The Role of Cyclic Nucleotides in Central Synaptic Function

  • F. E. Bloom
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 74)


Less than two decades ago Sutherland and Rall (1958; Rall et al., 1957) discovered a heat stable factor now known as adenosine 3′,5′-monophosphate, which accumulated in particulate fractions of liver homogenates exposed to epinephrine. This factor activated the breakdown of glycogen by soluble cytoplasmic enzymes. Although epinephrine activates glycogenolysis in intact hepatocytes, the hormone has no such effect on the soluble enzymes. Sutherland and Rall (1960; Rall and Sutherland, 1958, 1961, 1962) proposed that epinephrine might trigger the glycogenolytic response of hepatocytes by activating the synthesis of this nucleotide (cyclic AMP) whose structure (Fig. 1) by then had been shown to contain a unique cyclic phosphate bond (Lipkin et al., 1959). The polypeptide hormone glucagon also triggers the glycogenolytic response of liver, and activates the synthesis of cyclic AMP. From these and related observations on the actions of other hormones, the concept arose that cyclic AMP functioned as an intracellular “second messenger”, synthesized in response to certain hormones and which, by activating the appropriate sequence of enzymes, produced the specific biologic response of the target cell to the hormone (Sutherland et al., 1965).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdulla, Y.H., Hamadah, K.: 3′,5′-Cyclic adenosine monophosphate in depression and mania. Lancet 1970I, 378–381.Google Scholar
  2. Adinolfi, A.M., Schmidt, S.Y.: Cytochemical localization of cyclic nucleotide phosphodiesterase activity at developing synapses. Brain Res. 76, 21–31 (1974).PubMedGoogle Scholar
  3. Aghajanian, G.K., Haigler, H.J., Bloom, F.E.: Lysergic acid diethylamide and serotonin: direct actions on serotonin-containing neurons in rat brain. Life Sci. 11, 615–622 (1972).Google Scholar
  4. Amer, M.S., Kreighbaum, E.: Cyclic nucleotide phosphodiesterase: properties, activators, inhibitors, structure-activity relationships and possible role in drug development. J. pharm. Sci. 64, 1–37 (1975).Google Scholar
  5. Anagnoste, B., Shirron, C., Friedman, E., Goldstein, M.: Effect of dibutyryl cyclic adenosine monophosphate on C14 dopamine synthesis in rat brain striatal slices. J. Pharmacol. exp. Ther. 191, 370–376 (1974).PubMedGoogle Scholar
  6. Anderson, E.G., Haas, H., Hosli, L.: Comparison of effects of noradrenaline and histamine with cyclic AMP on brain stem neurones. Brain Res. 49, 471–475 (1973a).PubMedGoogle Scholar
  7. Anderson, W.B., Russell, T.R., Carchman, R.A., Pastan, I.: Interrelationship between adenylate cyclase activity, adenosine 3′,5′-cyclic monophosphate levels, and growth of cells in culture. Proc. nat. Acad. Sci. (Wash.) 70, 3802–3805 (1973b).Google Scholar
  8. Appleman, M.M., Terasaki, W.L.: The regulation of cyclic nucleotide phosphodiesterase. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press (in press).Google Scholar
  9. Appleman, M.M., Thompson, W.J., Russell, T.R.: Cyclic nucleotide phosphodiesterases. In: Advances in Cyclic Nucleotide Research, vol. 3. New York: Raven Press 1973.Google Scholar
  10. Arbuthnott, G.W., Attree, T.J., Eccleston, D., Loose, R.W., Martin, M.J.: Is adenylate cyclase the dopamine receptor. Med. biol. III. 52, 350–353 (1974).Google Scholar
  11. Ascher, P.: Excitatory effects of dopamine on molluscan neurons. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1973.Google Scholar
  12. Ashby, C.D., Walsh, D.A.: Characterization of the interaction of a protein inhibitor with adenosine 3′,5′-monophosphate-dependent protein kinases. J. biol. Chem. 247, 6637–6642 (1972).PubMedGoogle Scholar
  13. Ashman, D.F., Lipton, R., Melicow, M.M., Price, T.D.: Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem. biophys. Res. Commun. 11, 330–334 (1963).Google Scholar
  14. Atkinson, D.E.: Citrate in the regulation of energy metabolism. In: Metabolic Roles of Citrate. New York: Academic Press 1968.Google Scholar
  15. Aurbach, G.D., Fedak, S.A., Woodard, C.J., Palmer, J.S., Hauser, D., Troxler, F.: β-adrenergic receptor: stereospecific interaction of iodinated β-blocking agent with high affinity site. Science 186, 1223–1224 (1974).PubMedGoogle Scholar
  16. Axelrod, J.: Noradrenaline: fate and control of its biosynthesis. Science 173, 598–606 (1971).PubMedGoogle Scholar
  17. Barker, J.L., Crayton, J., Nicoll, R.: Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J. Physiol. (Lond.) 218, 19–32 (1971).Google Scholar
  18. Batzri, S., Selinger, Z., Schramm, M.: Potassium ion release and enzyme secretion: adrenergic regulation by α and β receptors. Science 174, 1029–1031 (1971).PubMedGoogle Scholar
  19. Baudry, M., Martres, M-P., Schwartz, J-C.: H1 and H2 receptors in the histamine-induced accumulation of cyclic AMP in guinea pig slices. Nature (Lond.) 253, 362–363 (1975).Google Scholar
  20. Baylor, D.A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).Google Scholar
  21. Beavo, J.A., Hardman, J.G., Sutherland, E.W.: Hydrolysis of cyclic guanosine and adenosine 3′,5′-monophosphate by rat and bovine tissues. J. biol. Chem. 245, 5649–5655 (1970).PubMedGoogle Scholar
  22. Beer, B., Chasin, M., Clody, D.E., Vogel, J.R., Horovitz, Z.P.: Cyclic adenosine monophosphate phosphodiesterase in brain: Effect on anxiety. Science 176, 428–430 (1972).PubMedGoogle Scholar
  23. Bensinger, R.E., Fletcher, R.T., Chader, G.J.: Guanylate cyclase: inhibition by light in retinal photoreceptors. Science 183, 86–87 (1974).PubMedGoogle Scholar
  24. Berg, J.S.V.: Inhibitory effects of dibutyryl and cyclic AMP on the compound action potential in the frog (Rana Pipiens) sciatic nerve. Experientia (Basel) 30, 1025–1026 (1974).Google Scholar
  25. Berger, B., Tassin, J.P., Blanc, O., Moyne, M.A., Thierry, A.M.: Histochemical confirmation for dopaminergic innervation of rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res. 81, 332–337 (1974).PubMedGoogle Scholar
  26. Berkowitz, B.A., Tarver, J.H., Spector, S.: Release of norepinephrine in the central nervous system by theophylline and caffeine. Europ. J. Pharmacol. 10, 64–71 (1970).Google Scholar
  27. Berne, R.M., Rubio, R., Curnish, R.R.: Release of adenosine from ischemic brain. Circulat. Res. 35, 262–271 (1974).Google Scholar
  28. Berridge, M.J., Prince, W.T.: The electrical response of isolated salivary glands during stimulation with 5-hydroxytryptamine and cyclic AMP. Phil. Trans. B 262, 111–120 (1971).Google Scholar
  29. Berridge, M.J., Prince, W.T.: Transepithelial potential changes during stimulation of isolated salivary glands with 5-hydroxytryptamine and cyclic AMP. J. exp. Biol. 56, 139–153 (1972).PubMedGoogle Scholar
  30. Berti, F., Trabucchi, M., Bernareggi, V., Fumagalli, R.: The effect of prostaglandins on cyclic AMP formation in cerebral cortex of different mammalian species. Pharmacol. Res. Commun. 4, 253–259 (1972).Google Scholar
  31. Bianchi, C.P.: Cell Calcium. New York: Appleton-Century-Crofts 1964.Google Scholar
  32. Bilzekian, J.P., Aurbach, G.D.: The effects of nucleotides on the expression of β-adrenergic adenylate cyclase activity in membranes from turkey erythrocytes. J. biol. Chem. 249, 157–161 (1974).Google Scholar
  33. Birnbaumer, L., Yang, P.C.: Studies on receptor-mediated activation of adenylyl cyclases. I. Preparation and description of general properties of an adenylyl cyclase system in beef renal medullary membranes sensitive to neurohypophyseal hormones. J. biol. Chem. 249, 7848–7856 (1974a).PubMedGoogle Scholar
  34. Birnbaumer, L., Yang, P.C.: Studies on receptor-mediated activation of adenylyl cyclases. III. Regulation by purine nucleotides of the activation of adenylyl cyclases from target organs for prostaglandins, luteinizing hormone, neurohypophyseal hormones and catecholamines. Tissue and hormone-dependent variations. J. biol. Chem. 249, 7867–7873 (1974b).PubMedGoogle Scholar
  35. Birnbaumer, L., Nakahara, T., Yang, P.C.: Studies on receptor-mediated activation of adenylyl cyclases. II. Nucleotide and nucleoside regulation of the activities of the beef renal medullary adenylyl cyclase and their stimulation by neurohypophyseal hormones. J. biol. Chem. 249 7857–7866 (1974).PubMedGoogle Scholar
  36. Bitensky, M.W., Gorman, R.E., Miller, W.H.: Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc. nat. Acad. Sci. (Wash) 68, 561–562 (1971).Google Scholar
  37. Bitensky, M.W., Miki, N., Marcus, F.R., Keirns, J.J.: The role of cyclic nucleotides in visual excitation. Life Sci. 13, 1451–1472 (1973).PubMedGoogle Scholar
  38. Björklund, A., Cegrell, L., Falck, B., Ritzen, M., Rosengren, E.: Dopamine-containing cells in sympathetic ganglia. Acta physiol. scand. 78, 334–338 (1970).PubMedGoogle Scholar
  39. Björklund, A., Katzman, R., Stenevi, U., West, K.: Development and growth of axonal sprouts from NA and 5-hydroxytryptamine neurons in rat spinal cord. Brain Res. 31, 21–33 (1971).PubMedGoogle Scholar
  40. Black, A.C., Bhalla, R.C., Williams, T.H.: Species differences in the adenyl cyclase responsiveness to neurotransmitters in the superior cervical ganglion. Abstr. 4th Annu. Meeting Soc. Neurosci St. Louis, p. 144 (1974).Google Scholar
  41. Blecher, M., Hunt, N.H.: Enzymatic deacylation of mono- and dibutyryl derivatives of cyclic adenosine 3′,5′-monophosphate by extracts of rat tissues. J. biol. Chem. 247, 7479–7484 (1972).PubMedGoogle Scholar
  42. Bloom, F.E.: Electrophysiological pharmacology of single nerve cells. In: Psychopharmacology — A Ten Year Progress Report. Washington, D.C.: U.S. Govt. Printing Office 1968.Google Scholar
  43. Bloom, F.E.: Fine structural changes in rat brain after intracisternal injection of 6-hydroxydopamine. In: 6-Hydroxydopamine and Catecholamine Neurons. Amsterdam: North Holland Publishing Co. 1971.Google Scholar
  44. Bloom, F.E.: Amino acids and polypeptides in neuronal function. Neurosci. Res. Program Bull 10, 122–251 (1972).Google Scholar
  45. Bloom, F.E.: Ultrastructural identification of catecholamine-containing central synaptic terminals. J. Histochem. Cytochem. 21, 333–348 (1973a).PubMedGoogle Scholar
  46. Bloom, F.E.: Dynamic synaptic communication: finding the vocabulary. Brain Res. 62, 299–305 (1973b).PubMedGoogle Scholar
  47. Bloom, F.E.: To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci. 14, 1819–1834 (1974).PubMedGoogle Scholar
  48. Bloom, F.E., Costa, E., Salmoiraghi, G.C.: Anesthesia and the responsiveness of individual neurons of the cat’s caudate nucleus to acetylcholine, norepinephrine, and dopamine administered by microelectrophoresis. J. Pharmacol. 150, 244–255 (1965).Google Scholar
  49. Bloom, F.E., Hoffer, B.J.: Norepinephrine as a central synaptic transmitter. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1973.Google Scholar
  50. Bloom, F.E., Hoffer, B.J., Battenberg, E.F., Siggins, G.R., Steiner, A.L., Parker, C.W., Wedner, H.J.: Adenosine 3′,5′-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence. Science 177, 436–438 (1972).PubMedGoogle Scholar
  51. Bloom, F.E., Hoffer, B.J., Siggins, G.R.: Studies on norepinephrine containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses. Brain Res. 25, 501–521 (1971).PubMedGoogle Scholar
  52. Bloom, F.E., Hoffer, B.J., Siggins, G.R.: Norepinephrine mediated synapses. A model system for neuropsychopharmacology. Biol. Psychiat. 4, 157–177 (1972).PubMedGoogle Scholar
  53. Bloom, F.E., Krebs, H., Nicholson, J., Pickel, V.: The noradrenergic innervation of cerebellar Purkinje cells: Localization, function, synaptogenesis, and axonal sprouting of locus coeruleus. In: Dynamics of Degeneration and Growth in Neurons. England: Pergamon Press 1974b.Google Scholar
  54. Bloom, F.E., Siggins, G.R., Hoffer, B.J.: Interpreting the failures to confirm the depression of cerebellar Purkinje cells by cyclic AMP. Science 185, 627–629 (1974a).PubMedGoogle Scholar
  55. Bloom, F.E., Siggins, G.R., Hoffer, B.J., Segal, M., Oliver, A.P.: The role of cyclic nucleotides in the central synaptic actions of catecholamines. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press 1975.Google Scholar
  56. Bloom, S., Sweat, F.W.: Covariance of myocardial cyclic AMP and calcium during β-adrenergic stimulation in vivo. Res. Commun. Chem. Pathol. Pharmacol. 8, 505–514 (1974).PubMedGoogle Scholar
  57. Blumberg, J.B., Sulser, F.: The effect of antipsychotic drugs on the cyclic 3′,5′ adenosine monophosphate system on rat forebrain. Fed. Proc. 33, 286 (1974).Google Scholar
  58. Booth, D.A.: Unlearned and learned effects of intrahypothalamic cyclic AMP injection on feeding. Nature (Lond.) New Biol. 237, 222–224 (1972).Google Scholar
  59. Borasio, P.G., Vassalle, M.: Dibutyryl cyclic AMP and potassium transport in cardiac Purkinje fibers. Amer. J. Physiol. 226, 1232–1237 (1974).PubMedGoogle Scholar
  60. Borgeat, P., Chavancy, G., Dupont, A., Labrie, F., Arimura, A., Schally, A.V.: Stimulation of adenosine 3′,5′-cyclic monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing hormone. Proc. nat. Acad. Sci. (Wash.) 69, 2677–2681 (1972).Google Scholar
  61. Bradshaw, C.M., Szabadi, E., Roberts, M.H.T.: The reflection of ejecting and retaining currents in the time course of neuronal responses to microelectrophoretically applied drugs. J. Pharm. Pharmacol. 25, 513–520 (1973).PubMedGoogle Scholar
