Google Scholar
  146. 144.
    Gertz, K.H.: Stationary perfusions methods Yale. J. Biol. Med. 45, 265 (1972).PubMedCentralPubMedGoogle Scholar
  147. 145.
    Ghadimi, H., Partington, M.W., Hunter, A.: A familial disturbance of histidine metabolism. New. Engl. J. Med. 265, 221 (1961).PubMedGoogle Scholar
  148. 146.
    Gieske, T., Foulkes, E.C.: Acute effects of cadmium on proximal tubular function in rabbit. Toxicol. appl. Pharmacol. 27, 292 (1974).PubMedGoogle Scholar
  149. 147.
    Gillissen, J., Taugner, R.: Die Nierenausscheidung von Ascorbinsäure, Glykokoll und Alanin bei der Katze. Z. ges. exp. Med. 134, 179 (1961).PubMedGoogle Scholar
  150. 148.
    Goettsch, E., Lyttle, J.D., Grim, W.M., Dunbar, P.: The renal amino acid clearance in the normal dog. Amer. J. Physiol. 140, 688 (1944).Google Scholar
  151. 149.
    Goldstein, L.: Pathways of glutamine deamination and their control in the rat kidney. Amer. J. Physiol. 213, 983 (1967).PubMedGoogle Scholar
  152. 150.
    Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., Singh, R.M.: Hydrogen ion buffer for biological research. Biochemistry (Wash.) 5, 467 (1966).Google Scholar
  153. 151.
    Goodman, S., McIntyre, C.A., O’Brien, D.: Impaired intestinal transport of proline in a patient with familial iminoaciduria. J. Pediat. 71, 246 (1967).PubMedGoogle Scholar
  154. 152.
    Goulden, B.E., Leaver, J.L.: Low voltage electrophoresis as a screening test for the diagnosis of canine cystinuria. Vet. Rec. 80, 244 (1967).Google Scholar
  155. 153.
    Goyer, R.A., Reynolds, J. Jr., Burke, J., Burkholder: Hereditary renal disease with neurosensory hearing loss, prolinuria and ichtyosis. Amer. J. med. Sci. 256, 166 (1968).PubMedGoogle Scholar
  156. 154.
    Goyer, R.A., Reynolds, J.O., Elston, R.C.: Characteristics of the aminoaciduria resulting from cycloleucine administration in pair-fed rats. Proc. Soc. exp. Biol. (N.Y.) 130, 860 (1969).Google Scholar
  157. 155.
    Green, D.F., Morris, M.L., Cahill, G.F., Brand, E.: Canine cystinuria. II. Analysis of cystine calculi and sulfur distribution in the urine. J. biol. Chem. 114, 91 (1936).Google Scholar
  158. 156.
    Greenstein, J.P., Winitz, M.: Chemistry of the amino acids, vol. I, p. 486. New York-London-Sydney: J. Wiley and Sons 1961.Google Scholar
  159. 157.
    Gutman, A.B., , T.F.: Bull. N.Y. Acad. Med. 34, 287 (1958).PubMedCentralPubMedGoogle Scholar
  160. 158.
    Györy, A.Z.: Reexamination of the split oil droplet method as applied to kidney tubules. Pflügers Arch. 324, 328 (1971).PubMedGoogle Scholar
  161. 159.
    Györy, A.Z., Kinne, R.: Energy source for transepithelial sodium transport in rat renal proximal tubules. Pflügers Arch. 327, 234 (1971).PubMedGoogle Scholar
  162. 160.
    Györy, A.Z.: Sources of error in and limitation in the use of t1/2 as a measure of tubular reabsorptive capacity Yale. J. Biol. Med. 45, 269 (1972).PubMedCentralPubMedGoogle Scholar
  163. 161.
    Hagihira, H., Lin, E.C.C., Samiy, A.H., Wilson, T.H.: Active transport of lysine, ornithine, arginine and cystine by the intestine. Biochem. biophys. Res. Commun. 4, 478 (1961).PubMedGoogle Scholar
  164. 162.
    Hardwick, D.F., Applegarth, D.A., Cockcroft, D.M., Ross, P.M., Calder, R.J.: Pathogenesis of methionine-induced toxicity. Metabolism 19, 381 (1970).PubMedGoogle Scholar
  165. 163.
    Harris, H., Mittwoch, U., Robson, E., Warren, F.L.: The pattern of amino-acid excretion in cystinuria. Ann. hum. Genet. 19, 196 (1955).PubMedGoogle Scholar
  166. 164.
    Harris, H., Mittwoch, U., Robson, E., Warren, F.L.: Phenotypes and genotypes in cystinuria. Ann. hum. Genet. 20, 57 (1955).PubMedGoogle Scholar
  167. 165.
    Harris, H., Robson, E.: Cystinuria. Amer. J. Med. 22, 774 (1957).PubMedGoogle Scholar
  168. 166.
    Harrison, H.E., Harrison, H.C.: Experimental production of renal glycosuria, phosphaturia, and aminoaciduria by injection of maleic acid. Science 120, 606 (1954).PubMedGoogle Scholar
  169. 167.
    Heidrich, H.G., Kinne, R., Kinne-Safran, E., Hanning, K.: “The polarity of the proximal tubule cell in rat kidney”. Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings. J. Cell Biol. 54, 232 (1972).PubMedGoogle Scholar
  170. 168.
    Henri, V.: Über das Gesetz der Wirkung des Invertins. Z. physik. Chem. 39, 194–216 (1902).Google Scholar
  171. 169.
    Herbert, J.D., Coulson, R.A., Hernandez, T.: Free amino acid in the caiman and rat. Comp. Biochem. Physiol. 17, 583 (1966).PubMedGoogle Scholar
  172. 170.
    Hierholzer, K., Cade, R., Gurd, R., Kessler, R., Pitts, R.F.: Stop-flow analysis of renal reabsorption and excretion of sulfate in the dog. Amer. J. Physiol. 198, 833 (1960).PubMedGoogle Scholar
  173. 171.
    Hillman, R.E., Albrecht, I., Rosenberg, L.E.: Identification and analysis of multiple glycine transport systems in isolated mammalian renal tubules. J. biol. Chem. 243, 5566 (1968).PubMedGoogle Scholar
  174. 172.
    Hillman, R.E., Rosenberg, L.E.: Amino acid transport by isolated mammalian renal tubules. II. Transport systems for L-proline. J. biol. Chem. 244, 4494 (1969).PubMedGoogle Scholar
  175. 173.
    Hillman, R.E., Rosenberg, L.E.: Binding and transport of proline by mammalian renal tubule cell preparations. Proceeding of the IVth International Congress of Nephrology, p. 294, Stockholm (1969).Google Scholar
  176. 174.
