Solid-State Physics from the Atomistic Point of View

  • Wolfgang Finkelnburg


We now turn from the molecules to very large assemblies of atoms, ions, or molecules, i.e., to the liquid and solid state of matter. The binding forces which are acting between the individual particles of large aggregates of atoms have the effect that in the equilibrium state, defined by a minimum of the potential energy, the atoms or molecules arrange themselves in a symmetrical geometric pattern or lattice which we call a crystal. For weaker binding forces or at higher temperatures, the thermal motion of the atoms prevents them from attaining this state of equilibrium. The atoms or molecules then have some mobility, and the regularity of the atomic pattern is disturbed: This is the liquid state of matter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Solid State Physics

  1. Encyclopedia of Physics, Vol. VII/1: Kristallphysik I. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  2. Dekker, A. J.: Solid State Physics. New York: Prentice-Hall 1958.zbMATHGoogle Scholar
  3. Hauffe, K.: Reaktionen in und an festen Stoffen. Berlin-Göttingen-Heidelberg: Springer 1955.CrossRefGoogle Scholar
  4. Hedvall, J. A.: Einführung in die Festkörperchemie. Braunschweig: Vieweg 1952.Google Scholar
  5. Hund, F.: Theorie des Aufbaues der Materie. Stuttgart: Teubner 1961.zbMATHGoogle Scholar
  6. Jawson, M. A.: The Theory of Cohesion. London: Pergamon Press 1954.Google Scholar
  7. Jones, H.: The Theory of Brillouin Zones and Electronic States in Crystals. Amsterdam, North Holland 1960.Google Scholar
  8. Kittel, C.: Introduction to Solid State Physics. New York: Wiley 1953.zbMATHGoogle Scholar
  9. Lark-Horovitz, K., and V. A. Johnson (Editors): Solid State Physics. New York: Academic Press 1959.Google Scholar
  10. Peierls, R. E.: Quantum Theory of Solids. Oxford: Clarendon Press 1955.zbMATHGoogle Scholar
  11. Sachs, M.: Solid State Theory. New York: McGraw-Hill 1963.Google Scholar
  12. Seitz, F.: The Modern Theory of Solids. New York: McGraw-Hill 1940.zbMATHGoogle Scholar
  13. Slater, J. C.: Quantum Theory of Matter. New York: McGraw-Hill 1951.zbMATHGoogle Scholar
  14. Zwikker, C.: Physical Properties of Solid Materials. London: Pergamon Press 1954.zbMATHGoogle Scholar

Fluid State Physics

  1. Born, M., and H. S. Green: A General Kinetic Theory of Liquids. Cambridge: University Press 1949.zbMATHGoogle Scholar
  2. Darmgis, E.: L’état Liquide. Paris 1943.Google Scholar
  3. Frenkel, J.: Kinetic Theory of Liquids. Oxford: Clarendon Press 1946.zbMATHGoogle Scholar
  4. Green, H. S.: The Molecular Theory of Fluids. Amsterdam: North Holland Publ. Co. 1952.Google Scholar
  5. Hirschfelder, J. O., C. F. Curtiss and R. B. Bird: Molecular Theory of Gases and Liquids. New York: Wiley 1954.zbMATHGoogle Scholar
  6. Lehmann, O.: Die Lehre von den flüssigen Kristallen. Wiesbaden: J. F. Lehmann 1918.Google Scholar

Crystal Structure

  1. Encyclopedia of Physics, Vol. Xxxii: Strukturforschung. Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  2. Bijvoet, J. M., N. H. Kolkmeyer and C. H. Mcgillavry: X-ray Analysis of Crystals. London: Butterworth 1951.zbMATHGoogle Scholar
  3. Bragg, W. H., and W. L. Bragg: The Crystalline State. London: Bell 1933.Google Scholar
  4. Glocker, R.: Materialprüfung mit Röntgenstrahlen. Berlin-Göttingen-Heidelberg: Springer 1949.Google Scholar
  5. Halla, F.: Kristallchemie und Kristallphysik metallischer Werkstoffe. Leipzig: Barth 1957.Google Scholar

Piezoelectricity and Ferroelectricity

  1. Encyclopedia of Physics,Vol. Xvii: Dielektrika. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  2. Böttcher, C. J. F.: Electric Polarization. Amsterdam: Elsevier Publ. Co. 1952.Google Scholar
  3. Fröhlich, H.: Theory of Dielectrics. Oxford: University Press 1949.Google Scholar
  4. Jaynes, E. T.: Ferroelectricity. Princeton: University Press 1953.zbMATHGoogle Scholar
  5. Sachse, H.: Ferroelektrika. Berlin-Göttingen-Heidelberg: Springer 1956.CrossRefGoogle Scholar