  62. Bray, J.J., Kon, C.M., Breckenridge, B.M.: Adenyl cyclase cyclic nucleotide phosphodiesterase and axoplasmic flow. Brain Res. 26, 385–394 (1971).PubMedGoogle Scholar
  63. Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Riuier, J., Guillemin, R.: Hypothalamic polypeptide that inhibits the secretion of immuno-reactive pituitary growth hormone. Science 179, 77–79 (1973).PubMedGoogle Scholar
  64. Breckenridge, B.M.: The measurement of cyclic adenylate in tissues. Proc. nat. Acad. Sci. (Wash.) 57, 1580–1586 (1964).Google Scholar
  65. Breckenridge, B.M., Burn, J.H., Matschinsky, F.M.: Theophylline, epinephrine, and neostigmine facilitation of neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 57, 1893–1897 (1967).Google Scholar
  66. Breckenridge, B.M., Johnston, R.E.: Cyclic 3′,5′-nucleotide phosphodiesterase in brain. J. Histochem. Cytochem. 17, 505–511 (1969).PubMedGoogle Scholar
  67. Breckenridge, B.M., Lisk, R.D.: Cyclic adenylate and hypothalamic regulatory functions. Proc. Soc. exp. Biol. (N.Y.) 131, 934–935 (1969).Google Scholar
  68. Brooker, G.: Oscillation of cyclic adenosine monophosphate concentration during the myocardial contraction cycle. Science 182, 933–934 (1973).PubMedGoogle Scholar
  69. Broström, C.O., Huang, Y-C., Breckenridge, B. McL., Wolff, D.J.: Identification of a calciumbinding protein as a calcium-dependent regulation of brain adenylate cyclase. Proc. nat. Acad. Sci. (Wash.) 72, 64–68 (1975).Google Scholar
  70. Brown, J.H., Makman, M.H.: Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′,5′-cyclic monophosphate formation in intact retina. Proc. nat. Acad. Sci. (Wash.) 69, 539–543 (1972).Google Scholar
  71. Brown, J.H., Makman, M.H.: Influence of neuroleptic drugs and apomorphine on dopamine sensitive adenylate cyclase of retina. J. Neurochem. 21, 477–479 (1973).PubMedGoogle Scholar
  72. Brunton, W.J.: Beta-adrenergic stimulation of transmembrane potential and short circuit current of isolated rabbit oviduct. Nature (Lond.) New Biol. 236, 12–14 (1972).Google Scholar
  73. Bülbring, E., Tomita, T.: Increase of membrane conductance by adrenaline in the smooth muscle of guinea-pig taenia coli. Proc. roy. Soc. B 172, 89–102 (1969).Google Scholar
  74. Bunney, B.S., Aghajanian, G.K.: Electrophysiological effects of amphetamine in dopaminergic neurons. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1973.Google Scholar
  75. Burgus, R., Guillemin, R.: Hypothalamic releasing factors. Ann. Rev. Biochem. 39, 490–526 (1970).Google Scholar
  76. Burnstock, G.: Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972).PubMedGoogle Scholar
  77. Carlsoo, B., Danielsson, A., Marklund, S., Stigbrand, T.: Effects of 3′,5′-cyclic adenosine monophosphate, 5-hydroxytryptamine, noradrenaline and theophylline on the simultaneous release of peroxidase and amylase from the guinea pig submandibular gland. Acta physiol. scand. 91 203–210 (1974).PubMedGoogle Scholar
  78. Carnegie, P.R., Kemp, B.E., Dunkley, P.R., Murray, A.W.: Phosphorylation of myelin basic protein by an adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochem. J. 135, 569–572 (1973).PubMedGoogle Scholar
  79. Carpenter, D.O., Gaubatz, G.L.: Octopamine receptors on Aplysia neurones mediate hyperpolarization by increasing membrane conductance. Nature (Lond.) 252, 483–485 (1974).Google Scholar
  80. Casnellie, J.E., Greengard, P.: Guanosine 3′:5′-cyclic monophosphate-dependent phosphorylation of endogenous substrate proteins in membranes of mammalian smooth muscle. Proc. nat Acad Sci. (Wash.) 71, 1891–1895 (1974).Google Scholar
  81. Cedar, H., Kandel, E.R., Schwartz, J.H.: Cyclic adenosine monophosphate in the nervous system of aplysia californica. I. Increased synthesis in response to synaptic stimulation. J. gen. Physiol 60, 558–569 (1972).PubMedCentralPubMedGoogle Scholar
  82. Cedar, H., Schwartz, J.H.: Cyclic adenosine monophosphate in the nervous system of aplysia californica: II. Effect of serotonin and dopamine. J. gen. Physiol. 60, 570–587 (1972).PubMedCentralPubMedGoogle Scholar
  83. Chalazonitis, A., Greene, L.A.: Enhancement in excitability properties of mouse neuroblastoma cells cultured in the presence of dibutyryl cyclic AMP. Brain Res. 72, 340–345 (1974).PubMedGoogle Scholar
  84. Chasin, M., Mamrak, F., Samaniego, S.G.: Preparation and properties of a cell-free, hormonally responsive adenylate cyclase from guinea pig brain. J. Neurochem. 22, 1031–1038 (1974).PubMedGoogle Scholar
  85. Chasin, M., Mamrak, F., Samaniego, S.G., Hess, S.M.: Characteristics of the catecholamine and histamine receptor sites mediating accumulation of cyclic adenosine 3′,5′-monophosphate in guinea pig brain. J. Neurochem. 21, 1415–1427 (1973).PubMedGoogle Scholar
  86. Chasin, M., Rivkin, I., Mamrak, F., Samaniego, G., Hess, S.M.: α- and β-adrenergic receptors as mediators of accumulation of cyclic adenosine 3′,5′-monophosphate in specific areas of guinea pig brain. J. biol. Chem. 246, 3037–3041 (1971).PubMedGoogle Scholar
  87. Chatzkel, S., Zimmerman, I., Berg, A.: Modulation of cyclic AMP synthesis in the cat superior cervical ganglion by short term presynaptic stimulation. Brain Res. 80, 523–526 (1974).PubMedGoogle Scholar
  88. Cheung, W.Y.: Properties of cyclic 3′,5′-nucleotide phosphodiesterase from rat brain Biochemistry (Wash.) 6, 1079–1087 (1970).Google Scholar
  89. Chiarandini, D.J., Bentley, P.J.: The effects of verapamil on metabolism and contractility of the toad skeletal muscle. J. Pharmacol. exp. Ther. 186, 52–59 (1973).PubMedGoogle Scholar
  90. Chou, W.S., Ho, A.K.S., Loh, H.H.: Neurohormones on brain adenyl cyclase activity in vivo. Nature (Lond.) New Biol. 233, 280–281 (1971).Google Scholar
  91. Chu, N-S., Bloom, F.E.: Norepinephrine-containing neurons: changes in spontaneous discharge patterns during unrestrained sleeping and waking. Science 179, 908–910 (1973).PubMedGoogle Scholar
  92. Chu, N-S., Bloom, F.E.: The catecholamine-containing neurons in the cat dorso-lateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res 66 1–21 (1974a).Google Scholar
  93. Chu, N-S., Bloom, F.E.: Activity patterns of catecholamine-containing pontine neurons in the dorsolateral tegmentum of unrestrained cats. J. Neurobiol. 5, 527–544 (1974b).PubMedGoogle Scholar
  94. Huang, D-M., Costa, E.: Biosynthesis of tyrosine hydroxylase in rat adrenal medulla after exposure to cold. Proc. nat. Acad. Sci. (Wash.) 71, 4570–4574 (1974).Google Scholar
  95. Clark, R.B., Gross, R., Su, Y-F., Perkins, J.P.: Regulation of adenosine 3′,5′-monophosphate content in human astrocytoma cells by adenosine and adenine nucleotides. J. biol. Chem. 249, 5296–5303 (1974).PubMedGoogle Scholar
  96. Clark, R.B., Perkins, J.P.: Regulation of adenosine 3′,5′-monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. nat. Acad. Sci. (Wash.) 68, 2757–2760 (1971).Google Scholar
  97. Clark, W.G., Cumby, H.R., Davis, H.E.: The hyperthermic effect of intracerebroventricular cholera enterotoxin in the unanesthetized cat. J. Physiol. (Lond.) 240, 493–504 (1974).Google Scholar
  98. Clarke, G., Hill, R.G., Simmonds, M.A.: Microiontophoretic release of drugs from micropipettes: use of 24Na as a model. Brit. J. Pharmacol. 48, 156–161 (1973).Google Scholar
  99. Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.I., Greengard, P.: Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc. nat. Acad. Sci. (Wash.) 71, 1113–1171 (1974).Google Scholar
  100. Cohn, M.L., Cohn, M., Taylor, F.H.: Norepinephrine — an antagonist of dibutyryl cyclic AMP in the regulation of narcosis in the rat. Res. Commun. Chem. Pathol. Pharmacol. 7, 687–699 (1974).PubMedGoogle Scholar
  101. Connor, J.D.: Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol. (Lond.) 208, 691–703 (1970).Google Scholar
  102. Contreras, E., Castillo, S., Quijada, L.: Effect of drugs that modify 3′,5′-AMP concentrations on morphine analgesia. J. Pharm. Pharmacol. 24, 65–66 (1972).PubMedGoogle Scholar
  103. Corrodi, H., Fuxe, K., Jonsson, G.: Effects of caffeine on central monoamine neurons. J. Pharm. Pharmacol. 24, 155–158 (1972).PubMedGoogle Scholar
  104. Costa, E., Guidotti, A., Hanbauer, I.: Do cyclic nucleotides promote the trans-synaptic induction of tyrosine hydroxylase. Life Sci. 14, 1169–1188 (1974).PubMedGoogle Scholar
  105. Couteaux, R.: Localization of cholinesterases at neuromuscular junctions. Int. Rev. Cytol. 4, 335–375 (1955).Google Scholar
  106. Crain, S.M., Pollack, E.D.: Restorative effects of cyclic AMP on complex bioelectric activities of cultured fetal rodent CNS tissues after acute Ca++ deprivation. J. Neurobiol. 4, 321–342 (1973).PubMedGoogle Scholar
  107. Cramer, H., Johnson, D.G., Hanbauer, L, Silberstein, S.D., Kopin, I.J.: Accumulation of adenosine 3′,5′-monophosphate induced by catecholamines in the rat superior cervical ganglion In Vitro. Brain Res. 53, 97–104 (1973).PubMedGoogle Scholar
  108. Cramer, H., Ng, L.K.Y., Chase, T.N.: Effect of probenecid on levels of cyclic AMP in human cerebro-spinal fluid. J. Neurochem. 19, 1601–1602 (1972).PubMedGoogle Scholar
  109. Cuatrecasas, P.: Interaction of vibrio cholerae enterotoxin with cell membranes. Biochemistry 12, 3547–3581 (1973).PubMedGoogle Scholar
  110. Cuatrecasas, P.: Membrane receptors. Ann. Rev. Biochem. 45, 169–214 (1974).Google Scholar
  111. Cuatrecasas, P.: Hormone receptors — their function in cell membranes and some problems related to methodology. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press 1975.Google Scholar
  112. Curtis, D.R.: Microelectrophoresis. In: Physical Techniques in Biological Research, vol. 5. New York: Academic Press 1964.Google Scholar
  113. Curtis, D.R., Johnston, G.A.R.: Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97–188 (1974).PubMedGoogle Scholar
  114. Dale, H.H., Feldberg, W., Vogt, M.: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353–380 (1936).Google Scholar
  115. Dalton, C., Crowley, H.J., Sheppard, H., Schallek, W.: Regional cyclic nucleotide phosphodiesterase activity in cat central nervous system: effects of benzodiazepines. Proc. Soc. exp. Biol. (N.Y.) 145, 407–410 (1974).Google Scholar
  116. Daly, J.: The role of cyclic nucleotides in the nervous system. In: Handbook of Psychopharmacology. New York: Plenum Press 1975.Google Scholar
  117. Daly, J.W., Huang, M., Shimizu, H.: Regulation of cyclic AMP levels in brain tissue. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.Google Scholar
  118. Dambach, G., Friedmann, N.: Substrate-induced membrane potential changes in the perfused rat liver. Biochim. biophys. Acta (Amst.) 367, 366–370 (1974).Google Scholar
  119. Davidoff, R.A.: Gamma amino butyric acid antagonism and presynaptic inhibition in the frog spinal cord. Science 175, 331–333 (1972).PubMedGoogle Scholar
  120. Deguchi, T., Axelrod, J.: Superinduction of serotonin N-acetyl-transferase and supersensitivity of adenyl cyclase to catecholamines in denervated pineal gland. Molec. Pharmacol. 9, 612–618 (1973).Google Scholar
  121. Delcastillo, J., Katz, B.: A comparison of acetylcholine and stable depolarizing agents. Proc. roy. Soc. B 146, 362–368 (1957).Google Scholar
  122. Dhalla, N.S., Sulakhe, P.V., McNamara, D.B.: Studies on the relationship between adenylate cyclase activity and calcium transport by cardiac sarcotubular membranes. Biochim. biophys. Acta (Amst.) 323, 276–284 (1973).Google Scholar
  123. Diamond, J.: Phosphorylase, calcium, and cyclic AMP in smooth-muscle contraction. Amer. J. Physiol. 225, 930–737 (1973).PubMedGoogle Scholar
  124. Dousa, T., Hechter, O.: Lithium and brain adenyl cyclase. Lancet 1970I, 834–835.Google Scholar
  125. Drummond, G.I., Powell, C.A.: Analogues of adenosine 3′,5′-cyclic phosphate as activators of Phosphorylase b kinase and as substrates for cyclic 3′,5′-nucleotide phosphodiesterase. Molec. Pharmacol. 6, 24–30 (1970).Google Scholar
  126. Dun, N., Nishi, S.: Effects of dopamine on the superior cervical ganglion on the rabbit. J. Physiol. (Lond.) 239, 155–164 (1974).Google Scholar
  127. Ebstein, B., Roberge, C., Tabachnik, J., Goldstein, M.: The effect of dopamine and of apomorphine and dB-cAMP-induced stimulation of synaptosomal tyrosine hydroxylase. J. Pharm. Pharmacol 26, 975–977 (1974).PubMedGoogle Scholar
  128. Eccles, J.C.: The Physiology of Synapses. New York: Academic Press 1964.Google Scholar
  129. Eccles, R., Libet, B.: Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. (Lond.) 157, 484 (1961).Google Scholar
  130. Edström, A., Kanje, M., Walum, E.: Effects of dibutyryl cyclic AMP and prostaglandin E1 on cultured human glioma cells. Exp. Cell Res. 85, 217–223 (1974).PubMedGoogle Scholar
  131. Eipper, B.A.: Rat brain tubulin and protein kinase activity. J. biol. Chem. 249, 1398–1406 (1974).PubMedGoogle Scholar
  132. Engberg, I., Flatman, J.A., Kadzlelawa, K.: The hyperpolarisation of motoneurones by electrophoretically applied amines and other agents. Acta physiol. scand. 91, 3A–4A (1974).Google Scholar
  133. Engberg, I., Marshall, K.C.: Mechanism of Noradrenaline hyperpolarization in spinal cord motoneurones of the cat. Acta physiol. scand. 83, 142–144 (1971).PubMedGoogle Scholar
  134. Erankö, O., Harkonen, M.: Monoamine-containing small cells in the superior cervical ganglion of the rat and one organ composed of them. Acta physiol. scand. 63, 511–512 (1965).Google Scholar