    Hillman, R.E., Rosenberg, L.E.: Amino acid transport by isolated mammalian renal tubules. III. Binding of L-proline by proximal tubule membranes. Biochim. biophys. Acta (Amst.) 211, 318 (1970).Google Scholar
  177. 175.
    Holton, J.B., Lewis, F.J.W., Moore, G.R.: Biochemical investigation of histidinemia. J. clin. Path. 17, 671 (1964).PubMedGoogle Scholar
  178. 176.
    Holton, J.B.: The effect of the histidine load on plasma levels and renal clearances of other amino acids. Clin. chim. Acta 21, 241 (1968).PubMedGoogle Scholar
  179. 177.
    Holtzapple, P.G., Boves, C.F., Rea, C.F., Segal, S.: Amino acid uptake by kidney and jejunal tissue from dogs with cystine stones. Science 166, 1525 (1969).PubMedGoogle Scholar
  180. 178.
    Holtzapple, P.G., Rea, C.F., Genel, M., Segal, S.: Cycloleucine inhibition of amino acid transport in human and rat kidney cortex. J. Lab. clin. Med. 75, 818 (1970).PubMedGoogle Scholar
  181. 179.
    Holtzapple, P.G., Rea, C.F., Bovee, K., Segal, S.: Characteristics of cystine and lysine transport in renal and jejunal tissue from cystinuric dogs. Metabolism 20, 1016 (1971).PubMedGoogle Scholar
  182. 180.
    Hooft, C., Timmermans, J., Snoeck, J., Antener, I., Oyaert, W., Van den Hende, C.: Methionine malabsorption syndrome. Ann. Pédiat. 205, 73 (1965).Google Scholar
  183. 181.
    Huang, K.C.: Renal excretion of L-tyrosine and its derivatives. J. Pharmacol. exp. Ther. 134, 257(1961).PubMedGoogle Scholar
  184. 182.
    Joseph, R., Ribierre, M., Job, J.C., Girault, M.: Maladie familiale associante des convulsions a debut tres precoce, une hyperalbuminorachie et une hyperaminoacidurie. Arch. franç. Pédiat. 15, 374 (1958) quoted from [16].PubMedGoogle Scholar
  185. 183.
    Kamin, H., Handler, Ph.: Effect of infusion of single amino acids upon excretion of other amino acids. Amer. J. Physiol. 164, 654 (1951).PubMedGoogle Scholar
  186. 184.
    Käser, H., Cottier, P., Antener, I.: Die Glukoglycinurie, ein neues familiäres Syndrom. Helv. paediat. Acta 16, 586 (1961).Google Scholar
  187. 185.
    Kashgarian, M., Stöckle, H., Gottschalk, C.W., Ullrich, K.J.: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiure-sis and water diuresis (Diabetes insipidus). Pflügers Arch. ges. Physiol. 277, 89 (1963).Google Scholar
  188. 186.
    Kekomäki, M., Visakorpi, J.K., Perheentupa, J., Saxen, L.: Familial protein intolerance with deficient transport of basic amino acids. Acta paediat. (Uppsala) 56, 617 (1967).Google Scholar
  189. 187.
    Kekomäki, M., Raiha, N.C.R., Perheentupa, J.: Enzymes of urea synthesis in familial protein intolerance with deficient transport of basic amino acids. Acta paediat. (Uppsala) 56, 631 (1967).Google Scholar
  190. 188.
    King, J.S., Wainer, A.: Cystinuria with hyperuricemia and methioninuria. Biochemical study of a case. Amer. J. Med. 43, 125 (1967).PubMedGoogle Scholar
  191. 189.
    Kinne, R., Kinne-Safran, E., Murer, H.: Uptake of D-glucose by brush border microvilli and membranes from lateral and basal infoldings isolated from rat kidney cortex. Pflügers Arch. 343, R46 (1973).Google Scholar
  192. 190.
    Kirk, E.: Studies on the amino acid clearance. Acta med. scand. 89, 450 (1936).Google Scholar
  193. 191.
    Kleinzeller, A., Cort, J.H.: The mechanism of action of mercurial preparation on transport processes and the role of thiol groups in the cell membrane of renal tubular cells. Biochem J. 67, 15 (1957).PubMedGoogle Scholar
  194. 192.
    Kleinzeller, A., Kolinska, J., Benes, I.: Transport of glucose and galactose in kidney-cortex cells. Biochem. J. 104, 843 (1967).PubMedGoogle Scholar
  195. 193.
    Kopelmann, H., Asatoor, A.M., Milne, M.D.: Hyperprolinemia and hereditary nephritis. Lancet 1964 II, 1075.Google Scholar
  196. 194.
    Krizek, V.: Zystinurie und Zystinsteinkrankheiten. Med. Klin. 62, 1230 (1967).PubMedGoogle Scholar
  197. 195.
    LaBelle, W.C. Miller, D.S., Lerner, J.: Interactions between leucine and arginine transport in chicken small intestine. Biochem. biophys. Res. Commun. 45, 131 (1971).Google Scholar
  198. 196.
    La Du, B.N.: Histidinemia. Amer. J. Child. 113, 88 (1967).Google Scholar
  199. 197.
    La Du, B.N., Howel, R.R., Jacoby, G.A., Seegmiller, J.E., Sober, E.K., Zannoni, V.G., Canby, J.P., Ziegler, L.K.: Clinical and biochemical studies on two cases of histidinemia Pediatrics 32, 216(1963).Google Scholar
  200. 198.
    Lang, F., Greger, R., Deetjen, P.: Handling of uric acid by the rat kidney. II. Microperfusion studies on bidirectional transport of uric acid in the proximal tubule. Pflueers Arch 335 257 (1972).Google Scholar
  201. 199.
    Liang, M., Irving, J.L., Wilson, J.E.J.: Elisha Mitchel Sci. Soc. 81, 25 (1963).Google Scholar
  202. 200.
    Lignac, G.O.E.: Über Störungen des Cystinstoffwechsels. Münch. med. Wschr. 71, 1016 (1924).Google Scholar
  203. 201.
    Lingard, J., Rumrich, G., Young, J.A.: Reabsorption of L-glutamine and L-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: evidence that the proximal convolution is not homogeneous. Pflügers Arch. 342, 1–12 (1973).PubMedGoogle Scholar
  204. 202.
    Lingard, J., Rumrich, G., Young, J.A.: Kinetics of L-histidine transport in the proximal convolution of the rat nephron studied using the stationary microperfusion technique. Pflügers Arch. 342, 13–28(1973).PubMedGoogle Scholar
  205. 203.
