Advertisement

Multiextremal (GLOBAL) Optimization Algorithms for Engineering Applications

  • J. Pintér
  • J. Szabó
Conference paper

Abstract

In the course of engineering design and modelling, one often has to determine a number of parameters “optimally” . As examples from the field of water resources management , planning and operation of reservoir systems or water quality treatment plants ,calibration of di f f erent descriptive models , hydrologic time-series analysis etc. can be mentioned.As a rule, the optimality criterion is expressed by some specified objective function, while the feasible damain for parameter selection is usually given by a number of constraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archetti, F. (1980) “Analysis of stochastic strategies for the numerical solution of the global optimiz ation problem” , in: Archetti, F. and Cugiani, M. (eds . ) , Numerical Techniques for Stochastic Systems (North Holland, Amsterdam) , pp. 275–295.Google Scholar
  2. Boender, C.G., Rinnooy Kan, A.H.G., Stougie, L. and Timmer, G.T. (1982 ) “A stochastic method for global optimi zation” , Mathematical Programming 22 , 125–140.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Dixon, L.C.W. and Szegö, G.P. (eds . ) (1975 , 1978) Towards Global Optimization, Vol. 1–2 . (North-Holland, Amsterdam ) .Google Scholar
  4. Pintér, J. (1983) “A unified approach to globally∞ invergent one-dimensional optimization algorithms”, Technical report IAMI-83.5 , Istituto per le Applicazioni della Matematica e dell’Informatica CNR, Milan.Google Scholar
  5. Pintér, J. (l984a) “Convergence properties of stochastic optimization procedures” , Mathematische Operations fors chung und Statistik, Series Optimiz ation 14 , 405 - 427.CrossRefGoogle Scholar
  6. Pintér, J. (1984b ) “Globally convergent methods for n-dimensional multiextremal optimiz ation” ,Mathematis che Operations fors chung und Statistik, Series Optimi z ation (to appear) .Google Scholar
  7. Shubert, B.O. (1972) “A sequential method seeking the global maximum of a function” , SIAM Journal on Numerical Analysis 9, 379–388.CrossRefzbMATHMathSciNetGoogle Scholar
  8. Somlyódy, L. (1982 ) “Water quality modelling: a comparison of transport-oriented and ecology-oriented approaches” , Ecological Modelling 17 , 183–207.CrossRefGoogle Scholar
  9. Strongin, R.G. (1978) Numerical methods for multiextremal problems (in Russian) , (Nauka, Moscow) .Google Scholar
  10. Szöllösi-Nagy, A. (1982 ) “On the discretization of the continuous linear cascade by means of the state-space analysis” , Journal of Hydrology 58, 223–236.CrossRefGoogle Scholar
  11. Zilinskas, A. (1982 ) “Axiomatic approach to statistical models and their use in multimodal optimi z ation theory” , Mathematical Programming 22 , 104–116.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. Pintér
    • 1
  • J. Szabó
    • 1
  1. 1.Research Centre for Water Resources Development (VITUKI)BudapestHungary

Personalised recommendations