  135. Fallon, E.F., Agrawal, R., Furth, E., Steiner, A.L., Cowden, R.: Cyclic guanosine and adenosine 3′,5′-monophosphates in canine thyroid: localization by immunofluorescence. Science 184 1089–1091 (1974).PubMedGoogle Scholar
  136. Fatt, P., Katz, B.: An analysis of the endplate potential recorded with an intracellular electrode J. Physiol. (Lond.) 115, 320–370 (1951).Google Scholar
  137. Ferrendelli, J.A., Chang, M.M., Kinscherf, D.A.: Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. J. Neurochem. 22, 535–540 (1974).PubMedGoogle Scholar
  138. Ferrendelli, J.A., Kinscherf, D.A., Chang, M.M.: Regulation of levels of guanosine cyclic 3′,5′-monophosphate in the central nervous system: effects of depolarizing agents. Molec. Pharmacol 9, 445–454 (1973).Google Scholar
  139. Ferrendelli, J.A., Kinscherf, D.A., Kipnis, D.M.: Effects of amphetamine, chlorpromazine and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum. Biochem. biophys Res Commun. 46, 2114–2120 (1972).PubMedGoogle Scholar
  140. Ferrendelli, J.A., Steiner, A.L., McDougal, D.B., Kipnis, D.M.: The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum. Biochem biophys. Res. Commun. 41, 1061–1067 (1970).Google Scholar
  141. Field, M.: Mode of action of cholera toxin: stabilization of catecholamine-sensitive adenylate cyclase in turkey erythrocytes. Proc. nat. Acad. Sci. (Wash.) 71, 3299–3303 (1974).Google Scholar
  142. Fikus, M., Kwast-Welfeld, J., Kazi-Mierczuk, Z., Shugar, D.: Biochemical studies on some new analogues of adenosine-3′,5′-cyclic phosphate including isoguanosine-3′,5′-cyclic phosphate Acta biochim. pol. 21, 465–474 (1974).PubMedGoogle Scholar
  143. Filler, R., Litwack, G.: Differences in macromolecular binding between cyclic AMP and its dibutyryl derivative in vitro. Biochem. biophys. Res. Commun. 52, 159–167 (1973).PubMedGoogle Scholar
  144. Florendo, N.T., Barrnett, R.J., Greengard, P.: Cyclic 3′,5′-nucleotide phosphodiesterase: cytochemical localization in cerebral cortex. Science 173, 745–747 (1971).PubMedGoogle Scholar
  145. Folbergrova, J.: Energy metabolism of mouse cerebral cortex during homocysteine convulsions. Brain Res. 81, 443–454 (1974).PubMedGoogle Scholar
  146. Forn, J., Krishna, G.: Effects of biogenic amines on the rate of adenosine 3′,5′ monophosphate formation in brain slices of different animal species. Fed. Proc. 29, 480 (1970).Google Scholar
  147. Forn, J., Krishna, G.: Effect of norepinephrine, histamine, and other drugs on cyclic 3′,5′-AMP formation in brain slices of various animal species. Pharmacology (Basel) 5, 193–204 (1971).Google Scholar
  148. Forn, J., Krueger, B.K., Greengard, P.: Adenosine 3′,5′-monophosphate content in rat caudate nucleus. Demonstration of dopaminergic and adrenergic receptors. Science 186, 1118–1119 (1974).PubMedGoogle Scholar
  149. Forn, J., Valdecasas, F.G.: Effects of lithium on brain adenyl cyclase activity. Biochem. Pharmacol. 20, 2773–2779 (1971).PubMedGoogle Scholar
  150. Frederickson, R.C.A., Jordan, L.M., Phillis, J.W.: The action of noradrenaline on cortical neurons: effects of pH. Brain Res. 35, 556–560 (1971).PubMedGoogle Scholar
  151. Frederickson, R.C.A., Jordan, L.M., Phillis, J.W.: A reappraisal of the actions of noradrenaline and 5-hydroxytryptamine on cerebral cortical neurons. Comp. Gen. Pharmacol. 3, 443–456 (1972).PubMedGoogle Scholar
  152. Freedman, R., Hoffer, B.J.: Phenothiazine antagonism of the noradrenergic inhibition of cerebellar Purkinje neurons. J. Neurobiol. 6, 277–288 (1975).PubMedGoogle Scholar
  153. Friedman, N., Somlyo, A.V., Somlyo, A.P.: Cyclic adenosine and guanosine monophosphate and glucagon: effect on liver membrane potentials. Science 171, 400–402 (1971).Google Scholar
  154. Froehlich, J.E., Rachmeler, M.: Effect of adenosine 3′,5′-cyclic monophosphate on cell proliferation. J. Cell. Biol. 55, 19–31 (1972).PubMedGoogle Scholar
  155. Fumagalli, R., Bernareggi, V., Berti, F., Trabucchi, M.: Cyclic AMP formation in human brain: an in vitro stimulation by neurotransmitters. Life Sci. 10, 1111–1115 (1971).Google Scholar
  156. Fuxe, K., Hökfelt, T., Johansson, O., Jonsson, O., Lidbrink, P., Ljungdahl, A.: The origin of dopamine nerve terminals in limbic and frontal cortex. Evidence for meso-cortical dopamine neurons. Brain Res. 82, 349–355 (1974).Google Scholar
  157. Fuxe, K., Jonsson, G.: The histochemical fluorescence method for the demonstration of catecholamines: Theory, practice and application. J. Histochem. Cytochem. 21, 293–311 (1973).PubMedGoogle Scholar
  158. Fuxe, K., Olson, L., Zotterman, Y.: Dynamics of Degeneration and Growth in Neurons. Oxford and New York: Pergamon 1974b.Google Scholar
  159. Fuxe, K., Ungerstedt, U.: Action of caffeine and theophylline on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with dopa and dopamine agonists. Med. biol. Ill. 52, 48–54 (1974).Google Scholar
  160. Gabballah, S., Popoff, C.: Cyclic 3′,5′-nucleotide phosphodiesterase in nerve endings of developing rat brain. Brain Res. 25, 220–222 (1971).Google Scholar
  161. Galindo, A., Krnjevic, K., Schwartz, S.: Microiontophoretic studies on neurones in the cuneate nucleus. J. Physiol. (Lond.) 158, 296–323 (1967).Google Scholar
  162. Garbarg, M., Barbin, G., Feger, J., Schwartz, J-C.: Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle. Science 186, 833–834 (1974).PubMedGoogle Scholar
  163. Gardner, D., Kandel, E.R.: Diphasic postsynaptic potential: a chemical synapse capable of mediating conjoint excitation and inhibition. Science 176, 675–677 (1972).PubMedGoogle Scholar
  164. George, W.J., Polson, J.B., O’Toole, A.G., Goldberg, N.D.: Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. nat. Acad. Sci. (Wash.) 66, 398–403 (1970).Google Scholar
  165. Gergely, J.: Some aspects of the role of the sarcoplasmic reticulum and the tropomyosin-troponin system in the control of muscle contraction by calcium ions. Circulat. Res. 34 and 35 (Suppl. III) 74–82 (1974).Google Scholar
  166. Gibson, D.A., Reichlin, S., Vernadakis, A.: 3H Uridine uptake and incorporation into RNA in the C-6 glial cells following dibutyryl cyclic AMP treatment. Brain Res. 81, 354–360 (1974).PubMedGoogle Scholar
  167. Gilman, A.G.: The regulation of cyclic AMP metabolism in cultured cells of the nervous system. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972x.Google Scholar
  168. Gilman, A.G., Nirenberg, M.: Effect of catecholamines on the adenosine 3′,5′-cyclic concentrations of clonal satellite cells of neurons. Proc. nat. Acad. Sci. (Wash.) 68, 2165–2168 (1971a).Google Scholar
  169. Gilman, A.G., Nirenberg, M.: Regulation of adenosine 3′,5′-monophosphate metabolism in cultured neuroblastoma cells. Nature (Lond.) 234, 356–358 (1971 b).Google Scholar
  170. Gilman, A.G., Schrier, B.K.: Adenosine cyclic 3′,5′-monophosphate in fetal rat brain cell cultures. Molec. Pharmacol. 8, 410–416 (1972).Google Scholar
  171. Ginsborg, B.L.: Ion movements in junctional transmission. Pharmacol. Rev. 19, 289–316 (1967).PubMedGoogle Scholar
  172. Godfraind, J.M., Pumain, R.: Cyclic adenosine monophosphate and norepinephrine: effect on Purkinje cells in rat cerebellar cortex. Science 174, 1257 (1971).PubMedGoogle Scholar
  173. Goldberg, A.L., Singer, J.J.: Evidence for a role of cyclic AMP in neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 64, 134–141 (1969).Google Scholar
  174. Goldberg, N.D.: The Yin Yang hypothesis of biological control: opposing influences of cyclic GMP and cyclic AMP in bidirectionally regulated systems. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press (in press).Google Scholar
  175. Goldberg, N.D., Dietz, S.B., O’Toole, A.G.: Cyclic guanosine 3′,5′-monophosphate in mammalian tissues and urine. J. biol. Chem. 244, 4458–4466 (1969).PubMedGoogle Scholar
  176. Goldberg, N.D., Haddox, M.K., Hartle, D.K., Hadden, J.W.: The biological role of cyclic 3′,5′-guanosine monophosphate. In: Cellular Mechanisms. Basel: S. Karger 1973 a.Google Scholar
  177. Goldberg, N.D., Lust, W.D., O’Dea, R.F., Wei, S., O’Toole, A.G.: A role of cyclic nucleotides in brain metabolism. Advanc. Biochem. Psychopharmacol. 3, 67–87 (1970).Google Scholar
  178. Goldberg, N.D., O’Dea, R.F., Haddox, M.K.: Cyclic GMP. In: Advances in Cyclic Nucleotide Research, vol. 3. New York: Raven Press 1973b.Google Scholar
  179. Goldberg, N.D., O’Toole, A.G.: The properties of glycogen synthetase and regulation of glycogen biosynthesis in rat brain. J. biol. Chem. 244, 3053–3061 (1969).PubMedGoogle Scholar
  180. Goldstein, M., Anagnoste, B., Shirron, C.: The effect of trivastal, haloperidol, and dibutyryl cyclic AMP on (14C) dopamine synthesis in rat striatum. J. Pharm. Pharmacol. 25, 348–351 (1973).PubMedGoogle Scholar
  181. Goodman, D.B.P., Rasmussen, H., Dibella, F., Gothrow, C.E.: Cyclic adenosine 3′:5′-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc. nat. Acad. Sci. (Wash.) 67, 652–659 (1970).Google Scholar
  182. Goodman, F.R., Weiss, G.B.: Dissociation by lanthanum of smooth muscle responses to potassium and acetylcholine. Amer. J. Physiol. 220, 759–766 (1971).PubMedGoogle Scholar
  183. Greengard, P., Kebabian, J.W.: Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed. Proc. 33, 1059–1068 (1974).PubMedGoogle Scholar
  184. Greengard, P., Kebabian, J.W., McAfee, D.A.: Studies on the role of cyclic AMP in neural function. In: Cellular Mechanisms. Basel: S. Karger 1973.Google Scholar
  185. Guidotti, A., Cheney, D.L., Trabucchi, M., Doteuchi, M., Wang, C.: Focussed microwave radiation: a technique to minimize post-mortem changes of cyclic nucleotides, DOPA and choline and to preserve brain morphology. Neuropharmacology 13, 1115–1122 (1974).PubMedGoogle Scholar
  186. Guidotti, A., Costa, E.: Involvement of adenosine 3′,5′-monophosphate in the activation of tyrosine hydroxylase elicited by drugs. Science 179, 902–904 (1973).PubMedGoogle Scholar
  187. Guidotti, A., Costa, E.: A role for nicotinic receptors in the regulation of the adenylate cyclase of adrenal medulla. J. Pharmacol. exp. Ther. 189, 665–675 (1974).PubMedGoogle Scholar
  188. Guidotti, A., Kurosawa, A., Chuang, D.M., Costa, E.: Protein kinase activation as an early event in the trans-synaptic induction of tyrosine-3-mono-oxygenase in adrenal medulla. Proc. nat. Acad. Sci. (Wash.) (in press).Google Scholar
  189. Guidotti, A., Zivkovic, B., Pfeiffer, R., Costa, E.: Involvement of 3′,5′-cyclic adenosine monophos phate in the increase of tyrosine hydroxylase activity elicited by cold exposure. Naunyn-Schmiedeberg’s Arch. Pharmacol. 278, 195–206 (1973).Google Scholar
  190. Gunaga, K.P., Menon, K.M.J.: Effect of catecholamines and ovarian hormones on cyclic AMP accumulation in rat hypothalamus. Biochem. biophys. Res. Commun. 54, 440–448 (1973).PubMedGoogle Scholar
  191. Hamprecht, B., Schultz, J.: Stimulation by prostaglandin E1 of adenosine 3′,5′-cyclic monophosphate formation in neuroblastoma cells in the presence of phosphodiesterase inhibitors. FEBS Letters 34, 85–89 (1973).PubMedGoogle Scholar
  192. Hanna, P.E., O’Dea, R.F., Goldberg, N.D.: Phosphodiesterase inhibition by papaverine and structurally related compounds. Biochem. Pharmacol. 21, 2266–2268 (1972).PubMedGoogle Scholar
  193. Hardman, J.G., Sutherland, E.W.: Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine triphosphate. J. biol. Chem. 244, 6363–6370 (1969).PubMedGoogle Scholar
  194. Harris, J.E., Morgenroth, V.H., Roth, R.H., Baldessarini, R.J.: Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature (Lond.) 252, 156–158 (1974).Google Scholar
  195. Hax, W.M.A., Van Venrooij, G.E.P.M., Vossenberg, J.B.J.: Cell communication: a cyclic AMP mediated phenomenon. J. Membrane Biol. 19, 253–266 (1974).Google Scholar
  196. Hayaishi, O., Greengard, P., Colowick, S.B.: On the equilibrium of the adenylate cyclase reaction. J. biol. Chem. 246, 5840–5843 (1971).PubMedGoogle Scholar
  197. Haylett, D.G., Jenkinson, D.H.: Effects of noradrenaline on the membrane potential and ionic permeability of parenchymal cells in the liver of the guinea-pig. Nature (Lond.) 224, 80–81 (1969).Google Scholar
  198. Heisler, S., Fast, D., Tenenhouse, A.: Role of Ca2+ and cyclic AMP in protein secretion from rat exocrine pancreas. Biochim. biophys. Acta (Amst.) 279, 561–572 (1972).Google Scholar
  199. Herman, Z.S.: Behavioral effects of dibutyryl cyclic 3′,5′ AMP, noradrenaline and cyclic 3′,5′ AMP in rats. Neuropharmacology 12, 705–709 (1973).PubMedGoogle Scholar
  200. Hidaka, T., Kuriyama, H.: Effects of catecholamines on the cholinergic neuromuscular transmission in fish red muscle. J. Physiol. (Lond.) 201, 61–71 (1969).Google Scholar
  201. Hill, R.G., Simmonds, M.A.: A method for comparing the potencies of γ-aminobutyric acid antagonists on single cortical neurones using microiontophoretic techniques. Brit. J. Pharmacol. 48, 1–11 (1973).Google Scholar
  202. Ho, I.K., Loh, H.H., Way, E.L.: Cyclic adenosine monophosphate antagonism of morphine analgesia. J. Pharmacol. exp. Ther. 185, 336–346 (1973 a).PubMedGoogle Scholar
  203. Ho, I.K., Loh, H.H., Way, E.L.: Effects of cyclic 3′,5′-adenosine monophosphate on morphine tolerance and physical dependence. J. Pharmacol. exp. Ther. 185, 347–357 (1973 b).PubMedGoogle Scholar