Metal Physics

  1. Barrett, C. S.: Structure of Metals. New York: McGraw-Hill 1952.Google Scholar
  2. Boas, W.: An Introduction to the Physics of Metals and Alloys. New York: Wiley 1948.Google Scholar
  3. Brandenberger, E.: Grundriß der Allgemeinen Metallkunde. Basel: Reinhardt 1952.Google Scholar
  4. Cottrell, A. H.: Theoretical Structural Metallurgy. New York: Longman, Green and Co. 1955.Google Scholar
  5. Dehlinger, U.: Theoretische Metallkunde. Berlin-Göttingen-Heidelberg: Springer 1955.CrossRefzbMATHGoogle Scholar
  6. Dehlinger, U.: Chemische Physik der Metalle und Legierungen. Leipzig: Akademische Verlagsgesellschaft 1939.Google Scholar
  7. Hume-Rothery, W., and G. V. Raynor: The Structure of Metals and Alloys. London: The Institute of Metals 1954.Google Scholar
  8. Masing, G.: Lehrbuch der Allgemeinen Metallkunde. 4th Ed. Berlin-GöttingenHeidelberg: Springer 1955.Google Scholar
  9. Mott, N. F., and H. JoNEs: The Theory of the Properties of Metals and Alloys. Oxford: University Press 1936.Google Scholar
  10. Rotherham, L. A.: Creep of Metals. London: Institute of Physics 1951.Google Scholar
  11. Wilson, A. H.: The Theory of Metals. Cambridge: University Press. 2nd Ed. 1953.Google Scholar
  12. Zener, CL.: Elasticity and Anelasticity of Metals. Chicago: University Press 1948.Google Scholar
  13. Crystal Defects Google Scholar
  14. Bueren, H. G. Van: Imperfections in Crystals. 2nd Ed. Amsterdam: North Holland 1962.Google Scholar
  15. Cottrell, A. H.: Dislocations and Plastic Flow in Crystals. Oxford: University Press 1953.zbMATHGoogle Scholar
  16. Read, W. T.: Dislocations in Crystals. New York: McGraw-Hill 1953.zbMATHGoogle Scholar
  17. Seeger, A.: Theorie der Gitterfehlstellen, in Encyclopedia of Physics, Vol. Vii/1: Kristallphysik I. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  18. Shockley, W. (Editor): Imperfections in Nearly Perfect Crystals. New York: Wiley 1952.Google Scholar

Energy Band Structure and Metallic Bond

  1. Encyclopedia of Physics, Vol. Xix: Elektrische Leitungsphänomene I. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  2. Brillouin, L.: Wave Propagation in Periodic Structures. New York: McGraw-Hill 1946.zbMATHGoogle Scholar
  3. Fröhlich, H.: Elektronentheorie der Metalle. Berlin: Springer 1935.Google Scholar
  4. Justi, E.: Leitfähigkeit und Leitungsmechanismus fester Stoffe. Göttingen: Vandenhoeck and Ruprecht 1948.Google Scholar
  5. Raimes, S.: The Wave Mechanics of Electrons in Metals. Amsterdam: North Holland 1961.Google Scholar
  6. Raynor, G. V.: Introduction to the Electron Theory of Metals. London: The Institute of Metals 1947.Google Scholar

Solid-State Magnetism

  1. Becker, R., u. W. DÖRing: Ferromagnetismus. Berlin: Springer 1939.CrossRefGoogle Scholar
  2. Bozorth, R. M.: Ferromagnetism. New York: Van Nostrand 1951.Google Scholar
  3. Kneller, E.: Ferromagnetismus. Berlin: Springer 1962.CrossRefzbMATHGoogle Scholar
  4. Neel, L.: Magnétisme. Strasbourg 1939.Google Scholar
  5. Snoek, J. L.: New Developments in Ferromagnetic Materials. Amsterdam: Elsevier Publ. Co. 1947.Google Scholar

Superconductivity and Superfluidity

  1. Atkins, K. R.: Liquid Helium. New York: Cambridge University Press 1959.zbMATHGoogle Scholar
  2. Keesom, W. H.: Helium. Amsterdam: Elsevier Publ. Co. 1949.Google Scholar
  3. Koppe, H.: Theorie der Supraleitung. Erg. exakt. Naturw. 23 (1950).Google Scholar
  4. Lane, C. T.: Superfluid Physics. New York: McGraw-Hill 1962.zbMATHGoogle Scholar
  5. London, F.: Superfluids. Vol. I. New York: Wiley 1950.Google Scholar
  6. Shoenberg, D.: Superconductivity. Cambridge: University Press 1952.zbMATHGoogle Scholar

Solid-State Diffusion

  1. Barrer, R. M.: Diffusion in and through Solids. Cambridge: University Press 1951.Google Scholar
  2. Jost, W.: Diffusion und chemische Reaktion in festen Stoffen. Dresden u. Leipzig: Steinkopff 1937. Google Scholar
  3. Improved English edition New York: Academic Press 1952.Google Scholar
  4. Seith, W.: Diffusion in Metallen. Berlin-Göttingen-Heidelberg: Springer 1955.CrossRefGoogle Scholar
  5. Shewmon, P. G.: Diffusion in Solids. New York: McGraw-Hill 1963.Google Scholar

