Advertisement

COMPAMM — A Program for the Dynamic Analysis of Multi-Rigid-Body Systems

  • J. Unda
  • A. Avello
  • J. M. Jimenez
  • J. García de Jalón
Conference paper

Abstract

Many mechanical systems can be effectively modelled by systems of interconnected rigid bodies. The dynamic analysis of such systems can be done by analytical or numerical methods. The analytical me thods as those described for three-dimensional systems by Duffy (1980), have considerably extended the field of application in the last few years, bat the theoretical and practical difficulties are so great that the only alternative to general analysis are the numerical methods. These methods have opened up the possibility of developing general purpose computer programs, like the well known IMP, ADAMS and DADS-3D packages, described by Sheth et al. (1972), Orlandea et al. (1977) and Wehage et al. (1982), respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AERE Harwell (1981). Harwell Subroutine Library. AERE Harwell. Oxfordshire. U.K.Google Scholar
  2. Avello, A., Unda, J. and García de Jalón, J. (1984). Analisis Dinámico de Mecanismos Tridimensionales en Coordenadas Naturales. Proceedings of the III Congreso Nacional de Ingenieria Mecánica, Gijón, Spain.Google Scholar
  3. Duffy, J. (1980). Analysis of Mechanisms and Robot Manipulators. Edward Arnold.Google Scholar
  4. Forsythe, G.E., Malcolm, M.A. and Moler, C.B. (1977). Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs, New Jersey.zbMATHGoogle Scholar
  5. García de Jalón, J., Serna, M.A. and Avilés, R. (1981). Computer Method for Kinematic Analysis of Lower-Pair Mechanisms — Part I Velocities and Accelerations. Part II Position Problem. Mechanism and Machine Theory, 16, 543–566.CrossRefGoogle Scholar
  6. García de Jalón, J. and Unda, J. (1983). Kinematic Analysis of Lower-Pair Planar Mechanisms in Basic Coordiantes. Proceeding of the VIth IFToMM World Congress on the Theory of Machines and Mechanisms, New Delhi, 183–186.Google Scholar
  7. Gear, C.W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, New Jersey.zbMATHGoogle Scholar
  8. Orlandea, N., Chace, M.A. and Calahan, D.A. (1977) A Sparsity Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems-Part I and Part 2, Journal of Engineering for Indus try, 773–784.Google Scholar
  9. Serna, M.A., Avilés, R. and García de Jalón, J. (1982). Dynamic Analysis of Plane Mechanisms with Lower Pairs in Basic Coordinates. Mechanism and Machine Theory, 17, 397–403.CrossRefGoogle Scholar
  10. Sheth, P.N. and Uicker, J.J. (1972) IMP (Integrated Mechanisms Program) ; A Computer-Aided Design Analysis System for Mechanisms and Linkages, Journal of Engineering for Industry, 454–464.Google Scholar
  11. Unda, J., Gimenez, J.G. and García de Jalón, J., (1983). Computer Simulation of the Dynamic Behaviour of Vehicles, in: J. K. Hedrick, ed., The Dynamics of Vehicles on Roads and on Railway Tracks, (Swets & Zeitlinger, Lisse, 1984)Google Scholar
  12. Unda, J. and García de Jalón, J. (1983). Dynamic Analysis of Lower-Pair Planar Mechanisms in Basic Coordinates. Proceeding of the VIth IFToMM World Congress on the Theory of Machines and Mechanisms, New Delhi, 391–395.Google Scholar
  13. Villalonga, G., Unda, J. and García de Jalón, J., (1984). Numerical Kinematic Analysis of Three-Dimensional Mechanisms Using a “Natural” System of Lagrangian Coordinates, ASME Paper 84-DET199.Google Scholar
  14. Wehage, R.A. and Haug, E.J., (1982). Dynamic Analysis of Mechanical Systems with Intermittent Motion, Journal of Mechanical Design, 778–784.Google Scholar
  15. Wehage, R.A., and Haug, E.J., (1982). Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems, Journal of Mechanical Design, 247–255.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. Unda
    • 1
    • 2
  • A. Avello
    • 1
    • 2
  • J. M. Jimenez
    • 1
    • 2
  • J. García de Jalón
    • 1
    • 2
  1. 1.Department of Applied MechanicsUniversity of NavarraSan SebastiánSpain
  2. 2.Centro de Estudios e Investigaciones Tecnicas de GuipuzcoaSpain

Personalised recommendations