  204. Hökfelt, T., Ungerstedt, U.: Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurons: electron and fluorescence microscopic study with special reference to intracerebral injection of the nigro striatal dopamine system. Brain Res. 60, 269–298 (1973).PubMedGoogle Scholar
  205. Hoffer, B.J., Siggins, G.R., Bloom, F.E.: Prostaglandins E1 and E2 antagonize norepinephrine effects on cerebellar Purkinje cells: Microelectrophoretic study. Science 166, 1418–1420 (1969).PubMedGoogle Scholar
  206. Hoffer, B.J., Siggins, G.R., Bloom, F.E.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 25, 523–534 (1971 a).PubMedGoogle Scholar
  207. Hoffer, B.J., Siggins, G.R., Oliver, A.P., Bloom, F.E.: Cyclic AMP mediation of norepinephrine inhibition in rat cerebellar cortex: A unique class of synaptic responses. Ann. N.Y. Acad. Sci. 185, 531–549 (1971b).PubMedGoogle Scholar
  208. Hoffer, B.J., Siggins, G.R., Oliver, A.P., Bloom, F.E.: Cyclic adenosine monophosphate mediated adrenergic synapses to cerebellar Purkinje cells. In: Advances in Cyclic Nucleotide Research, vol. 1, 411–423 (1972).Google Scholar
  209. Hoffer, B.J., Siggins, G.R., Oliver, A.P., Bloom, F.E.: Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J. Pharmacol. exp. Ther. 184, 553–569 (1973).PubMedGoogle Scholar
  210. Hoffer, B.J., Siggins, G.R., Woodward, D.J., Bloom, F.E.: Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine. Brain Res. 30, 425–430(1971).PubMedGoogle Scholar
  211. Hofmann, F., Sold, G.: A protein kinase activity from rat cerebellum stimulated by guanosine 3′,5′-monophosphate. Biochem. biophys. Res. Commun. 49, 1100–1107(1972).PubMedGoogle Scholar
  212. Honda, F., Imamura, H.: Inhibition of cyclic 3′,5′-nucleotide phosphodiesterase by phenothiazine and reserpine derivatives. Biochim. biophys. Acta (Amst.) 161, 267–269 (1968).Google Scholar
  213. Horowitz, J.M., Horwitz, B.A., Smith, R.E.: Effect in vivo of norepinephrine on the membrane resistance of brown fat cells. Experientia (Basel) 27, 1419 (1971).Google Scholar
  214. Horwitz, B.A., Horowitz, J.M., Smith, R.E.: Norepinephrine-induced depolarization of brown fat cells. Proc. nat. Acad. Sci. (Wash.) 64, 113–120 (1969).Google Scholar
  215. Howell, S.L., Whitfield, M.: Localization of adenyl cyclase in islet cells. J. Histochem. Cytochem. 20, 873 (1972).PubMedGoogle Scholar
  216. Huang, M., Gruenstein, E., Daly, J.W.: Depolarizing-evoked accumulation of cyclic AMP in brain slices: inhibition by exogenous adenosine deaminase. Biochim. biophys. Acta (Amst.) 329, 147–151 (1973a).Google Scholar
  217. Huang, M., Ho, A.K.S., Daly, J.W.: Accumulation of adenosine cyclic 3′,5′-monophosphate in rat cerebral cortical slices. Stimulatory effects of alpha and beta adrenergic agents after treatment with 6-hydroxydopamine, 2,3,5-trihydroxyphenethylamine and dehydroxytryptamines. Molec. Pharmacol. 9, 711–717 (1973 b).Google Scholar
  218. Huang, M., Shimizu, H., Daly, J.: Regulation of adenosine cyclic 3′,5′-phosphate formation in cerebral cortical slices. Interaction among norepinephrine, histamine, serotonin. Molec. Pharmacol. 7, 155–162 (1971).Google Scholar
  219. Huxley, A.F.: Muscular contraction. J. Physiol. (Lond.) 243, 1–44 (1974).Google Scholar
  220. Huxley, J.S.: Chemical regulation and the hormone concept. Biol. Rev. 10, 427–441 (1935).Google Scholar
  221. Ito, Y., Kuriyama, H., Tashiro, N.: Effects of catecholamines on the neuromuscular junction of the somatic muscle of the earthworm pheretima communissima. J. exp. Biol. 54, 167–186 (1971).PubMedGoogle Scholar
  222. Jacobowitz, D.: Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Fed. Proc. 29, 1929–1944 (1970).PubMedGoogle Scholar
  223. Janiec, W., Trzeciak, H., Herman, Z.: The influence of adrenaline and optical isomers of INPEA on the adenyl cyclase activity in main hemispheres of rats in vitro. Arch. int. Pharmacodyn 185, 254–258 (1970).PubMedGoogle Scholar
  224. Jenkinson, D.H., Stamenovic, B.A., Whitaker, B.D.L.: The effect of noreadrenaline on the end-plate potential in twitch fibres of the frog. J. Physiol. (Lond.) 195, 743–754 (1968).Google Scholar
  225. Johnson, E.M., Maeno, H., Greengard, P.: Phosphorylation of endogenous protein of rat brainby a cyclic adenosine 3′,5′-monophosphate dependent protein kinase. J. biol. Chem. 246, 7731–7739 (1971).PubMedGoogle Scholar
  226. Johnson, E.M., Ueda, T., Maeno, H., Greengard, P.: Adenosine 3′,5′-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J. biol. Chem. 247, 5650–5652 (1972).PubMedGoogle Scholar
  227. Jordan, L.M., Lake, N., Phillis, J.W.: Mechanism of noradrenaline depression of cortical neurones: a species comparison. Europ. J. Pharmacol. 20, 381–384 (1972).Google Scholar
  228. Jouvet, M.: The role of monoamines and acetylcholine containing neurons in the regulation of the sleep-waking cycle. Ergebn. Physiol. 64, 168–307 (1972).Google Scholar
  229. Kadlec, O., Masek, K., Seferna, I.: The effect of papaverine on 45Ca2+ uptake in partly depolarized taeni coli of the guinea-pig. J. Pharm. Pharmacol. 25, 914–916 (1973).PubMedGoogle Scholar
  230. Kakiuchi, K.S., Marks, B.H.: Adrenergic effects on pineal cell membrane potential. Life Sci. 11, 285–291 (1972).Google Scholar
  231. Kakiuchi, S.: Cyclic 3′,5′-nucleotide phosphodiesterase of rat brain and other tissues: regulation of activity by Ca2+ and the modulator protein. In: Cellular Mechanisms. Basel: S. Karger 1973.Google Scholar
  232. Kakiuchi, S.: Ca2+ plus Mg2+-dependent phosphodiesterase and its modulator from various rat tissues. In: Advances in Cyclic Nucleotide Research, vol.5. New York: Raven Press (in press).Google Scholar
  233. Kakiuchi, S., Rall, T.W.: Studies on adenosine 3′,5′-phosphate in rabbit cerebral cortex. Molec. Pharmacol. 4, 379–388 (1968a).Google Scholar
  234. Kakiuchi, S., Rall, T.W.: The influence of chemical agents on the accumulation of adenosine 3′,5′-phosphate in slices of rabbit cerebellum. Molec. Pharmacol. 4, 367–378 (1968 b).Google Scholar
  235. Kakiuchi, S., Rall, T.W., McIlwain, H.: The effect of electrical stimulation upon the accumulation of adenosine 3′,5′-phosphate in isolated cerebral tissue. J. Neurochem. 16, 485–491 (1969).PubMedGoogle Scholar
  236. Kakiuchi, S., Yamazaki, R.: Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain. Studies on cyclic 3′,5′-nucleotide phosphodiesterase. Biochem. biophys. Res. Commun. 41, 1104–1110 (1970).Google Scholar
  237. Kakiuchi, S., Yamazaki, R., Teshima, Y.: Cyclic 3′,5′-nucleotide phosphodiesterase. IV. Two enzymes with different properties from brain. Biochem. biophys. Res. Commun. 42, 968–974 (1971).Google Scholar
  238. Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K.: Regulation of nucleoside cyclic 3′,5′-monophosphate phosphodiesterase activity from rat brain by a modulator and Ca2+. Proc. nat. Acad. Sci. (Wash.) 70, 3526–3535 (1973).Google Scholar
  239. Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., Miyamoto, E.: Multiple cyclic nucleotide phosphodiesterase activities from rat tissues and occurrence of a calcium-plus-magnesium-ion-dependent phosphodiesterase and its protein activator. Biochem. J. 146, 109–120 (1975).PubMedGoogle Scholar
  240. Kalix, P., McAfee, D.A., Chorderet, M., Greengard, P.: Pharmacological analysis of synaptically mediated increase in cyclic AMP in rabbit superior cervical ganglion. J. Pharmacol. exp. Ther. 188, 676–687 (1974).PubMedGoogle Scholar
  241. Kandel, E.R.: Dale’s principle and the functional specificity of neurons. In: Psychopharmacology — A Ten Year Progress Report. Washington, D.C.: U.S. Govt. Printing Office 1968.Google Scholar
  242. Karobath, M., Leitich, H.: Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc. nat. Acad. Sci. (Wash.) 71, 2915–2918 (1974).Google Scholar
  243. Katz, A.M., Tada, M., Repke, D.J., Iorio, J.M., Krichberger, M.A.: Adenylate cyclase: Its probable localization in sarcoplasmic reticulum as well as sarcolemma of the canine heart. J. Mol. Cell. Cardiol. 6, 73–78 (1974).PubMedGoogle Scholar
  244. Katz, B.: Nerve, Muscle, and Synapse. New York: McGraw-Hill 1966.Google Scholar
  245. Katz, S., Tenenhouse, A.: The relationship of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain. Mechanism of stimulation of cyclic AMP accumulation by adrenaline, ouabain, and Mg++. Brit. J. Pharmacol. 48, 516–526 (1973).Google Scholar
  246. Katzman, R., Björklund, A., Owman, C., Stenevi, U., West, K.: Evidence for regenerative axon sprouting of central catecholamine neurons in rat mesencephalon following electrolytic lesions. Brain Res. 25, 579–596 (1971).PubMedGoogle Scholar
  247. Kauffman, F.E., Harkonen, M.H.A., Johnson, E.E.: Adenyl cyclase and phosphodiesterase activity in cerebral cortex of normal and undernourished neonatal rats. Life Sci. 11, 613–621 (1972).Google Scholar
  248. Kaukel, E., Hilz, H.: Permeation of dibutyryl cAMP into hela cells and its conversion to monobutyryl cAMP. Biochem. biophys. Res. Commun. 46, 1011–1018 (1972).PubMedGoogle Scholar
  249. Kebabian, J.W., Greengard, P.: Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174, 1346–1349 (1971).PubMedGoogle Scholar
  250. Kebabian, J.W., Petzold, G.L., Greengard, P.: Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarities to the dopamine receptor. Proc. nat. Acad. Sci. (Wash.) 69, 2145–2150 (1972).Google Scholar
  251. Keen, P., McLean, W.G.: Effect of dibutyryl-cyclic AMP and dexamethasone on noradrenaline synthesis in isolated superior cervical ganglia. J. Neurochem. 22, 5–10 (1974).PubMedGoogle Scholar
  252. Kimura, H., Thomas, E., Murad, F.: Effects of decapitation, ether and pentobarbital on guanosine 3′-5′ phosphate and adenosine 3′,5′ phosphate levels in rat tissues. Biochim. biophys. Acta (Amst.) 343, 519–528 (1974).Google Scholar
  253. Kirchberger, M.A., Tada, M., Katz, A.M.: Adenosine 3′,5′-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J. biol. Chem. 249, 6166–6173 (1974).PubMedGoogle Scholar
  254. Klainer, L.M., Chi, Y-M., Friedberg, S.L., Rall, T.W., Sutherland, E.: Adenyl cyclase. IV. The effects of neurohormones on the formation of adenosine 3′,5′ phosphate by preparations from brain and other tissues. J. biol. Chem. 237, 1239–1243 (1962).PubMedGoogle Scholar
  255. Klawans, H.L., Moses, H., Beaulieu, D.M.: The influence of caffeine on d-amphetamine- and pomorphine-induced stereotyped behavior. Life Sci. 14, 1493–1500 (1974).PubMedGoogle Scholar
  256. Klein, D.C., Yuwiler, A., Weller, J.L., Plotkin, S.: Postsynaptic adrenergic-cyclic AMP control f the serotonin content of cultured rat pineal glands. J. Neurochem. 21, 1261–1271 (1973).PubMedGoogle Scholar
  257. Knull, H.R., Taylor, W.F., Wells, W.W.: Insulin effects on brain energy metabolism and the elated hexokinase distribution. J. biol. Chem. 249, 6930–6935 (1974).PubMedGoogle Scholar
  258. Kodama, T., Matsuko, Y., Shimizu, H.: The cyclic AMP system of human brain. Brain Res. 50, 135–146 (1973).PubMedGoogle Scholar
  259. Koelle, G.B., Friedenwald, J.S.: A histochemical method for localizing Cholinesterase activity. Proc. Soc. exp. Biol. (N.Y.) 70, 617–622 (1949).Google Scholar
  260. Krishna, G., Ditzion, B.R., Gessa, G.L.: Intense ergotrophic stimulation induced by intracerebral injection of dibutyryl cyclic 3′-5′ AMP. Proc. Int. Union Physiol. Sci., Washington, D.C. 1, 247 (1968).Google Scholar
  261. Krishna, G., Moskowitz, J., Dempsey, P., Brodie, B.B.: The effect of norepinephrine and insulin on brown fat cell membrane potentials. Life Sci. 9, 1353–1361 (1970).Google Scholar
  262. Krnjevic, K., Dumain, R., Renaud, L.: The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. (Lond.) 215, 247–268 (1971).Google Scholar
  263. Kroeger, E.A., Marshall, J.M.: Beta-adrenergic effects on rat myometrium: mechanisms of membrane hyperpolarization. Amer. J. Physiol. 225, 1339–1345 (1973).PubMedGoogle Scholar
  264. Kuba, K.: Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J. Physiol. (Lond.) 211, 551–570 (1970).Google Scholar
  265. Kuba, K., Koketsu, K.: Ionic mechanism of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Brain Res. 81, 338–342 (1974).PubMedGoogle Scholar
  266. Kuba, K., Tomita, T.: Noradrenaline action on nerve terminal in the rat diaphragm. J. Physiol. (Lond.) 217, 19–31 (1971).Google Scholar
  267. Kuffler, S.W.: Transmitter mechanism at the nerve-muscle junction. Arch. Sci. physiol. 3, 585–601 (1949).Google Scholar
  268. Kuo, J.F.: Guanosine 3′:5′-monophosphate-dependent protein kinases in mammalian tissues. Proc. nat. Acad. Sci. (Wash.) 71, 4037–4041 (1974).Google Scholar
  269. Kuo, J.F., Greengard, P.: Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3′,5′-monophosphate dependent protein kinase in various tissues and phyla of the animal kingdom. Proc. nat. Acad. Sci. (Wash.) 64, 1349–1355 (1969 a).Google Scholar
  270. Kuo, J.F., Greengard, P.: Adenosine 3′,5′-monophosphate dependent protein kinase from brain. Science 165, 63–65 (1969b).PubMedGoogle Scholar
  271. Kuo, J.F., Greengard, P.: Stimulation of adenosine 3′,5′-monophosphate-dependent protein kinases by some analogs of adenosine 3′,5′-monophosphate. Biochem. biophys. Res. Commun. 40, 1032–1038 (1970a).PubMedGoogle Scholar
  272. Kuo, J.F., Greengard, P.: Cyclic nucleotide-dependent protein kinases. VII. Comparison of various histones as substrates for adenosine 3′,5′-monophosphate-dependent and guanosine 3′,5′-monophosphate-dependent protein kinases. Biochim. biophys. Acta (Amst.) 212, 434 440 (1970 b).Google Scholar