    Lingard, J.M., Turner, B., Williams, D.B., Young, J.A.: Endogenous amino acid clearance by the rat kidney. Austral. J. exp. Biol. med. Sci. 52, 687–695 (1974).Google Scholar
  206. 204.
    Lingard, J.M., Györy, A.Z., Young, J.A.: Inhomogeneity of cycloleucine reabsorption in the proximal convolution of the rat kidney. Pflügers Arch. (in press), (1975).Google Scholar
  207. 205.
    Löwer, R., Lange, H.W., Hempel, K.: Ausscheidung und renale Behandlung von Nε-Monomethyl-Lysin, Nε-Dimethyl-Lysin und Nε-Trimethyl-Lysin. Nieren-und Hochdruckkrankheiten. 3, XVII (1974).Google Scholar
  208. 206.
    Loewy, A., Neuberg, C.: Über Cystinurie. Hoppe-Seylers Z. physiol. Chem. 43, 338 (1904).Google Scholar
  209. 207.
    Lowenstein, L.M., Smith, J., Segal, S.: Amino acid transport in the rat renal papilla. Biochim. biophys. Acta (Amst.) 150, 73 (1968).Google Scholar
  210. 208.
    Lotspeich, W.D., Pitts, R.F.: The role of amino acids in the renal tubular secretion of ammonia. J. biol. Chem. 168, 611 (1947).PubMedGoogle Scholar
  211. 209.
    Mackensie, S., Scriver, C.R.: Transport of L-proline and α-aminoisobutyric acid in the isolated rat kidney glomerulus. Biochim. biophys. Acta (Amst.) 241, 725 (1971).Google Scholar
  212. 210.
    McCarthy, C.F., Borland, J.L., Lynch, H.J., Owen, E.E., Tyor, M.P.: Defective uptake of basic amino acids and L-cystine by intestinal mucosa of patients with cystinuria. J. clin. Invest. 43, 1518(1964).PubMedCentralPubMedGoogle Scholar
  213. 211.
    McLeod, M.E., Tyor, M.P.: Transport of basic amino acids by hamster intestine. Amer. J. Physiol. 213, 163 (1967).PubMedGoogle Scholar
  214. 212.
    Meister, A.: Biochemistry of the amino acids, 2nd ed., vol. I, p. 252. New York-London: Academic Press 1965.Google Scholar
  215. 213.
    Michael, A.F., Drummond, K.N.: Inhibitory effect of certain amino acids on renal tubular absorption of phosphate. Canad. J. Physiol. Pharmacol. 45, 103 (1967).Google Scholar
  216. 214.
    Milne, M.D., Crawford, M.A., Girao, C.B., Loughridge, L.W.: The metabolic disorder in hartnup disease. Quart. J. Med. 29, 407 (1960).PubMedGoogle Scholar
  217. 215.
    Milne, M.D., Asatoor, A., Loughridge, W.: Hartnup disease and cystinuria. Lancet 1961 I, 51.Google Scholar
  218. 216.
    Milne, M.D., Asatoor, A.M., Edwards, K.D., Loughridge, L.W.: The intestinal absorption defect in cystinuria. Gut 2, 323 (1961).PubMedGoogle Scholar
  219. 217.
    Milne, M.D.: Disorders of amino-acid transport. Brit. med. J. 1, 327 (1964).PubMedGoogle Scholar
  220. 218.
    Milne, M.D.: Pharmacology of amino acids. Clin. Pharmacol. Ther. 9, 484 (1968).PubMedGoogle Scholar
  221. 219.
    Milne, M.D.: Amino acid metabolism in cystinuria. Biochem. J. 122, 9P (1971).Google Scholar
  222. 220.
    Minder, F.C., Dubach, U.C., Antener, I.: Hereditäre Nephropathie und Schwerhörigkeit (mit Aminosäuren- und Fettstoffwechselstörungen in einer Familie aus der Schweiz). Z. klin. Med. 158, 601 (1965).Google Scholar
  223. 221.
    Mohyuddin, F., Scriver, C.R.: Amino acid transport in mammalian kidney: multiple systems for imino acids and glycine in rat kidney. Amer. J. Physiol. 219, 1 (1970).PubMedGoogle Scholar
  224. 222.
    Mollica, F., Pavone, L., Antener, I.: Pure familial hyperprolinemia: Isolated inborn error of aminoacid metabolism without other anomalies in a Sicilian family. Pediatrics 48, 225 (1971).PubMedGoogle Scholar
  225. 223.
    Morin, C.L., Thompson, M.W.: Biochemical and genetic studies in cystinuria: Observations on double heterozygotes of genotype I/II. J. clin. Invest. 50, 1961 (1971).PubMedCentralPubMedGoogle Scholar
  226. 224.
    Morris, R.C., Mc Sherry, E., Kranhold, J.F., Sebastian, A.: Modulation of proximal and distal tubule function in the Fanconi Syndrom. Birth defects 6, 22 (1970).PubMedGoogle Scholar
  227. 225.
    Mudge, G.H.: Electrolyte and water metabolism of rabbit kidney slices: Effect of metabolic inhibitors. Amer. J. Physiol. 167, 206 (1951).PubMedGoogle Scholar
  228. 226.
    Munck, B.G.: Amino acid transport by the small intestine of the rat. Evidence against interactions between sugars and amino acids at the carrier level. Biochim. biophys. Acta (Amst.) 156, 192 (1968).Google Scholar
  229. 227.
    Munck, B.G., Schultz, S.G.: Interactions between leucine and lysine transport in rabbit ileum. Biochim. biophys. Acta (Amst.) 183, 182 (1969).Google Scholar
  230. 228.
    Munck, B.G., Schultz, S.G.: Lysine transport across isolated rabbit ileum. J. gen. Physiol. 53, 157 (1969).PubMedCentralPubMedGoogle Scholar
  231. 229.
    Munck, B.G.: Interactions between lysine, Na+ and Cl- transport in rat jejunum. Biochim. biophys. Acta (Amst.) 203, 424 (1970).Google Scholar
  232. 230.
    Munck, B.G.: Interactions between sugar and amino acid transport in rat jejunum. Acta physiol. Scand. 82, 32A (1971).Google Scholar
  233. 231.
    Murthy, L., Foulkes, E.C.: Movement of solutes across luminal cell membranes in kidney tubules of the rabbit. Nature (Lond.) 213, 180 (1967).Google Scholar
  234. 232.
    Nechay, B.R., Palmer, R.F., Chinoy, D.A., Posey, V.A.: The problem of Na+ — K + adenosine triphosphatase as the receptor for diuretic action of mercurials and ethacrynic acid. J. Pharmacol. exp. Ther. 157, 599 (1967).PubMedGoogle Scholar
  235. 233.