Electronic Processes in Ionic Crystals

  1. Angerer, E. v., u. G. Joos: Wissenschaftliche Photographie. 6th Ed. Leipzig: Akademische Verlagsgesellschaft 1956.Google Scholar
  2. James, T. H., and G. C. Higgins: Fundamentals of Photographic Theory. New York: Wiley 1950.Google Scholar
  3. Lidiard, A. B.: Ionic Conductivity, in Encyclopedia of Physics, Vol. XX: Elektrische Leitungsphänomene II. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  4. Mott, N. F., and R. W. Gurney: Electronic Processes in Ionic Crystals. 2nd Ed. Cambridge: Oxford Press 1949.Google Scholar
  5. Schulman, J. H., and W. D. Compton: Color Centers in Solids. London: Pergamon 1962.Google Scholar
  6. Stasiw, O.: Elektronen- und Ionenprozesse in Ionenkristallen. Berlin: Springer 1959.CrossRefGoogle Scholar
  7. Stumpf, H.: Quantentheorie der Ionen-Realkristalle. Berlin: Springer 1961.CrossRefGoogle Scholar

Semiconductivity and Related Phenomena

  1. Biguenet, C.: Les Cathodes Chaudes. Paris 1947.Google Scholar
  2. Bruining, H.: Die Sekundärelektronenemission fester Körper. Berlin: Springer 1942.Google Scholar
  3. Dosse, J.: Der Transistor. 4th Ed. München: Oldenbourg 1962.Google Scholar
  4. Gärtner, W. W.: Einführung in die Theorie des Transistors. Berlin: Springer 1963.CrossRefGoogle Scholar
  5. Garlick, G. F. J.: Photoconductivity, in Encyclopedia of Physics, Vol. Xix: Elektrische Leitungsphänomene I. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  6. Henisch, H. K.: Rectifying Semiconductor Contacts. Oxford: Clarendon Press 1957.Google Scholar
  7. Henisch, H. K. (Editor): Semiconducting Materials. London: Butterworth 1951.Google Scholar
  8. Hermann, G., u. S. Wagener: Die Oxydkathode. 2 vols. 2nd Ed. Leipzig: Barth 1948/50.Google Scholar
  9. Joefé, A. F.: Physik der Halbleiter. Berlin: Akademie-Verlag 1958.Google Scholar
  10. Mad Elung, O.: Halbleiter, in Encyclopedia of Physics, Vol. XX: Elektrische Leitungsphänomene II. Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  11. Moss, T. S.: Photoconductivity in the Elements. London: Butterworth 1952.Google Scholar
  12. Moss, T. S.: Optical Properties of Semiconductors. New York: Academic Press 1959.Google Scholar
  13. Moser, H. A.: Einführung in die Halbleiterphysik. Darmstadt: Steinkopff 1960.CrossRefGoogle Scholar
  14. Salow, H. (Editor): Der Transistor. Berlin: Springer 1963.Google Scholar
  15. Shockley, W.: Electrons and Holes in Semiconductors. New York: Van Nostrand 1950.Google Scholar
  16. Spenke, E.: Electronic Semiconductors. New York: McGraw-Hill 1958.Google Scholar
  17. Strutt, M.: Transistoren. Stuttgart: Hirzel 1953.Google Scholar
  18. Wright, D. A.: Semiconductors. London: Methuen 1950.Google Scholar
  19. Zworykin, V. K., and E. G. Ramberg: Photoelectricity and its Applications. New York: Wiley 1949.Google Scholar

Luminescence of Solids

  1. Bandow, F.: Lumineszenz. Stuttgart: Wissenschaftliche Verlagsgesellschaft 1950.Google Scholar
  2. Förster, TH.: Fluoreszenz organischer Verbindungen. Göttingen: Vandenhoeck and Ruprecht 1951.Google Scholar
  3. Garlick, G. F. J.: Luminescence, in Encyclopedia of Physics, Vol. Xxvi. Berlin: Springer 1957.Google Scholar
  4. Leverenz, H. W.: Introduction to the Luminescence of Solids. New York: Wiley 1950.Google Scholar
  5. Matossi, F.: Elektrolumineszenz und Elektrophotolumineszenz. Braunschweig: Vieweg 1957.CrossRefGoogle Scholar
  6. Pringsheim, P., and M. Vogel: Luminescence of Liquids and Solids. New York: Interscience 1946.Google Scholar
  7. Przibam, K.: Verfärbung und Lumineszenz. Wien: Springer 1953.Google Scholar
  8. Riehl, N.: Physikalische und Technische Anwendungen der Lumineszenz. Berlin: Springer 1941.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1964

Authors and Affiliations

  • Wolfgang Finkelnburg
    • 1
  1. 1.University of Erlangen-NurembergErlangenGermany

Personalised recommendations