  273. Kuo, J.F., Greengard, P.: Stimulation of cyclic GMP dependent protein kinase by a protein fraction which inhibits cyclic AMP-dependent protein kinases. Fed. Proc. 30, 1089 (1973).Google Scholar
  274. Kuo, J.F., Lee, T.P., Reyes, P.L., Walton, K.G., Donnelly, T.E., Greengard, P.: Cyclic nucleotide-dependent protein kinases. X. An assay method for the measurement of guanosine 3′,5′-monophosphate in various biological materials and a study of agents regulating its levels on heart and brain. J. biol. Chem. 247, 16–22 (1972).PubMedGoogle Scholar
  275. Kuo, J.F., Miyamoto, E., Reyes, P.L.: Activation and dissociation of adenosine 3′,5′-monophosphate-dependent protein kinase by various cyclic nucleotide analogs. Biochem. Pharmacol. 23, 2011–2021 (1974).PubMedGoogle Scholar
  276. Kuriyama, K., Isreal, M.A.: Effect of ethanol administration on cyclic 3′,5′-adenosine-monophosphate metabolism in brain. Biochem. Pharmacol. 22, 2919–2922 (1973).PubMedGoogle Scholar
  277. Lake, N., Jordan, L.M.: Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science 183, 663–664 (1974).PubMedGoogle Scholar
  278. Lake, N., Jordan, L.M., Phillis, J.W.: Mechanism of noradrenaline actions in cat cerebral cortex. Nature (Lond.) 240, 249–250 (1972).Google Scholar
  279. Lake, N., Jordan, L.M., Phillis, J.W.: Evidence against cyclic adenosine 3′,5′-monophosphate (AMP) mediation of noradrenaline depression of cerebral cortical neurones. Brain Res. 60, 411–421 (1973).PubMedGoogle Scholar
  280. Landis, S.C., Bloom, F.E.: Fluorescence and electron microscopic analysis of catecholamine containing fibers in mutant mouse cerebellum. 4th Annu. Meeting Soc. Neurosci. 297, 1974.Google Scholar
  281. Langan, T.: Protein kinases and protein kinase substrates. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.Google Scholar
  282. Lee, T-P., Kuo, J.F., Greengard, P.: Role of muscarinic cholinergic receptors in regulation of guanosine 3′,5′-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc. nat. Acad. Sci. (Wash.) 69, 3287–3289 (1972).Google Scholar
  283. Lefkowitz, R.J.: Stimulation of catecholamine-sensitive adenylate by 5’-guanylyl imido-diphosphate J. biol. Chem. 249, 6119–6124 (1974).PubMedGoogle Scholar
  284. Lefkowitz, R.J., Mukherjee, C., Coverstone, M., Caron, M.G.: Stereospecific (3H) (-) — alprenolol binding sites, β-adrenergic receptors and adenylate cyclase. Biochem. biophys. Res. Commun. 60, 703–709 (1974).Google Scholar
  285. Lentz, T.L.: A role of cyclic AMP in a neurotrophic process. Nature (Lond.) 238, 154–155 (1972).Google Scholar
  286. Levitan, I.B., Barondes, S.H.: Octopamine- and serotonin-stimulated phosphorylation of specific protein in the abdominal ganglion of Aplysia californica. Proc. nat. Acad. Sci (Wash) 72 1145–1148 (1974).Google Scholar
  287. Levitan, I.B., Madsen, C.J., Barondes, S.H.: Cyclic AMP and amine effects on phosphorylation of specific protein in abdominal ganglion of aplysia californica: localization and kinetic analysis. J. Neurobiol. 5, 475–588 (1974).Google Scholar
  288. Libet, B.: Generation of slow inhibitory and excitatory postsynaptic potentials. Fed. Proc 29 1945–1949 (1970).PubMedGoogle Scholar
  289. Libet, B., Kobayashi, H.: Generation of adrenergic and cholinergic potentials in sympathetic ganglion cells. Science 164, 1530–1532 (1969).PubMedGoogle Scholar
  290. Lin, Y.M., Liu, Y.P., Cheung, W.Y.: Cyclic 3′:5′-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J. biol. Chem. 249, 4943–4954 (1974).PubMedGoogle Scholar
  291. Lindl, T., Cramer, H.: Formation, accumulation and release of adenosine 3′,5′-monophosphate induced by histamine in the superior cervical ganglion of the rat in vivo. Biochim. biophys.Acta (Amst.) 343, 182–191 (1974).Google Scholar
  292. Lindvall, O., Björklund, A.: The organization of the ascending catecholamine neuron systems in the rat brain. Acta physiol. scand. 412, 1–48 (1974).Google Scholar
  293. Lindvall, O., Björklund, A., Moore, R.Y., Stenevi, U.: Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 81, 325–331 (1974).PubMedGoogle Scholar
  294. Ling, G., Gerard, R.W.: Normal membrane potential of frog sartorius fibers. J. cell. comp. Physiol. 34, 383–394 (1949).Google Scholar
  295. Lipkin, D., Cook, W.H., Markham, R.: Adenosine-3′:5′-phosphoric acid: A proof of structure. J. Amer. chem. Soc. 81, 6198–6203 (1959).Google Scholar
  296. Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. ges. Physiol. 189, 239–242 (1921).Google Scholar
  297. Londos, C., Solomon, Y., Lin, M.C., Harwood, J.P., Schramm, M., Wolff, J., Rodbell, M.: 5-Guanylyl-imidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc. nat. Acad. Sci. (Wash.) 71, 3087–3090 (1974).Google Scholar
  298. Lorenzo, R. de, Greengard, P.: Activation by adenosine 3′:5′-monophosphate of a membrane bound phosphoprotein phosphatase from toad bladder. Proc. nat. Acad. Sci. (Wash.) 70, 1831–1835 (1973).Google Scholar
  299. Lorenzo, R. de, Walton, K.G., Curran, P.F., Greengard, P.: Regulation of phosphorylation of a specific protein in toad bladder membrane by antidiuretic hormone and cyclic AMP, and its possible relationship to membrane permeability changes. Proc. nat. Acad. Sci. (Wash.) 70, 880–884 (1973).Google Scholar
  300. Lowry, O.H., Passonneau, J.V., Hasselberger, F.X., Schultz, D.W.: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. biol. Chem. 239, 18–30 (1964).PubMedGoogle Scholar
  301. Lust, W.D., Passonneau, J.V., Veech, R.L.: Cyclic adenosine monophosphate metabolites and Phosphorylase in neuronal tissue. A comparison of methods of fixation. Science 181, 280–282 (1973).PubMedGoogle Scholar
  302. Mackay, A.V.P., Iversen, L.L.: Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP. Brain Res. 48, 424–426 (1972).PubMedGoogle Scholar
  303. Maeda, T., Tohyama, M., Shimizu, N.: Modification of postnatal development of neocortex in rat brain with experimental deprivation of locus coeruleus. Brain Res. 70, 515–520 (1974).PubMedGoogle Scholar
  304. Maeno, H., Greengard, P.: Phosphoprotein phosphatases from rat cerebral cortex. J. biol. Chem. 247, 3269–3277 (1972).PubMedGoogle Scholar
  305. Maeno, H., Johnson, E.M., Greengard, P.: Subcellular distribution of adenosine 3′,5′-monophosphate-dependent protein kinase in rat brain. J. biol. Chem. 246, 134–142 (1971).PubMedGoogle Scholar
  306. Maeno, H., Ueda, T., Greengard, P.: Adenosine 3′:5′-monophosphate dependent protein phosphatase activity in synaptic membrane fractions. J. Cyclic Nucleotide Res. 1, 37–38 (1975).Google Scholar
  307. Magaribuchi, M., Kuriyama, H.: Effects of noradrenaline and isoprenaline on the electrical and mechanical activities of guinea pig depolarized taenia coli. Jap. J. Physiol. 22, 253–270 (1972).Google Scholar
  308. Magun, B.: Two actions of cyclic AMP on melanosome movement in frog skin. J. Cell Biol. 57, 845–858 (1973).PubMedGoogle Scholar
  309. Mao, C.C., Guidotti, A., Costa, E.: Inhibition by diazepam of the tremor and the increase of cerebellar cGMP content elicited by harmaline. Brain Res. 83, 526–529 (1974a).Google Scholar
  310. Mao, C.C., Guidotti, A., Costa, E.: Interactions between γ-amino-bytyric acid and guanosine cyclic 3′-5′ monophosphate in rat cerebellum. Molec. Pharmacol. 10, 736–745 (1974b).Google Scholar
  311. Mao, C.C., Guidotti, A., Costa, E.: The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res. 79, 510–514 (1974c).PubMedGoogle Scholar
  312. Matthews, E.K., Saffran, M.: Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adreno-cortical cells. J. Physiol. (Lond.) 234, 43–64 (1973).Google Scholar
  313. Mayer, S.E.: Effect of catecholamines on cardiac metabolism. Circulat. Res. Suppl. III 34–35, 129–137 (1974).Google Scholar
  314. McAfee, D.A., Greengard, P.: Adenosine 3′:5′-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science 178, 310–312 (1972).PubMedGoogle Scholar
  315. McAfee, D.A., Schorderet, M., Greengard, P.: Adenosine 3′:5′-monophosphate in nervous tissue: increase associated with synaptic transmission. Science 171, 1156–1158 (1971).PubMedGoogle Scholar
  316. McCune, R.W., Gill, T.H., von Hungen, K., Roberts, S.: Catecholamine sensitive adenyl cyclase in cell-free preparations from rat cerebral cortex. Life Sci. 10, 443–450 (1971).Google Scholar
  317. McManus, J.P., Whitfield, J.F.: Cyclic AMP, prostaglandins and the control of cell proliferation. Prostaglandins 6, 475–487 (1974).Google Scholar
  318. Meinertz, T., Nawrath, H., Scholz, H., Winter, K.: Effect of DB-c-AMP on mechanical characteristics of ventricular and atrial preparations of several mammalian species. Naunyn-Schmiedeberg’s Arch. Pharmacol. 282, 143–153 (1974).Google Scholar
  319. Meyer, R.B. Jr., Miller, J.P.: Analogs of cyclic AMP and cyclic GMP: general methods of synthesis and the relationship of structure to enzymic activity. Life Sci. 14, 1019–1040 (1974).PubMedGoogle Scholar
  320. Miki, N., Keirns, J.J., Markus, F.R., Freeman, J., Bitensky, M.W.: Regulation of cyclic nucleotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc. nat. Acad. Sci. (Wash.) 70, 3820–3824 (1973).Google Scholar
  321. Miller, C.A., Levine, E.M.: Neuroblastoma: synchronization of neurite growth in cultures grown in collagen. Science 177, 799–801 (1972).PubMedGoogle Scholar
  322. Miller, J.P., Boswell, K.H., Muneyana, K., Simon, L.N., Robins, R.K., Shuman, D.A.: Synthesis and biochemical studies of various 8-substituted derivatives of guanosine 3′:5′-cyclic phosphate, inosine 3′:5′-cyclic phosphate and xanthosine 3′:5′-cyclic phosphate. Biochemistry (Wash.) 12, 5310–5319 (1973).Google Scholar
  323. Miller, R.J., Horn, A.S., Iversen, L.L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3,5′-monophosphate production in rat neostriatum and limbic forebrain. Molec. Pharmacol. 10, 759–766 (1974).Google Scholar
  324. Miller, W.H.: Cyclic nucleotides and photoreception. Exp. Eye Res. 16, 357–363 (1973).PubMedGoogle Scholar
  325. Minor, A.V., Sakina, N.L.: Role of cyclic adenosine 3′-5′ monophosphate in olfactory reception. Neurofizilogia 2, 415–422 (1973).Google Scholar
  326. Mishra, R.K., Gardner, E.L., Katzman, R., Makman, M.H.: Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity. Proc. nat. Acad. Sci. (Wash.) 71, 3883–3887 (1974).Google Scholar
  327. Mitznegg, P., Schubert, E., Heim, F.: The influence of low and high doses of theophylline on spontaneous motility and cyclic 3′,5′ AMP content in isolated rat uterus. Life Sci. 14, 711–717 (1974).PubMedGoogle Scholar
  328. Miyamoto, E., Kakiuchi, S.: In Vitro and In Vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3′5′-monophosphate-dependent protein kinases in brain. J. biol. Chem. 249, 2569–2777 (1974).Google Scholar
  329. Miyamoto, E., Kuo, J.F., Greengard, P.: Adenosine 3′5′-monophosphate-dependent protein kinase from brain. Science 165, 63–65 (1969a).PubMedGoogle Scholar
  330. Miyamoto, E., Kuo, J.F., Greengard, P.: Cyclicnucleotide-dependent protein kinases. I. Purification and properties of adenosine 3′,5′-monophosphate-dependent protein kinase from bovine brain. J. biol. Chem. 244, 6395–6402 (1969b).PubMedGoogle Scholar
  331. Miyamoto, E., Petzold, G.L., Harris, J.S., Greengard, P.: Dissociation and concomitant activation of adenosine 3′,5′-monophosphate-dependent protein kinase by histone. Biochem. biophys. Res. Commun. 44, 305–312 (1971).Google Scholar
  332. Molinoff, P.B., Axelrod, J.: Biochemistry of catecholamines. Ann. Rev. Biochem. 40, 465–500 (1971).PubMedGoogle Scholar
  333. Monn, E., Christiansen, R.O.: Adenosine 3′,5′-monophosphate phosphodiesterase: multiple molecular forms. Science 173, 540–541 (1971).PubMedGoogle Scholar
  334. Moore, R.Y., Björklund, A., Stenevi, U.: Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res. 33, 13–35 (1971).PubMedGoogle Scholar
  335. Morgenroth, V.H. III., Boadle-Biber, M., Roth, R.H.: Tyrosine hydrolase: Activation by nerve stimulation. Proc. nat. Acad. Sci. (Wash.) 71, 4283–4287 (1974).Google Scholar
  336. Moses, H.L., Rosenthal, A.S.: Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases. J. Histochem. Cytochem. 16, 530–539 (1968).PubMedGoogle Scholar
  337. Mueller, R.A., Otten, U., Thoenen, H.: The role of adenosine cyclic 3′,5′-monophosphate in reserpine-initiated adrenal medullary tyrosine hydroxylase induction. Molec. Pharmacol. 10, 855–860 (1974).Google Scholar
  338. Mueller, R.A., Thoenen, H., Axelrod, J.: Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. exp. Ther. 169, 74–79 (1969).PubMedGoogle Scholar
  339. Mulleroe, B., Schwabe, B.: Role of cyclic AMP for function of peripheral and central nervous system. Fortsch. Neurol. Psychiat. 41, 509–526 (1973).Google Scholar
  340. Murad, F., Manganiello, V., Vaughan, M.: A simple sensitive protein binding assay for guanosine 3′-5′ monophosphate. Proc. nat. Acad. Sci. (Wash.) 68, 736–739 (1971).Google Scholar
  341. Murphy, D.L., Donnelly, C., Moskowitz, J.: Inhibition by lithium of prostaglandin E1 and norepinephrine effects on cyclic adenosine monophosphate production in human platelets. Clin. Pharmacol. Ther. 14, 810–814 (1973).PubMedGoogle Scholar
  342. Nahorski, S.R., Rogers, K.J., Pinns, J.: Cerebral phosphodiesterase and dopamine receptor. J. Pharm. Pharmacol. 25, 912–913 (1973).PubMedGoogle Scholar