    Niemiro, R.: Aminoaciduria induced with maleic acid. IV. The toxic dose of maleate in vivo and in vitro. Acta biochim. pol. 7, 95 (1960).PubMedGoogle Scholar
  236. 234.
    Noeden, G.H.: Scientific notices—chemistry, cystic oxide—communicated in a letter from Dr. Noeden to Mr. Children. Ann. Philos. 7, 146 (1824) quoted from [363].Google Scholar
  237. 235.
    Nyhan, W.L., Borden, M., Childs, B.: Idiopathic hyperglycinemia: A new disorder of amino acid metabolism. II. The concentrations of other amino acids in the plasma and their modification by the administration of leucine. Paediatrics 27, 539 (1961).Google Scholar
  238. 236.
    Orlowski, M., Meister, A.: The γ-glutamyl cycle: a possible transport system for amino acids. Proc. nat. Acad. Sci. (Wash.) 67, 1248 (1970).Google Scholar
  239. 237.
    Oyanagi Kazuhiko, Ryoichi Miura, Toyoshige Yamanaouchi: Congenital lysinuria: A new inherited transport disorder of dibasic amino acids. J. Paediat. 77, 259 (1970).Google Scholar
  240. 238.
    Passow, H.: Steady-state diffusion of non-electrolytes through epithelial brush borders. J. theor. Biol. 17, 383 (1967).PubMedGoogle Scholar
  241. 239.
    Peng, Y., Harper, A.E.: Amino acid balance and food intake: Effect of different dietary amino acid patterns on the plasma amino acid pattern of rats. J. Nutr. 100, 429 (1970).PubMedGoogle Scholar
  242. 240.
    Perheentupa, J., Visakorpi, J.K.: Protein intolerance with deficient transport of basic amino acids. Another inborn error of metabolism. Lancet 1965 II, 813.Google Scholar
  243. 241.
    Perry, T., Hardwick, D.F., Lowry, R.B., Hansen, S.: Hyperprolinemia in two successive generations of a north american indian family. Ann. hum. Genet. Lond. 31, 401 (1968).Google Scholar
  244. 242.
    Pfaller, W., Silbernagl, S., Deetjen, P.: Cellular localization of L-arginine reabsorption in proximal tubules of rat kidney. Pflügers Arch. 355, R64 (1975).Google Scholar
  245. 243.
    Pitts, R.F.: A renal reabsorptive mechanism in the dog common to glycine and creatine. Amer. J.Physiol. 140, 156 (1943).Google Scholar
  246. 244.
    Pitts, R.F.: A comparison of the renal reabsorptive processes for several amino acids. Amer. J. Physiol. 140, 535 (1944).Google Scholar
  247. 245.
    Pitts, R.F.: Physiology of the kidney and body fluids. Chikago, Year Book, Medical Publ. Inc. (1963).Google Scholar
  248. 246.
    Pitts, R.F.: Metabolism of amino acids by the perfused rat kidney. Amer. J. Physiol. 220 862(1971).PubMedGoogle Scholar
  249. 247.
    Procopis, P.G., Turner, B.: Iminoaciduria: A benign renal tubular defect. J. Pediat. 79, 419 (1971).PubMedGoogle Scholar
  250. 248.
    Prucanski, W.: Cystinuria and cystine urolithiasis in childhood. Acta paediat. (Uppsala) 55, 97(1966).Google Scholar
  251. 249.
    Quehenberger, P., Silbernagl, S., Deetjen, P.: pH-Stabilität verschiedener Puffer bei kontinuierlicher Perfusion proximaler Tubuli. Nieren- und Hochdruckkrankheiten 3, 280 (1974).Google Scholar
  252. 250.
    Reiser, S., Christiansen, P.A.: A cross-inhibition of basic amino acid transport by neutral amino acids. Biochim. biophys. Acta (Amst.) 183, 611 (1969).Google Scholar
  253. 251.
    Reiser, S., Christiansen, P.A.: Stimulation of basic amino acid uptake by certain neutral amino acids in isolated intestinal epithelial cells. Biochim. biophys. Acta (Amst.) 241, 102 (1971).Google Scholar
  254. 252.
    Reynolds, R., Rea, C., Segal, S.: Regulation of amino acid transport in kidney cortex of newborn rats. Science 184, 68 (1974).PubMedGoogle Scholar
  255. 253.
    Richards, A.N., Walker, A.M.: Methods of collecting fluid from known regions of the renal tubules of amphibia and of perfusing the lumen of a single tubule. Amer. J. Physiol 118 111(1937).Google Scholar
  256. 254.
    Robinson, J.W.L., Felber, J.P.: The absorption of dibasic amino acids by rat intestinal slices Biochem. Z. 343, 1 (1965).Google Scholar
  257. 255.
    Robson, E.B., Rose, G.A.: The effect of intravenous lysine on the renal clearances of cystine, arginine and ornithine in normal subjects, in patients with cystinuria and fanconi syndrom and in their relatives. Clin. Sci. 16, 75 (1957).PubMedGoogle Scholar
  258. 255a.
    Rosenberg, L.E., Blair, A., Segal, S.: Transport of amino acids by slices of rat-kidney cortex. Biochim. biophys. Acta (Amst.) 54, 479 (1961).Google Scholar
  259. 256.
    Rosenberg, L.E., Downing, S.J., Segal, S.: Competitive inhibition of dibasic amino acid transport in rat kidney. J. biol. Chem. 237, 2265 (1962).PubMedGoogle Scholar
  260. 257.
    Rosenberg, L.E., Segal, S.: Maleic acid-induced inhibition of amino acid transport in rat kidney. Biochem. J. 92, 345 (1964).PubMedGoogle Scholar
  261. 258.
    Rosenberg, L.E., Durant, J.L., Holland, J.M.: Intestinal absorption and renal extraction of cystine and cysteine in cystinuria. New. Engl. J. Med. 273, 1239 (1965).PubMedGoogle Scholar
  262. 259.
    Rosenberg, L.E., Segal, S.: Cystinuria: Biochemical evidence for two genetically distinct diseases. J. clin. Invest. 40, 1092 (1965).Google Scholar
  263. 260.
    Rosenberg, L.E., Downing, S., Durant, J.L., Segal, S.: Cystinuria: Biochemical evidence for three genetically distinct diseases. J. clin. Invest. 45, 365 (1966).PubMedCentralPubMedGoogle Scholar
  264. 261.
    Rosenberg, L.E., Crawhall, J.C., Segal, S.: Intestinal transport of cystine and cysteine in man: Evidence for separate mechanisms. J. clin. Invest. 46, 30 (1967).PubMedCentralPubMedGoogle Scholar
  265. 262.