  343. Naito, K., Kuriyama, K.: Effect of morphine administration on adenyl cyclase and 3′,5′-cyclic nucleotide phosphodiesterase activities in the brain. Jap. J. Pharmacol. 23, 274–276 (1973).PubMedGoogle Scholar
  344. Nakazawa, K., Sano, M.: Studies on guanylate cyclase. A new assay method for guanylate cyclase and properties of the cyclase from rat brain. J. biol. Chem. 249, 4207–4211 (1974).PubMedGoogle Scholar
  345. Nathanson, J.A., Greengard, P.: Octopamine-sensitive adenylate cyclase: evidence for a biological role of octopamine in nervous tissue. Science 180, 308–310 (1973).PubMedGoogle Scholar
  346. Nathanson, J.A., Greengard, P.: Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: a possible site of lysergic acid diethylamide. Proc. nat. Acad. Sci. (Wash.) 71, 797–801 (1974).Google Scholar
  347. Neelon, F.A., Birch, B.M.: Cyclic adenosine 3′:5′-monophosphate-dependent protein kinase. J. biol. Chem. 248, 8361–8365 (1973).Google Scholar
  348. Nelson, C.N., Hoffer, B.J., Chu, N-S., Bloom, F.E.: Cytochemical and pharmacological studies on polysensory neurons in the primate frontal cortex. Brain Res. 62, 115–133 (1973).PubMedGoogle Scholar
  349. Norberg, K.A., Ritzen, M., Ungerstedt, U.: Histochemical studies on a special catecholamine- containing cell type in sympathetic ganglia. Acta physiol. scand. 67, 260–270 (1966).PubMedGoogle Scholar
  350. Obata, K., Takeda, K., Shinozaki, H.: Electrophoretic release of γ-aminobutyric acid and glutamic acid from micropipettes. Neuropharmacol. 9, 191–194 (1970).Google Scholar
  351. Obata, K., Yoshida, M.: Caudate-evoked inhibition and actions of GABA and other substances on cat pallidal neurons. Brain Res. 64, 455–459 (1973).PubMedGoogle Scholar
  352. Oliver, A.P., Segal, M.: Transmembrane changes in hippocampal neurons: hyperpolarizing actions of norepinephrine, cyclic AMP, and locus coeruleus. Proc. Soc. Neurosci. 361 (1974).Google Scholar
  353. Olson, L., Fuxe, K.: On the projections from the locus coeruleus noradrenaline neurons. Brain Res. 28, 165–171 (1971).PubMedGoogle Scholar
  354. Olson, L., Fuxe, K.: Further mapping out of central noradrenaline nervous systems: Projections of the subcoeruleus area. Brain Res. 43, 289–295 (1972).PubMedGoogle Scholar
  355. Otten, U., Mueller, R.A., Oesch, F., Thoenen, H.: Location of an isoproterenol-responsive cyclic AMP pool in adrenergic nerve cell bodies and its relationship to tyrosine 3-monooxygenase induction. Proc. nat. Acad. Sci. (Wash.) 71, 2217–2221 (1974).Google Scholar
  356. Otten, U., Oesch, F., Thoenen, H.: Dissociation between changes in cyclic AMP and subsequent induction of tyrosine hydroxylase in rat superior cervical ganglion and adrenal medulla. Naunyn-Schmiedeberg’s Arch. Pharmacol. 280, 129–140 (1973).Google Scholar
  357. Palay, S.L., Chan-Palay, V.: Cerebellar Cortex. Cytology and Organization. Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  358. Palmer, G.C.: Increased cyclic AMP response to norepinephrine in the rat brain following 6-hydroxy-dopamine. Neuropharmacol. 11, 145–149 (1972).Google Scholar
  359. Almer, G.C.: Adenyl cyclase in neuronal and glial-enriched fractions from rat and rabbit brain. Res. Commun. Chem. Path. Pharmacol. 5, 603–613 (1973a).Google Scholar
  360. Palmer, G.C.: Influence of amphetamines, protriptyline and pargyline on the time course of the norepinephrine-induced accumulation of cyclic AMP in rat brain. Life Sci. 12, 345–355 (1973b).Google Scholar
  361. Palmer, G.C., Burks, T.F.: Central and peripheral adrenergic blocking actions of LSD and BOL. Europ. J. Pharmacol. 16, 113–116 (1971).Google Scholar
  362. Palmer, G.C., Robison, G.A., Manian, A.A., Sulser, F.: Modification by psychotropic drugs of the cyclic AMP response to norepinephrine in the rat brain in vitro. Psychopharmacologia (Berl.) 23, 201–211 (1972a).Google Scholar
  363. Palmer, G.C., Schmidt, M.J., Robison, G.A.: Development and characteristics of the histamine-induced accumulation of cyclic AMP in the rabbit cerebral cortex. J. Neurochem. 19, 2251–2256 (1972b).PubMedGoogle Scholar
  364. Palmer, G.C., Sulser, F., Robison, G.A.: Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro. Neuropharmacol. 12, 327–337 (1973).Google Scholar
  365. Pannbacker, R.G.: Control of guanylate cyclase activity in the rod outer segment. Science 182, 1138–1139 (1973).PubMedGoogle Scholar
  366. Pannbacker, R.G., Fleischman, D.E., Reed, D.W.: Cyclic nucleotide phosphodiesterase: high activity in a mammalian photoreceptor. Science 175, 757–758 (1972).PubMedGoogle Scholar
  367. Papahadjopoulos, D., Poste, G., Mayhew, E.: Cellular uptake of cyclic AMP captured within phospholipid vesicles and effect on cell growth behavior. Biochim. biophys. Acta (Amst.) 363, 404–418 (1974).Google Scholar
  368. Paton, W.D.M.: Central and synaptic transmission in the nervous system (pharmacological aspects). Ann. Rev. Pharmacol. 20, 431–462 (1958).Google Scholar
  369. Paul, M.I., Cramer, H., Bunney, W.E. Jr.: Urinary adenosine 3′5′-monophosphate in the switch process from depression to mania. Science 171, 300–303 (1971a).PubMedGoogle Scholar
  370. Paul, M.I., Cramer, H., Goodwin, F.K.: Urinary cyclic AMP excretion in depression and mania. Arch. gen. Psychiat. 24, 327–333 (1971b).PubMedGoogle Scholar
  371. Perkins, J.P.: Adenyl cyclase. In: Advances in Cyclic Nucleotide Research, vol. 3. New York: Raven Press 1973.Google Scholar
  372. Perkins, J.P., Moore, M.M.: Adenyl cyclase of rat cerebral cortex. J. biol. Chem. 246, 62–68 (1971).PubMedGoogle Scholar
  373. Perkins, J.P., Moore, M.M.: Regulation of the adenosine cyclic 3′,5′-monophosphate content of rat cerebral cortex: ontogenetic development of the responsiveness to catecholamines and adenosine. Molec. Pharmacol. 9, 774–782 (1973 a).Google Scholar
  374. Perkins, J.P., Moore, M.M.: Characterization of the adrenergic receptors mediating a rise in cyclic 3′,5′-adenosine monophosphate in rat cerebral cortex. J. Pharmacol. exp. Ther. 185, 371–378 (1973b).PubMedGoogle Scholar
  375. Petersen, O.H.: The effect of glucagon on the liver cell membrane potential. J. Physiol. (Lond.) 239, 647–656 (1974).Google Scholar
  376. Phillis, J.W.: Evidence for cholinergic transmission in the cerebral cortex. Advan. Behav. Biol. 10, 57–80 (1974a).Google Scholar
  377. Phillis, J.W.: The role of calcium in the central effects of biogenic amines. Life Sci. 14, 1189–1201 (1974b).PubMedGoogle Scholar
  378. Phillis, J.W., Kostopoulos, G.K., Limacher, J.J.: A potent depressant action of adenine derivatives on cerebral cortical neurons. Europ. J. Pharmacol. 30, 125–129 (1975).Google Scholar
  379. Phillis, J.W., Lake, N., Yarborough, G.: Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurones. Brain Res. 53, 465–469 (1973).PubMedGoogle Scholar
  380. Pickel, V.M., Segal, M., Bloom, F.E.: A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. comp. Neurol. 155, 15–42 (1974a).PubMedGoogle Scholar
  381. Pickel, V.M., Segal, M., Bloom, F.E.: Axonal proliferation following lesions of cerebellar peduncles. A combined fluorescence microscopic and radioautographic study. J. comp. Neurol. 155, 43–60 (1974b).PubMedGoogle Scholar
  382. Posternak, T., Sutherland, E.W., Henion, W.F.: Derivatives of cyclic 3′5′-adenosine monophosphate. Biochim. biophys. Acta (Amst.) 65, 558–560 (1962).Google Scholar
  383. Prasad, K.N., Gilmer, K., Kumar, S.: Morphologically “differentiated” mouse neuroblastoma cells induced by noncyclic AMP agents: levels of cyclic AMP, nucleic acid and protein. Proc. Soc. exp. Biol. (N.Y.) 143, 1168–1171 (1973a).Google Scholar
  384. Prasad, K.N., Hsie, A.W.: Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′,5′-cyclic monophosphate. Nature (Lond.) 233, 141–142 (1971).Google Scholar
  385. Prasad, K.N., Mandal, B., Waymire, J.C., Lees, G.J., Vernadakis, A., Weiner, N.: Basal level of neurotransmitter synthesizing enzymes and effect of cyclic AMP agents on the morphological differentiation of isolated neuroblastoma clones. Nature (Lond.) 241, 117–119 (1973b).Google Scholar
  386. Purpura, D.P., Shofer, R.J.: Excitatory action of dibutyryl cyclic adenosine monophosphate on immature cerebral cortex. Brain Res. 38, 179–181 (1972).PubMedGoogle Scholar
  387. Rall, T.W.: Role of adenosine 3′,5′-monophosphate (cyclic AMP) in actions of catecholamines. Pharmacol. Rev. 24, 399–409 (1972).PubMedGoogle Scholar
  388. Rall, T.W., Gilman, A.G.: The role of cyclic AMP in the nervous system. Neurosci. Res. Program Bull. 8, (3) 221–317 (1970).Google Scholar
  389. Rall, T.W., Sattin, A.: Factors influencing the accumulation of cyclic AMP in brain tissue. Advanc. Biochem. Psychopharmacol. 3, 113–133 (1970).Google Scholar
  390. Rall, T.W., Sutherland, E.W., Berthet, J.: The relationship of epinephrine and glucagon to liver Phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of Phosphorylase in liver homogenates. J. biol. Chem. 224, 463–475 (1957).PubMedGoogle Scholar
  391. Rall, T.W., Sutherland, E.: Formation of a cyclic adenine ribonucleotide by tissue particles. J. biol. Chem. 232, 1065–1076 (1958).PubMedGoogle Scholar
  392. Rall, T.W., Sutherland, E.W.: The regulatory role of adenosine 3′,5′-phosphate. Cold Spr. Harb. Symp. quant. Biol. 26, 347–354 (1961).Google Scholar
  393. Rall, T.W., Sutherland, E.W.: Adenyl cyclase. II. The enzymatically catalyzed formation of adenosine 3′-5′ phosphate and inorganic pyrophosphate from adenosine triphosphate. J. biol. Chem. 237, 1228–1232(1962).PubMedGoogle Scholar
  394. Rasmussen, H.: Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170, 404–412 (1970).PubMedGoogle Scholar
  395. Reik, L., Petzold, G.L., Higgins, J.A., Greengard, P., Barrnett, R.J.: Hormone-sensitive adenyl cyclase: cytochemical localization in rat liver. Science 168, 382–384 (1970).PubMedGoogle Scholar
  396. Richelson, E.: Stimulation of tyrosine hydroxylase activity in an adrenergic clone of mouse neuroblastoma by dibutyryl cyclic AMP. Nature (Lond.) 242, 175–177 (1973).Google Scholar
  397. Robertis, E. de, Rodriguez de Lores Arnaiz, G., Alberici, M., Butcher, R.W., Sutherland, E.W.: Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. biol. Chem. 242, 3487–3493 (1967).Google Scholar
  398. Robison, G.A., Butcher, R.W., Sutherland, E.W.: Cyclic AMP. New York: Academic Press 1971.Google Scholar
  399. Rodbell, M.: The role of nucleotides in the activity and response of adenylate cyclase to hormones. In: Advance in Cyclic Nucleotide Research, vol. 5. New York: Raven Press (in press).Google Scholar
  400. Rodbell, M., Birnbaumer, L., Pohl, S.L.: Hormones, receptors and adenyl cyclase activity in mammalian cells. In: The Role of Adenyl Cyclase and Cyclic 3′,5′-AMP in Biological Systems, Fogarty International Center Proceedings. Washington, D.C.: U.S. Government Printing Office 1971.Google Scholar
  401. Roisen, F.J., Murphy, R.A.: Neurite development in vitro. II. The role of microfilaments and microtubules in dibutyryl adenosine 3′,5′-cyclic monophosphate and nerve-growth factor stimulated maturation. J. Neurobiol. 4, 397–417 (1973).PubMedGoogle Scholar
  402. Roisen, F.J., Murphy, R.A., Braden, W.G.: Dibutyryl cyclic adenosine monophate stimulation of colcemid-inhibited axonal elongation. Science 177, 809–811 (1972a).PubMedGoogle Scholar
  403. Roisen, F.J., Murphy, R.A., Braden, W.G.: Neurite development in vitro. I. The effects of adenosine 3′,5′-cyclic monophosphate (cyclic AMP). J. Neurobiol. 4, 347–368 (1972b).Google Scholar
  404. Roisen, F.J., Murphy, R.A., Pichichero, M.E., Braden, W.G.: Cyclic adenosine monophosphate stimulation of axonal elongation. Science 175, 73–74 (1972c).PubMedGoogle Scholar
  405. Rozear, M., DeGroof, R., Somjen, G.: Effects of microiontophoretic administration of divalent metal ions on neurons of the central nervous system of cats. J. Pharmacol. exp. Ther. 176, 109–118 (1971).PubMedGoogle Scholar
  406. Rubin, R.P., Jaanus, S.D., Carchman, R.A.: Role of calcium and adenosine cyclic 3′-5′ phosphate in action of adreno corticotropin. Nature (Lond.) 240, 150–152 (1972).Google Scholar
  407. Rudland, P.S., Gospodarowicz, D., Siefert, W.E.: Cyclic GMP and growth control in cultured fibroblasts: activation of guanyl cyclase and intracellular cGMP by a purified growth factor. Nature (Lond.) 250, 741–742 (1974).Google Scholar
  408. Rudolph, S.A., Johnson, E.M., Greengard, P.: The entholpy of hydrolysis of various 3′,5′- and 2′,2′-cyclic nucleotides. J. biol. Chem. 246, 1271–1273 (1971).PubMedGoogle Scholar
  409. Russell, J.R., Thompson, W.J., Schneider, F.W., Appleman, M.M.: 3′,5′-Cyclic adenosine monophosphate phosphodiesterase: negative cooperativity. Proc. nat. Acad. Sci. (Wash.) 69, 1791–1795 (1972).Google Scholar
  410. Russell, T.R., Pastan, LH.: Cyclic adenosine 3′:5′-monophosphate and cyclic guanosine 3′:5′-monophosphate phosphodiesterase activities are under separate genetic control. J. biol. Chem. 249, 7764–7769 (1974).PubMedGoogle Scholar
  411. Sakai, K., Marks, B.: Adrenergic effects on pineal cell membrane potential. Life Sci. 11, 285–291 (1972).Google Scholar
  412. Salmoiraghi, G.C., Bloom, F.E.: The pharmacology of individual neurons. Science 144, 493–497 (1964).PubMedGoogle Scholar
  413. Sasa, M., Munekiyo, K., Ikeda, H., Takaori, S.: Noradrenaline-mediated inhibition by locus coeruleus of spinal trigeminal neurons. Brain Res. 80, 443–460 (1974).PubMedGoogle Scholar
  414. Sattin, A., Rall, T.W.: The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices. Molec. Pharmacol. 6, 13–23 (1970).Google Scholar
  415. Sattin, A., Rall, T.W., Zanella, J.: Regulation of cyclic adenosine 3′,5′-monophosphate levels in guinea pig cerebral cortex by interaction of alpha adrenergic and adenosine receptor activity. J. Pharmacol. exp. Ther. 192, 22–32 (1975).PubMedGoogle Scholar
  416. Sayers, G., Beall, R.J., Seelig, S.: Isolated adrenal cells: adreno-corticotropic hormone, calcium, steroidogenesis and cyclic adenosine monophosphate. Science 175, 1131–1133 (1972).PubMedGoogle Scholar
  417. Schimmer, B.P.: Effects of catecholamines and monovalent cations on adenylate cyclase activity in cultured glial tumor cells. Biochim. biophys. Acta (Amst.) 252, 567–573 (1971).Google Scholar
  418. Schimmer, B.P.: Influence of Li+ on epinephrine-stimulated adenylate cyclase activity in cultured glial tumor cells. Biochim. biophys. Acta (Amst.) 326, 186–192 (1973).Google Scholar
  419. Schmidt, M.J., Hopkins, J.T., Schmidt, D.E., Robison, G.A.: Cyclic AMP in brain areas: effects of amphetamine and norepinephrine assessed through the use of microwave radiation as a means of tissue fixation. Brain Res. 42, 465–477 (1972).PubMedGoogle Scholar
  420. Schmidt, M.J., Palmer, E.C., Dettborn, W.-D., Robison, G.A.: Cyclic AMP and adenyl cyclase in the developing rat brain. Develop. Psychobiol. 3, 53–67 (1970).Google Scholar
  421. Schmidt, M.J., Robison, G.A.: The effect of norepinephrine on cyclic AMP levels in discrete regions of the developing rabbit brain. Life Sci. 10, 459–464 (1971).Google Scholar
  422. Schmidt, M.J., Schmidt, D.E., Robison, G.A.: Cyclic adenosine monophosphate in brain areas: microwave irradiation as a means of tissue fixation. Science 173, 1142–1143 (1971).PubMedGoogle Scholar
  423. Schmidt, M.J., Sokoloff, L.: Activity of cyclic AMP-dependent microsomal protein kinase and phosphorylation of ribosomal protein in rat brain during postnatal development. J. Neurochem. 21, 1193–1205 (1973).PubMedGoogle Scholar
  424. Schroeder, J.: Analogs of α-tocopherol as inhibitors of cyclic AMP and cyclic GMP phosphodiesterases and effects of a-tocopherol deficiency on cyclic AMP-controlled metabolism. Biochim. biophys. Acta (Amst.) 343, 173–181 (1974).Google Scholar
  425. Schultz, G., Böhme, E., Munske, K.: Guanyl cyclase: Determination of enzyme activity. Life Sci. 8, 1323–1332 (1969).PubMedGoogle Scholar
  426. Schultz, G., Hardman, J.G., Schultz, K., Baird, C.E., Sutherland, E.W.: The importance of calciums ions for the regulation of guanosine 3′,5′-cyclic monophosphate levels. Proc. nat. Acad. Sci. (Wash.) 70, 3889–3893 (1973).Google Scholar
  427. Schultz, J.: Inhibition of phosphodiesterase activity in brain cortical slices from guinea pig and rat. Pharmacol. Res. Commun. 6, 335–341 (1974).PubMedGoogle Scholar
  428. Schultz, J., Daly, J.W.: Cyclic adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices. II. The role of phosphodiesterase activity in the regulation of levels of cyclic adenosine 3′,5′-monophosphate. J. biol. Chem. 248, 853–859 (1973a).PubMedGoogle Scholar
  429. Schultz, J., Daly, J.W.: Cyclic adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices. III. Formation, degradation, and reformation of cyclic adenosine 3′,5′-monophosphate during sequential stimulations by biogenic amines and adenosine. J. biol. Chem. 248, 860–866 (1973b).PubMedGoogle Scholar
  430. Schultz, J., Daly, J.W.: Adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices: effects of α- and β-adrenergic agents, histamine, serotonin, and adenosine. J. Neurochem. 21, 573–579 (1973c).PubMedGoogle Scholar
  431. Schultz, J., Daly, J.W.: Accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices from rat and mouse stimulatory effect of α- and β-adrenergic agents and adenosine. J. Neurochem. 21, 1319–1326 (1973d).PubMedGoogle Scholar
  432. Schultz, J., Hamprecht, B., Daly, J.W.: Accumulation of adenosine 3′,5′-cyclic monophosphate in clonal glial cells: labeling of intracellular adenine nucleotides with radioactive adenine. Proc. nat. Acad. Sci. (Wash.) 69, 1266–1270 (1972).Google Scholar
  433. Schwartz, J.P., Morris, N.R., Breckenridge, B.M.: Adenosine 3′,5′-monophosphate in glial tumor cells. J. biol. Chem. 248, 2699–2704 (1973).PubMedGoogle Scholar
  434. Seeds, N.W., Gilman, A.G.: Norepinephrine stimulated increase of cyclic AMP levels in developing mouse brain cell cultures. Science 174, 292 (1971).PubMedGoogle Scholar
  435. Seeman, P., Lee, T.: Tranquilizer-blockade of dopamine release from stimulated striatal slices. 4th Annu. Meeting Soc. for Neurosci., St. Louis, 620, 1974.Google Scholar
  436. Segal, M., Bloom, F.E.: The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 72, 79–97 (1974a).PubMedGoogle Scholar
  437. Segal, M., Bloom, F.E.: The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res. 72, 99–114 (1974b).PubMedGoogle Scholar
  438. Shashoua, V.E.: Dibutyryl adenosine cyclic 3′,5′-monophosphate effects on goldfish behavior and brain RNA metabolism. Proc. nat. Acad. Sci. (Wash.) 68, 2835–2838 (1971).Google Scholar
  439. Shein, H.M., Wurtman, R.J.: Cyclic adenosine monophosphate: stimulation of melatonin and serotonin synthesis in cultured rat pineals. Science 166, 519–520 (1969).PubMedGoogle Scholar
  440. Sheppard, H., Burghardt, C.R.: The dopamine-sensitive adenylate cyclase of rat caudate nucleus. I. Comparison with the isoproterenol-sensitive adenylate cyclase (beta receptor system) of rat erythrocytes in responses to dopamine derivatives. Molec. Pharmacol. 10, 721–726 (1974).Google Scholar
  441. Sheppard, J.R., Hudson, T.H., Larson, J.R.: Adenosine 3′,5′-monophosphate analogus promote a circular morphology of cultured schwannoma cells. Science 187, 179–181 (1975).PubMedGoogle Scholar
  442. Sheppard, J.R., Prasad, K.N.: Cyclic AMP levels and the morphological differentiation of mouse neuroblastoma cells. Life Sci. 12, 431–439 (1973).Google Scholar
  443. Sherrington, C.S.: Remarks on some aspects of reflex inhibition. Proc. roy. Soc. B 97, 519–544 (1925).Google Scholar
  444. Shimizu, H., Daly, J.: Formation of cyclic adenosine 3′,5′ monophosphate from adenosine in brain slices. Biochim. biophys. Acta (Amst.) 222, 465–473 (1970).Google Scholar
  445. Shimizu, H., Daly, J.W.: Effect of depolarizing agents on accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices. Europ. J. Pharmacol. 17, 240–252 (1972).Google Scholar
  446. Shimizu, H., Creveling, C.R., Daly, J.: Stimulated formation of adenosine 3′,5′-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc. nat. Acad. Sci. (Wash.) 65, 1033–1040 (1970a).Google Scholar
  447. Shimizu, H., Creveling, C.R., Daly, J.W.: Cyclic adenosine 3′,5′-monophosphate formation in brain slices: stimulation by batrachotoxin, ouabain, veratridine and potassium ions. Molec. Pharmacol. 6, 184–188 (1970b).Google Scholar
  448. Shimizu, H., Creveling, C.R., Daly, J.W.: The effect of histamines and other compounds on the formation of adenosine 3′,5′-monophosphate in slices from cerebral cortex. J. Neurochem. 17, 441–444 (1970c).PubMedGoogle Scholar
  449. himizu, H., Ichisita, H., Odagiri, H.: Stimulated formation of cyclic adenosine 3′,5′-monophosphate by aspartate and glutamate in cerebral cortical slices of guinea pig. J. biol. Chem. 249, 5955–5962 (1974).Google Scholar
  450. Shimizu, H., Tanaka, S., Suzuki, T., Matsukado, Y.: The response of human cerebrum adenyl cyclase to biogenic amines. J. Neurochem. 18, 1157–1161 (1971).PubMedGoogle Scholar
  451. Shoemaker, W.J., Balentine, L.T., Siggins, G.R., Hoffer, B.J., Henriksen, S.J., Bloom, F.E.: Characteristics of the release of cyclic adenosine 3′,5′-monophosphate from micropipets by micro-iontophoresis. J. Cyclic Nucleotide Res. 1, 97–106 (1975).PubMedGoogle Scholar
  452. Siggins, G.R., Battenberg, E.F., Hoffer, B.J., Bloom, F.E., Steiner, A.L.: Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: an immunocytochemical study. Science 179, 585–588 (1973).PubMedGoogle Scholar
  453. Siggins, G.R., Henriksen, S.J.: Inhibition of rat Purkinje neurons by analogues of cyclic adenosine monophosphate: correlation with protein kinase activation. Science 189, 557–560 (1975).Google Scholar
  454. Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Cyclic 3′,5′-adenosine monophosphate: possible mediator for the response of cerebellar Purkinje cells to microelectrophoresis of norepinephrine. Science 165, 1018–1020 (1969).PubMedGoogle Scholar
  455. Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-adenosine monophosphate. Brain Res. 25, 535–553 (1971a).PubMedGoogle Scholar
  456. Siggins, G.R., Hoffer, B.J., Oliver, A.P., Bloom, F.E.: Activation of a central noradrenergic projection to cerebellum. Nature (Lond.) 233, 481–483 (1971b).Google Scholar
  457. Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Prostaglandin-norepinephrine interactions in brain: microelectrophoretic and histochemical correlates. Ann. N.Y. Acad. Sci. 180, 302–323 (1971c).PubMedGoogle Scholar
  458. Siggins, G.R., Hoffer, B.J., Ungerstedt, U.: Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci. 15, 779–792 (1974).PubMedGoogle Scholar
  459. Siggins, G.R., Oliver, A.P., Hoffer, B.J., Bloom, F.E.: Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science 171, 192–194 (1971d).PubMedGoogle Scholar
  460. Simon, L.N., Shuman, D.A., Robins, R.K.: The synthesis and biological activity of analogs of cyclic nucleotides. In: Cellular Mechanisms. Basel: S. Karger 1973.Google Scholar
  461. Skolnick, P., Daly, J.W.: The accumulation of adenosine 3′,5′-monophosphate in cerebral cortical slices of the awaking mouse, a neurologic mutant. Brain Res. 73, 513–525 (1974).PubMedGoogle Scholar
  462. Skolnick, P., Huang, M., Daly, J., Hoffer, B.J.: Accumulation of adenosine 3′,5′-monophosphate in incubated slices from discrete regions of squirrel monkey cerebral cortex: effect of norepinephrine, serotonin, and adenosine. J. Neurochem. 21, 237–240 (1973).PubMedGoogle Scholar
  463. Sloboda, R.D., Rudolph, S.A., Rosenbaum, J.L., Greengard, P.: Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. nat. Acad. Sci. (Wash.) 72, 177–181 (1975).Google Scholar
  464. Soifer, D.: Enzymatic activity in tubulin preparations: Cyclic AMP dependent protein kinase activity of brain microtubule protein. J. Neurochem. 24, 21–33 (1975).PubMedGoogle Scholar
  465. Somlyo, A.V., Haeusler, G., Somlyo, A.P.: Cyclic adenosine monophosphate: potassium-dependent action on vascular smooth muscle membrane potential. Science 169, 490–491 (1970).PubMedGoogle Scholar
  466. Spiegel, A.M., Aurbach, G.D.: Binding of 5′-guanylyl-imidodiphosphate to turkey erythrocyte membranes and effects on β-adrenergic activated adenylate cyclase. J. biol. Chem. 249, 7630–7636 (1974).PubMedGoogle Scholar
  467. Stavinoha, W.B., Pepelko, B., Smith, P.: Microwave radiation to inactivate Cholinesterase in the rat brain prior to analysis for acetylcholine. Pharmacologist 12, 257 (1970).Google Scholar
  468. Steiner, A.L., Parker, C.W., Kipnis, D.M.: The measurement of cyclic nucleotides by radioimmunoassay. Advanc. Biochem. Psychopharmacol. 3, 89–112 (1970).Google Scholar
  469. Steiner, A.L., Parker, C.W., Kipnis, D.M.: Radioimmuno-assay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J. biol. Chem. 247, 1106–1113 (1972a).PubMedGoogle Scholar
  470. Steiner, A.L., Paghara, A.W., Chase, L.R., Kipnis, D.M.: Radioimmunoassay for cyclic nucleodies. II. Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids. J. biol. Chem. 247, 1114–1120 (1972b).PubMedGoogle Scholar
  471. Steiner, A.L., Ferrendelli, J.A., Kipnis, D.M.: Radioimmunoassay for cyclic nucleotides. III. Effect of ischemia, changes during development and regional distribution of adenosine 3′,5′-monophosphate and guanosine 3′,5′ monophosphate in mouse brain. J. biol. Chem. 247, 1121–1124 (1972c).PubMedGoogle Scholar
  472. Stone, T.W., Taylor, D.A., Bloom, F.E.: Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex. Science 187, 845–847 (1975).PubMedGoogle Scholar
  473. Strada, S.J., Uzunov, P., and Weiss, B.: Ontogenetic development of a phosphodiesterase activator and the multiple forms of cyclic AMP phosphodiesterase of rat brain. J. Neurochem. 23, 1097–1103 (1974).PubMedGoogle Scholar
  474. Sutherland, E.W., Oye, I., Butcher, R.W.: The action of epinephrine and the role of the adenyl cyclase system in hormone action. Recent Progr. Hormone Res. 21, 623–642 (1965).PubMedGoogle Scholar
  475. Sutherland, E.W., Rall, T.W.: Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. biol. Chem. 232, 1077–1091 (1958).PubMedGoogle Scholar
  476. Sutherland, E.W., Rall, T.W., Menon, T.: Adenyl cyclase. I. Distribution, preparation and properties. J. biol. Chem. 237, 1220–1227 (1962).PubMedGoogle Scholar
  477. Swillens, S., Cauter, E. von, Dumont, J.E.: Protein kinase and cyclic 3′,5′-AMP: significance of binding and activation constants. Biochim. biophys. Acta (Amst.) 364, 250–259 (1974).Google Scholar
  478. Tada, M., Kirchberger, M.A., Repke, D.I., Katz, A.M.: The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′,5′-monophosphate dependent protein kinase J. biol. Chem. 249, 6174–6180 (1974).PubMedGoogle Scholar