    Rosenberg, L.E., Durant, J.L., Elsas, L.J.: Familial iminoglycinuria. An inborn error of renal tubular transport. New. Engl. J. Med. 278, 1407 (1968).PubMedGoogle Scholar
  266. 263.
    Rosenhagen, M., Segal, S.: Stereospecificity of amino acid uptake by rat and human kidney cortex slices. Amer. J. Physiol. 227, 843 (1974).PubMedGoogle Scholar
  267. 264.
    Rumrich, G., Ullrich, K.J.: The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of the mammalian kidney. J. Physiol. (Lond.) 197, 69P (1968).Google Scholar
  268. 265.
    Russo, H.F., Wright, H.R., Skeggs, H.R., Tillson, E.K., Beyer, K.H.: Renal clearance of essential amino acids: Threonine and phenylalanine. Proc. Soc. exp. Biol. (N.Y.) 65, 215 (1947).Google Scholar
  269. 266.
    Ruszkowski, M., Baertl, J.M., Gabuzda, G.J.: Cystinuria-like derangement of amino acid excretion in patients with hepatic cirrhosis given arginine intravenously. J. clin. Invest. 38, 1038 (1959).Google Scholar
  270. 267.
    Ruszkowski, M., Arasimowicz, C., Knapowski, J., Steffen, J., Weiss, K.: Renal reabsorption of amino acids. Amer. J. Physiol. 203, 891 (1962).PubMedGoogle Scholar
  271. 268.
    Sano, Kingo: Über die Löslichkeit der Aminosäuren bei variierter Wasserstoffzahl. Biochem. Z. 168, 14 (1926).Google Scholar
  272. 269.
    Schafer, I.A., Scriver, C.R., Efron, M.L.: Familial hyperprolinemia, cerebral dysfunction and renal anomalies occurring in a family with hereditary nephropathy and deafnes. New. Engl. J. Med. 267, 51 (1962).PubMedGoogle Scholar
  273. 270.
    Schnermann, J., Horster, M., Levine, D.Z.: The influence of sampling technique on the micropuncture determination of GFR and of single rat proximal tubules. Pflügers Arch. 309, 48 (1969).PubMedGoogle Scholar
  274. 271.
    Schnermann, J., Davis, J.M., Wunderlich, P., Levine, D.Z., Horster, M.: Technical problems in the micropuncture determination of nephron filtration rate and their functional implications. Pflügers Arch. 329, 307 (1971).PubMedGoogle Scholar
  275. 272.
    Schreier, K., Müller, W.: Idiopathische Hyperglycinämie (Glycinose). Dtsch. med. Wschr. 89, 1739 (1964).Google Scholar
  276. 273.
    Schwartzman, L., Blair, A., Segal, S.: Exchange diffusion of dibasic amino acids in the rat kidney cortex slices. Biochim. biophys. Acta (Amst.) 135, 120 (1967).Google Scholar
  277. 274.
    Scriver, C.R., Schafer, I.A., Efron, M.L.: New renal tubular amino acid transport system and new hereditary disorder of amino acid metabolism. Nature (Lond.) 192, 672 (1961).Google Scholar
  278. 275.
    Scriver, C.R., Efron, M.L., Schafer, I.A.: Renal tubular transport of proline, hydroxyproline and glycine in health and familial hyperprolinemia. J. clin. Invest. 43, 374 (1964).PubMedCentralPubMedGoogle Scholar
  279. 276.
    Scriver, C.R.: Hartnup disease. A genetic modification of intestinal and renal transport of certain neutral alpha-amino acids. New Engl. J. Med. 273, 530 (1965).Google Scholar
  280. 277.
    Scriver, C.R., Goldman, H.: Renal tubular transport of proline, hydroxyproline and glycine. II. Hydroxy-L-proline as substrate and inhibitor in vivo. J. clin. Invest. 45, 1357 (1966).PubMedCentralPubMedGoogle Scholar
  281. 278.
    Scriver, C.R., Wilson, O.H.: Amino acid transport: Evidence for genetic control of two types in human kidney. Science 155, 1428 (1967).PubMedGoogle Scholar
  282. 279.
    Scriver, C.R.: Renal tubular transport of proline, hydroxyproline and glycine. III. Genetic basis for more than one mode of transport in human kidney. J. clin. Invest. 47, 823 (1968).PubMedCentralPubMedGoogle Scholar
  283. 280.
    Scriver, C.R., Mohyuddin, F.: Amino acid transport in kidney. Heterogeneity of alpha-aminoisobutyric uptake. J. biol. Chem. 243, 3207 (1968).PubMedGoogle Scholar
  284. 281.
    Segal, S., Blair, A., Rosenberg, L.E.: The effect of phlorizin on amino acid transport in rat-kidney-cortex slices. Biochim. biophys. Acta (Amst.) 71, 676 (1963).Google Scholar
  285. 282.
    Segal, S., Crawhall, J.C.: Transport of cysteine by human kidney cortex in vitro. Biochem. Med. 1, 141 (1967).Google Scholar
  286. 283.
    Segal, S., Smith, I.: Delineation of separate transport systems in rat kidney cortex for L-lysine and L-cystine by developmental patterns. Biochem. biophys. Res. Commun. 35, 771 (1969).Google Scholar
  287. 284.
    Segal, S., Smith, I.: Delineation of cystine and cysteine transport systems in rat kidney cortex by developmental patterns. Proc. nat. Acad. Sci. (Wash.) 63, 926 (1969).Google Scholar
  288. 285.
    Segal, S., Thier, S.O.: Renal handling of amino acids. In: (Orloff, J., Berliner, R.W., eds.) Handbook of Physiology, vol. 8: Renal Physiology. Am. Physiol. Soc. Washington D.C. (1973).Google Scholar
  289. 286.
    Selkoe, D.J.: Familial hyperprolinemia and mental retardation. A second metabolic type. Neurology (Minneap.) 19, 494 (1969).Google Scholar
  290. 287.
    Sels, A.: Analogues of amino acids. In: Fundamentals of biochemical pharmacology. (Bacq, Z.M., ed.), p. 505, Oxford-New York-Toronto-Sydney-Braunschweig: Pergamon Press 1971.Google Scholar
  291. 288.
    Sereni, F., McNamara, H., Shibuya, M., Kretchmer, N., Barnett, H.L.: Concentration in plasma and rate of urinary excretion of amino acids in premature infants. Pediatrics 15, 575 (1955).PubMedGoogle Scholar
  292. 289.
    Shalhoub, R., Webber, W., Glabman, S., Canessa-Fischer, M., Klein, J., deHaas, J., Pitts, R.F.: Extraction of amino acids from and their addition to renal blood plasma. Amer. J. Physiol. 204, 181 (1963).Google Scholar
  293. 290.
    Shaw, K.N.F., Boder, E., Gutenstein, M., Jacobs, E.E.: Histidinemia. J. Pediat. 63, 720 (1963).Google Scholar
  294. 291.
    Shik, V.E., Bixby, F.M., Alpers, D.H., Bartsocas, C.S., Thier, S.O.: Studies of intestinal transport defect in Hartnup disease. Gastroenterology 61, 445 (1971).Google Scholar
  295. 292.
    Shipp, J., Hanenson, I., Windhager, E.E., Schatzmann, H., Whittenbury, G., Yoshimura, H., Solomom, A.K.: Single proximal tubules of Necturus kidney. Methods for micropuncture and microperfusion. Amer. J. Physiol. 195, 563 (1958).PubMedGoogle Scholar
  296. 293.
    Silbernagl, S., Deetjen, P.: Mikroperfusionsuntersuchungen zur Resorption von Gycin im proximalen Tubulus. Pflügers Arch. 312, R82 (1969).Google Scholar
  297. 294.
    Silbernagl, S.: Mikroperfusionsuntersuchungen zum tubulären Aminosäuren-Transport. In: Fortschritte der Nephrologie. (Bohle, A., Schubert, G.E., Eds.), p. 157. Stuttgart-New York: Schattauer 1971.Google Scholar
  298. 295.
    Silbernagl, S., Deetjen, P.: Glycine reabsorption in rat proximal tubules. Microperfusion studies. Pflügers Arch. 323, 342 (1971).PubMedGoogle Scholar
  299. 296.
    Silbernagl, S., Deetjen, P.: Amino acid transport in rat proximal tubule. Proceedings of the International Union of Physiological Sciences, 9, p. 514: XXV. International Congress, München 1971.Google Scholar
  300. 297.
    Silbernagl, S.: Mikropunktionsuntersuchungen zum tubulären Transport der “basischen” Aminosäuren an der Ratte. In: Heintz, R., Holzhüter, H.: Renale Elimination von Pharmaka. Immunologie und Klinik der Nierentransplantation. Zur Pathophysiologie des Dialyse-Patienten. Regeneration der Niere. VIII. Symposion der Gesellschaft für Nephrologie, p. 649, Aachen (1972).Google Scholar
  301. 298.
    Silbernagl, S.: Specifity of the L-arginine transport in rat proximal tubule. Pflügers Arch 332, (Suppl.), R30 (1972).Google Scholar
  302. 299.
    Silbernagl, S.: Influence of L-arginine on the L-cystine transport in the rat proximal tubule. Pflügers Arch. 335, (Suppl.), R40 (1972).Google Scholar
  303. 300.
    Silbernagl, S., Deetjen, P.: L-arginine transport in rat proximal tubules. Microperfusion studies on reabsorption kinetics. Pflügers Arch. 336, 79 (1972).PubMedGoogle Scholar
  304. 301.
    Silbernagl, S., Deetjen, P.: The tubular reabsorption of L-cystine and L-cysteine. A common transport system with L-arginine or not? Pflügers Arch. 337, 277 (1972).PubMedGoogle Scholar
  305. 302.
    Silbernagl, S., Deetjen, P.: Handling of L-arginine and of its derivatives in rat proximal tubule. Microperfusion study. Abstracts of V. International Congress of Nephrology Mexico City, p. 130(1972).Google Scholar
  306. 303.
    Silbernagl, S., Deetjen, P.: Molecular specificity of the L-arginine reabsorption mechanism. Microperfusion studies in the proximal tubule of rat kidney. Pflügers Arch. 340, 325 (1973).PubMedGoogle Scholar
  307. 304.
    Silbernagl, S.: Some problems of L-cystine transport in the kidney tubule of rat Pflügers Arch. 343, R46 (1973).Google Scholar
  308. 305.
    Silbernagl, S.: Physiologie und Pathophysiologie der Aminosäurenresorption in der Niere. Habilitationsschrift, Innsbruck (1973).Google Scholar
  309. 306.
    Silbernagl, S.: Die tubuläre Reabsorption einiger Transport-Hemmstoffe und deren Wirkung auf den Aminosäuren-Transfer in der Rattenniere. Nieren- und Hochdruckkrankheiten, 3, 18 (1974).Google Scholar
  310. 307.
    Silbernagl, S.: The effect of penicillamine and L-homoserine on L-cystine transport in rat kidney. Pflügers Arch. 347, R69 (1974).Google Scholar
  311. 308.
    Silbernagl, S.: Handling of cycloleucine (1-amino-cyclopentane carboxylic acid) in the proximal tubule of rat kidney. INSERM, Colloque Europeen: Physiologie du néphron: Mécanisme et régulation, 193 (1974).Google Scholar
  312. 309.
    Silbernagl, S.: Aminosäuren-Transport in der Niere—Ergebnisse der Mikroperfusion. BIUZ 4, (6), 161(1974).Google Scholar
  313. 310.
    Silbernagl, S.: Cycloleucine (1-amino-cyclopentane carboxylic acid): tubular reabsorption and inhibitory effect on amino acid transport in the rat kidney (microperfusion experiments). Pflügers Arch. 353, 241–253(1975).PubMedGoogle Scholar
  314. 311.
    Silbernagl, S.: Renal handling of amino acids. Clinical Nephrology, in press (1976).Google Scholar
  315. 312.
    Silbernagl, S., Quehenberger, P., Maren, T.H.: Proton permeability of the proximal tubule of the rat kidney. Pflügers Arch. 355, R54 (1975).Google Scholar
  316. 312 a.
    Silbernagl, S.: Renal tubular reabsorption of amino acids: Specificity of the different transport systems studied by continuous microperfusion. In: Amino acid transport (ed. Silbernagl, S.) and uric acid (ed. Lang, F., Greger, R.). Stuttgart: Thieme 1975 (in press).Google Scholar
  317. 312b.
    Silbernagl, S.: Renal handling of L-Methionine and other neutral amino acids studied by continuous microperfusion. Pflügers Arch. 359, R120 (1975).Google Scholar
  318. 313.
    Silbernagl, S.: unpublished results.Google Scholar
  319. 314.
    Silk, D.B.A., Perrett, D., Stephens, A.D., Clark, M.L., Scowen, E.F.: Intestinal absorption of cystine and cysteine in normal human subjects and patients with cystinuria. Clin. Sci. 47, 393–397 (1974).Google Scholar
  320. 315.