  479. Tagliamonte, A., Tagliamonte, P., Forn, J., Perez-Cruet, J., Krishna, G., Gessa, G.L.: Stimulation of brain serotonin synthesis by dibutyryl cyclic AMP in rats. J. Neurochem. 18 1191–1196 (1971).PubMedGoogle Scholar
  480. Takamori, M., Ishii, N., Mori, M.: The role of cyclic 3′,5′-adenosine monophosphate in neuromuscular transmission. Arch. Neurol. 29, 420–424 (1973).PubMedGoogle Scholar
  481. Tamarind, D.C., Quilliam, J.P.: Synaptic organization and other ultrastructural features of the superior cervical ganglion of the rat, kitten and rabbit. Micron 2, 204–234 (1971).Google Scholar
  482. Teshima, Y., Yamazaki, R., Kakiuchi, S.: Effects of ATP on the activity of nucleoside 3′,5′-cyclic monophosphate phosphodiesterase from brain. J. Neurochem. 22, 789–791 (1974).PubMedGoogle Scholar
  483. Thierry, A.M., Blanc, G., Sobel, A., Stinus, L., Glowinski, J.: Dopaminergic terminals in the rat cortex. Science 182, 499–501 (1973).PubMedGoogle Scholar
  484. Thoenen, H.: Induction of tyrosine hydroxylase in peripheral and central adrenergic neurones by cold exposure of rats. Nature (Lond.) 228, 861–862 (1970).Google Scholar
  485. Thoenen, H., Mueller, R.A., Axelrod, J.: Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. exp. Ther. 169, 249–254 (1969).PubMedGoogle Scholar
  486. Thoenen, H., Otten, U., Oesch, F.: Trans-synaptic regulation of tyrosine hydroxylase. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1974.Google Scholar
  487. Thompson, W.J., Appleman, M.M.: Multiple cyclic nucleotide phosphodiesterases activities from rat brain. Biochemistry (Wash.) 10, 311–316 (1971).Google Scholar
  488. Tomita, T., Sakamoto, Y., Ohba, M.: Conductance increase by adrenaline in guinea pig taenia coli studied with voltage clamp method. Nature (Lond.) 250, 432 (1974).Google Scholar
  489. Triggle, D.J.: Neurotransmitter-receptor Interactions. New York: Academic Press 1971.Google Scholar
  490. Tsien, R.W.: Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nature (Lond.) 245, 120–122 (1973).Google Scholar
  491. Tsien, R.W., Giles, W., Greengard, P.: Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers. Nature (Lond.) 240, 181–183 (1972).Google Scholar
  492. Tsien, R.W., Weingart, R.: Cyclic AMP: Cell-to-cell movement and inotropic effect in ventricular muscle, studied by a cut-end method. J. Physiol. (Lond.) 242, 95–96 (1974).Google Scholar
  493. Tsou, K.C., Yip, K.F., Lo, K.W.: 1,N6 Etheno-2-aza-adenosine 3′,5′-monophosphate: a new fluorescent substrate for cycle nucleotide phosphodiesterase. Analyt. Biochem. 60, 163–169 (1974).PubMedGoogle Scholar
  494. Ueda, T., Maeno, H., Greengard, P.: Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′,5′-monophosphate. J. biol. Chem. 248, 8295–8305 (1973).PubMedGoogle Scholar
  495. Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in rat brain. Acta physiol. scand. 67, 1–48 (1971).Google Scholar
  496. Uzunov, P., Revuelta, A., Costa, E.: A role for the endogenous activator of 3′,5′-nucleotide phosphodiesterase in rat adrenal medulla. Molec. Pharmacol. (in press, 1975).Google Scholar
  497. Uzunov, P., Shein, H.M., Weiss, B.: Cyclic AMP phosphodiesterase in cloned astrocytoma cells: norepinephrine induces a specific enzyme form. Science 180, 304–306 (1973).PubMedGoogle Scholar
  498. Uzunov, P., Shein, H.M., Weiss, B.: Multiple forms of cyclic 3′,5′-AMP phosphodiesterase of rat cerebrum and cloned astrocytoma and neuroblastoma cells. Neuropharmacol. 13, 377–391 (1974).Google Scholar
  499. Uzunov, P., Weiss, B.: Effects of phenothiazine tranquillizers on the cyclic 3′,5′-adenosine monophosphate system of rat brain. Neuropharmacol. 10, 697–708 (1971).Google Scholar
  500. Uzunov, P., Weiss, B.: Psychopharmacological Agents and the cyclic AMP system of rat brain. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.Google Scholar
  501. Vassalle, M., Barnabel, O.: Norepinephrine and potassium fluxes in cardiac Purkinje fibers. Pflügers Arch. 322, 287–303 (1971).PubMedGoogle Scholar
  502. Veech, R.L., Harris, R.L., Veloso, D., Veech, E.H.: Freezeblowing: a new technique for the study of brain in vivo. J. Neurochem. 20, 183–188 (1973).PubMedGoogle Scholar
  503. Vellis, J. de, Brooker, G.: Reversal of catecholamine refractoriness by inhibitors of RNA and protein synthesis. Science 186, 1221–1222 (1974).Google Scholar
  504. Verma, S.C., McNeill, J.H.: Action of imidazole on the cardiac inotropic, Phosphorylase activating and cyclic AMP producing effects of norepinephrine and histamine. Res. Commun. Chem. Pathol. Pharmacol. 7, 305–319 (1974).PubMedGoogle Scholar
  505. Vesin, M.F., Harbon, S.: The effect of epinephrine, prostaglandins, and their antagonists on adenosine cyclic 3′,5′-monophosphate concentrations and motility of the rat uterus. Molec. Pharmacol. 10, 457–473 (1974).Google Scholar
  506. Voaden, M.J.: The effects of superior cervical ganglionectomy and/or bilateral adrenalectomy on the mitotic acitivity of the adult rat cornea. Exp. Eye Res. 12, 337–341 (1971).PubMedGoogle Scholar
  507. Vokaer, A., Iacobelli, S., Kram, R.: Phosphoprotein phosphatase activity associated with estrogen-induced protein in rat uterus. Proc. nat. Acad. Sci. (Wash.) 71, 4482–4486 (1974).Google Scholar
  508. Volicer, L., Gold, B.I.: Effect of ethanol on cyclic AMP levels in the rat brain. Life Sci. 13, 269–280 (1973).PubMedGoogle Scholar
  509. von Hungen, K., Roberts, S.: Catecholamine and Ca2+ activation of adenylate cyclase systems in synaptosomal fractions from rat cerebral cortex. Nature (Lond.) 242, 58–60 (1973).Google Scholar
  510. von Hungen, K., Roberts, S.: Neurotransmitter-sensitive adenylate cyclase systems in the brain. In: Reviews of Neuroscience, vol. 1. New York: Raven Press 1974.Google Scholar
  511. Wagner, R.C., Bitensky, M.W.: Adenylate Cyclase. In: Electron Microscopy of Enzymes. New York: Van Nostrand, Rienhold Co. 1974.Google Scholar
  512. Wagner, R.C., Kriener, P., Barrnett, R.J., Bitensky, M.W.: Biochemical characterization and cytochemical localization of a catecholamine-sensitive adenylate cyclase in isolated capillary endothelium. Proc. nat. Acad. Sci. (Wash.) 69, 3175–3180 (1972).Google Scholar
  513. Walker, J.B., Walker, J.P.: Neurohumoral regulation of adenylate cyclase activity in rat striatum. Brain Res. 54, 386–390 (1973a).PubMedGoogle Scholar
  514. Walker, J.B., Walker, J.P.: Properties of adenylate cyclase from senescent rat brain. Brain Res. 54, 391–396 (1973b).PubMedGoogle Scholar
  515. Walsh, D.A., Perkins, J.P., Krebs, E.G.: An adenosine 3′,5′ monophosphate dependent protein kinase from rabbit skeletal muscle. J. biol. Chem. 243, 3763–3765 (1968).PubMedGoogle Scholar
  516. Watanabe, A.M., Besch, H.R. Jr.: Cyclic adenosine monophosphate modulation of slow calcium influx channels in guinea pig heart. Circulat. Res. 35, 316–324 (1974).Google Scholar
  517. Waymire, J.C., Weiner, N., Prasad, K.N.: Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: elevation induced by analogs of adenosine 3′,5′ cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 69, 2241–2245 (1972).Google Scholar
  518. Weber, A., Murray, J.M.: Molecular control mechanisms in muscle contraction. Physiol. Rev. 53, 612–673 (1973).PubMedGoogle Scholar
  519. Wedner, H.J., Hoffer, B.J., Battenberg, E., Steiner, A.L., Parker, C.W., Bloom, F.E.: A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence. J. Histochem. Cytochem. 20, 293–295 (1972).PubMedGoogle Scholar
  520. Weight, F.F.: Mechanisms of synaptic transmission. Neurosci. Res. Program Bull. 4, 1–27 (1971).Google Scholar
  521. Weight, F.F.: Physiological mechanisms of synaptic modulation. In: The Neurosciences: 3rd Study Program. Cambridge: MIT Press 1974.Google Scholar
  522. Weight, F.F., Padjen, A.: Acetylcholine and slow synaptic inhibition in frog sympathetic ganglion cells. Brain Res. 55, 225–228 (1973a).PubMedGoogle Scholar
  523. Weight, F.F., Padjen, A.: Slow synaptic inhibition: evidence for synaptic inactivation of sodium conductance in sympathetic ganglion cells. Brain Res. 55, 219–224 (1973b).PubMedGoogle Scholar
  524. Weight, F.F., Petzold, G., Greencard, P.: Guanosine 3′,5′-monophosphate in sympathetic ganglia: increase associated with synaptic transmission. Science 186, 942–944 (1974).PubMedGoogle Scholar
  525. Weight, F.F., Votava, J.: Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic activation of potassium conductance. Science 170, 755–758 (1970).PubMedGoogle Scholar
  526. Weinrub, I., Chasin, M., Free, C.A., Harris, D.N., Goldenberg, H., Michel, I.M., Palk, U.S., Phillips, M., Samaniego, S., Hess, S.M.J.: Effects of therapeutic agents on cyclic AMP metabolism in vitro. J. pharm. Sci. 61, 1556–1657 (1972).Google Scholar
  527. Weiss, B.: Psychopharmacological agents and the cyclic AMP system of rat brain. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.Google Scholar
  528. Weiss, B., Costa, E.: Regional and subcellular distribution of adenyl cyclase and 3′,5′-cyclic nucleotide phosphodiesterase in brain and pineal gland. Biochem. Pharmacol. 17, 2107–2116 (1968).PubMedGoogle Scholar
  529. Weiss, B., Kidman, A.D.: Neurobiological significance of cyclic 3′,5′-adenosine monophosphate. Advanc. Biochem. Psychopharmacol. 1, 132–164 (1969).Google Scholar
  530. Weller, M., Rodnight, R.: Stimulation by cyclic AMP of intrinsic protein kinase activity in ox brain membrane preparations. Nature (Lond.) 225, 187–188 (1970).Google Scholar
  531. Werman, R.: CNS cellular level: membranes. Ann. Rev. Physiol. 34, 337–374 (1972).Google Scholar
  532. White, A.A., Aurbach, G.D.: Detection of guanyl cyclase in mammalian tissues. Biochim. biophys Acta (Amst.) 191, 686–697 (1969).Google Scholar
  533. Whitfield, J.F., Rixon, R.H., McManus, J.P., Balk, S.D.: Calcium, cyclic adenosine 3′,5′-monophosphate, and the control of cell proliferation: a review. In Vitro. 8, 257–278 (1973).PubMedGoogle Scholar
  534. Wicks, W.D.: Regulation of protein synthesis by cyclic AMP. In: Advances in Cyclic Nucleotide Research, vol. 4. New York: Raven Press 1974.Google Scholar
  535. Wickson, R.D., Boudreau, R.J., Drummond, G.I.: Activation of 3′,5′-cyclic adenosine monophosphate phosphodiesterase by calcium ion and a protein activator. Biochemistry (Wash.) 14, 669–675 (1975).Google Scholar
  536. Will, H., Schirpke, B., Wollenberger, A.: Binding of calcium to a cell membrane-enriched preparation from pig myocardium: increase in calcium affinity upon membrane protein phosphorylation enhanced by a membrane-bound cyclic AMP dependent protein kinase. Acta biol. med. germ. 31, 45–52 (1973).Google Scholar
  537. Williams, B.J., Pirch, J.H.: Correlation between brain adenyl cyclase activity and spontaneous motor activity in rats after chronic reserpine treatment. Brain Res. 68, 227–234 (1974).PubMedGoogle Scholar
  538. Williams, M., Rodnight, R.: Evidence for a role for protein phosphorylation in synaptic function in the cerebral cortex mediated through a β-noradrenergic receptor. Brain Res. 77, 502–506 (1974).PubMedGoogle Scholar
  539. Williams, R.H., Thompson, W.J.: Effect of age upon guanyl cyclase, adenyl cyclase, and cyclic nucleotide phosphodiesterases in rats. Proc. Soc. exp. Biol. (N.Y.) 143, 382–387 (1973).Google Scholar
  540. Williams, T.H., Palay, S.L.: Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res. 15, 17–34 (1969).PubMedGoogle Scholar
  541. Wilson, D.F.: The effects of dibutyryl cyclic adenosine 3′,5′-monophosphate, theophylline, and aminophylline on neuromuscular transmission in the rat. J. Pharmacol. exp. Ther. 188, 447–452 (1974).PubMedGoogle Scholar
  542. Wilson, D.F., Stubbs, M., Veech, R.L., Erecinska, M., Krebs, H.A.: Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem. J. 140, 57–64 (1974).PubMedGoogle Scholar
  543. Woodward, D.J., Hoffer, B.J., Altman, J.: Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal X-irradiation. J. Neurobiol. 5, 283–304 (1974).PubMedGoogle Scholar
  544. Yarbrough, G.G., Lake, N., Phillis, J.W.: The role of calcium in monoamine induced depression of cerebral cortical neurones. Life Sci. 13, 703–711 (1973).Google Scholar
  545. Yokota, R.: The granule-containing cell somata in the superior cervical ganglion of the rat, as studied by a serial sampling method for electron microscopy. Z. Zellforsch. 141, 331–346 (1973).PubMedGoogle Scholar
  546. York, D.H.: Dopamine receptor blockade: a central action of chlorpromazine on striatal neurones. Brain Res. 37, 91–99 (1972).PubMedGoogle Scholar
  547. Yount, R.G., Bobcock, D., Ballentyne, W., Ohala, D.: Adenylyl-immidodiphosphate; an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry (Wash.) 10, 2484 (1971).Google Scholar
  548. Zanella, J. Jr., Rall, T.W.: Evaluation of electrical pulses and elevated levels of potassium ions as stimulants of adenosine 3′,5′-monophosphate (cyclic AMP) accumulation in guinea pig brain. J. Pharmacol. exp. Ther. 186, 241–252 (1973).PubMedGoogle Scholar
  549. Zigmond, R.E., Schon, F., Iversen, L.L.: Increased tyrosine hydroxylase activity in the locus coeruleus of rat brain stem after reserpine treatment and cold stress. Brain Res. 70, 547–552 (1974).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • F. E. Bloom
    • 1
  1. 1.Laboratory of Neuropharmacology, Division of Special Mental Health Research, IRPNational Institute of Mental Health, Saint Elizabeths HospitalUSA

Personalised recommendations