    Silverman, M., Aganon, M.A., Chinard, F.P.: Specificity of monosaccharide transport in dog kidney. Amer. J. Physiol. 218, 743 (1970).PubMedGoogle Scholar
  321. 316.
    Similä, S., Visakorpi, J.K.: Hyperprolinemia without renal desease. Acta paediat. (Uppsala) 177, (Suppl.), 122(1967).Google Scholar
  322. 317.
    Sober, H.A. (ed.): Handbook of biochemistry, selected data for molecular biology. The Chemical Rubber Co. 2nd ed. Cleveland/Ohio (1970).Google Scholar
  323. 318.
    Solomon, S.: Method for investigating net H2O fluxes across individual proximal tubules. Proc. Soc. exp. Biol. (N.Y.) 101, 221 (1959).Google Scholar
  324. 319.
    Sonnenberg, H., Deetjen, P.: Methode zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch. ges. Physiol. 278, 669 (1964).Google Scholar
  325. 320.
    Spencer, A.G., Franglen, G.T.: Gross aminoaciduria following a lysol burn. Lancet 1952 I, 190.Google Scholar
  326. 321.
    Spitzer, A., Windhager, E.E.: Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption. Amer. J. Physiol. 218, 1188 (1970).PubMedGoogle Scholar
  327. 322.
    Spitzer, A., Windhager, E.E.: Continuous in vivo perfusion of the postglomerular capillary network in superficial rat kidney cortex. Yale J. Biol. Med. 45, 307 (1972).Google Scholar
  328. 323.
    Stalder, G., Vetterli-Buchner, H., Berger, H.: Untersuchungen über den renalen Rückre-sorptionsmechanismus für Aminosäuren. Klin. Wschr. 38, 278 (1960).PubMedGoogle Scholar
  329. 324.
    Stein, W.H.: Excretion of amino acids in cystinuria. Proc. Soc. exp. Biol. (N.Y.) 78, 705 (1951).Google Scholar
  330. 325.
    Stein, W.S., Moore, S.: The free amino acids of human blood plasma. J. biol. Chem. 211, 915 (1954).PubMedGoogle Scholar
  331. 326.
    Stern, J.R., Eggleston, L.V., Hems, R., Krebs, H.A.: Accumulation of glutamino acid in isolated brain tissue. Biochem. J. 44, 410 (1949).Google Scholar
  332. 327.
    Sugita, M., Sugita, K.O., Furkawa, T., Abe, H.: Studies on the transport mechanism of amino acids in the renal tubules. I. Studies on the mechanism of aminoaciduria from the analytical standpoint of titration curve. Jap. Circulat. J. 31, 405 (1967).Google Scholar
  333. 328.
    Tada Keiya, Toshio Morikawa, Toshiyuki Ando, Toshio Yoshida, Akibumi Minagawa.: Prolinuria: A new renal tubular defect in transport of proline and glycine. Tohoku J. exp. Med. 87, 133(1965).Google Scholar
  334. 329.
    Tancredi, F., Guazzi, G., Auricchio, S.: Renal iminoglycinuria without intestinal malabsorption of glycine and imino acids. J. Pediat. 76, 386 (1970).PubMedGoogle Scholar
  335. 330.
    Thier, S., Fox, M., Segal, S.: Cystinuria: In vitro demonstration of an intestinal transport defect. Science 143, 482 (1964).PubMedGoogle Scholar
  336. 331.
    Thier, S., Fox, M., Rosenberg, L.E., Segal, S.: Hexose inhibition of amino acid uptake in rat-kidney-cortex slice. Biochim. biophys. Acta (Amst.) 93, 106 (1964).Google Scholar
  337. 332.
    Thier, S., Segal, S., Fox, M., Blair, A., Rosenberg, L.E.: Cystinuria: Defective intestinal transport of dibasic amino acids and cystine. J. clin. Invest. 44, 442 (1965).PubMedCentralPubMedGoogle Scholar
  338. 333.
    Thier, S., Blair, A., Fox, M., Segal, S.: The effect of extracellular sodium concentration on the kinetics of amino-isobutyric acid transport in the rat kidney cortex slice. Biochim. biophys. Acta (Amst.) 135, 300 (1967).Google Scholar
  339. 334.
    Thier, S.: Inborn errors of organic solute transport: Genetic control of amino acid transport in gut and kidney. Birth defects 6, 20 (1970).PubMedGoogle Scholar
  340. 335.
    Thier, S., Segal, S.: Cystinuria. In: The metabolic basis of inherited disease. 3rd ed. by Stanbury, J.B., Wyngarden, J.B., Frederickson, D.S. Mc Graw-Hill 1504 (1972).Google Scholar
  341. 336.
    Treacher, R.J.: Amino acid excretion in canine cystine-stone disease. Vet. Rec. 74, 503 (1962).Google Scholar
  342. 337.
    Treacher, R.J.: The aetiology of canine cystinuria. Biochem. J. 90, 494 (1964).PubMedGoogle Scholar
  343. 338.
    Tsan Min-Fu, Jones, T.C., Thorton, G.W., Levy, H.L., Gilmore, G., Wison, T.H.: Canine cystinuria: Its urinary amino acid pattern and genetic analysis. Amer. J. Vet. Res. 33, 2455 (1972).Google Scholar
  344. 339.
    Tsan Min-Fu, Jones, T.C., Wilson, T.H.: Canine cystinuria: Intestinal and renal amino acid transport. Amer. J. vet. Res. 33, 2463 (1972).Google Scholar
  345. 340.
    Ullrich, K.J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory techniques in membrane biophysics. (Passow, H., Stämpfli, R., eds.), p. 106. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  346. 341.
    Ullrich, K.J., Rumrich, G., Klöss, S.: Sodium dependence of the transtubular transport of glucose and amino acid in the proximal tubule of the rat kidney. Pflügers Arch. 339, (Suppl.) R47(1973).Google Scholar
  347. 342.
    Ullrich, K.J., Rumrich, G., Klöss, S.: Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflügers Arch. 351, 49–60 (1974).PubMedGoogle Scholar
  348. 343.
    Ullrich, K.J., Frömter, E., Evers, J., Kinne, R.: Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. In: Amino acid transport (ed. Silbernagl, S.) and uric acid (ed. Lang, F., Greger, R.). Stuttgart: Thieme 1975 (in press).Google Scholar
  349. 344.
    deVries, A., Kochwa, S., Lanzenbik, J., Frank, M., Djaldetti, M.: Glycinuria, a hereditary disorder associated with nephrolithiasis. Amer. J. Med. 23, 408 (1957).Google Scholar
  350. 345.
    Waisman, H.A.: Variation in clinical and laboratory findings in histidinemia. Amer. J. Dis. Child 113, 93 (1967).PubMedGoogle Scholar
  351. 346.
    Webber, W.A., Brown, J.L., Pitts, R.F.: Interactions of amino acids in renal tubular transport. Amer. J. Physiol. 200, 380 (1961).PubMedGoogle Scholar
  352. 347.
    Webber, W.A.: Interactions of neutral and acidic amino acids in renal tubular transport. Amer. J. Physiol. 202, 577(1962).PubMedGoogle Scholar
  353. 348.
    Webber, W.A.: Characteristics of acidic amino acid transport in mammalian kidney. Canad. J. Biochem. 41, 131 (1963).PubMedGoogle Scholar
  354. 349.
    Webber, W.A., Campell, J.L.: Effects of amino acids on renal glucose reabsorption in the dog. Canad. J. Physiol. Pharmacol. 43, 915 (1965).Google Scholar
  355. 350.
    Webber, W.A.: Some effects of phlorizin and phloretin on renal amino acid reabsorption in the dog. Canad. J. Physiol. Pharmacol. 43, 79 (1965).Google Scholar
  356. 351.
    Webber, W.A.: Renal tubular reabsorption of α-aminoisobutyric acid. Canad. J. Physiol. Pharmacol. 44, 507 (1966).Google Scholar
  357. 352.
    Wedeen, R.P., Weiner, B.: Distribution of PAH in rat kidney slices II. Depth of uptake. Kidney Internati. 3, 214 (1973).Google Scholar
  358. 353.
    Weinmann, E.J., Hardy, R.J., Kashgarian, M., Hayslett, J.P.: Examination of the Gertz technique as applied to the proximal tubule of the rat kidney. Yale J. Biol. Med. 45, 289 (1972).Google Scholar
  359. 354.
    Weise, M., Eisenbach, G.M., Stolte, H.: Mikropunktionsuntersuchungen über die Resorption freier Aminosäuren im Einzelnephron der Säugetierniere. In: Fortschritte der Nephrologie, Niere und Stoffwechsel, Juxta-glomerulärer Apparat. VII. Symposion der Gesellschaft für Nephrologie, Tübingen (1970). (Bohle, A., Schubert, G.F., eds.), p. 161. Stuttgart-New York: Schattauer 1971.Google Scholar
  360. 355.
    Weise, M., Eisenbach, G.M., Stolte, H.: Mikropunktionsuntersuchungen über die renale Aminosäurenresorption. In: Renale Elimination von Pharmaka, Immunologie und Klinik der Nierentransplantation. Zur Pathophysiologie des Dialyse-Patienten. Regeneration der Niere. VIII. Symposion, Gesellschaft für Nephrologie, Aachen (1971). (Heintz, R., Holzhüter, H. eds.), p. 641. Aachen 1972.Google Scholar
  361. 356.
    Weyers, H., Bickel, H.: Photodermatose mit Aminoacidurie, Indolaceturie und cerebralen Manifestationen (Hartnup-Syndrom). Klin. Wschr. 36, 839 (1958).Google Scholar
  362. 357.
    Whelan, D.T., Scriver, C.R.: Hyperdibasicaminoaciduria: An inherited disorder of amino acid transport. Pediat. Res. 2, 525 (1968).PubMedGoogle Scholar
  363. 358.
    Whelan, D.T., Scriver, C.R.: Cystathioninuria and renal iminoglycinuria in a pedigree. A perspective on counseling. New Engl. J. Med. 278, 924 (1968).Google Scholar
  364. 359.
    Williams, W.M., Huang, K.C.: In vitro and in vivo renal tubular transport of tryptophan derivatives. Amer. J. Physiol. 219, 1468 (1970).PubMedGoogle Scholar
  365. 360.
    Wilson, V.K., Thomson, M.L., Dent, C.E.: Aminoaciduria in lead poisoning. A case in childhood. Lancet 1953 II, 66.Google Scholar
  366. 361.
    Wilson, O.H., Scriver, C.R.: Specificity of transport of neutral and basic amino acids in rat kidney. Amer. J. Physiol. 213, 185 (1967).PubMedGoogle Scholar
  367. 362.
    Windhager, E.E.: Micropuncture techniques and nephron function. London: Butterworth 1968.Google Scholar
  368. 363.
    Wirtschafter, Z.T.: The role of metals in carbohydrate metabolism. J. Lab. clin. Med. 26, 1093 (1941).Google Scholar
  369. 364.
    Wollaston, W.H.: On cystic oxide: A new species of urinary calculus. Trans, roy. Soc. Edinb. 100, 223 (1810).Google Scholar
  370. 365.
    Woody, N.C., Snyder, C.H., Harris, J.A.: Histidinemia. Amer. J. Dis. Child 110, 606 (1965).PubMedGoogle Scholar
  371. 366.
    Woody, N.C., Snyder, C.H., Harris, J.A.: Hyperprolinemia: Clinical and biochemical family study. Paediatrics 44, 554 (1969).Google Scholar
  372. 367.
    Worthen, H.G.: Renal toxicity of maleic acid in the rat. Lab. Invest. 12, 791 (1963).PubMedGoogle Scholar
  373. 368.
    Wright, L.D., Russo, H.F., Skeggs, H.R., Patch, E.A., Beyer, K.H.: The renal clearance of essential amino acids: Arginine, lysine and methionine. Amer. J. Physiol. 149, 130 (1947).PubMedGoogle Scholar
  374. 369.
    Yeh Hui Lan, Frankl, W., Dunn, M.S., Hughes, B., Györy, P.: The urinary excretion of amino acids by a cystinuria subject. Amer. J. med. Sci. 214, 507 (1947).Google Scholar
  375. 370.
    Young, J.A., Edwards, K.D.G.: Studies on the absorption metabolism and excretion of methyldopa and other catechols and their influence on amino acids transport in rats. J. Pharmacol, exp. Ther. 145, 102 (1964).Google Scholar
  376. 371.
    Young, J.A., Edwards, K.D.G.: Clearance and stop-flow studies on histidine and methyldopa transport by rat kidney. Amer. J. Physiol. 210, 667 (1966).PubMedGoogle Scholar
  377. 372.
    Young, J.A., Freedman, B.S.: Renal tubular transport of amino acids. Clin. Chem. 17, 245 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • S. Silbernagl
    • 1
  • E. C. Foulkes
    • 2
  • P. Deetjen
    • 1
  1. 1.Physiologisches InstitutUniversität InnsbruckInnsbruckAustria
  2. 2.Depts. of Environmental Health and Physiology, Coll. of MedicineUniv. of CincinnatiCincinnatiUSA

Personalised recommendations