A Computer Program for Large Eigenvalue Problems in Dynamic Analysis

  • A. Vale e Azevedo
Conference paper


This paper describes an effi ci ent impl ementati on of the Subspace I terati on method to cal cul ate the ei genval ues and eigenvectors of structures with a large number of degrees of free dom.

A careful study has been made to optimize the use of computer central memory, minimizing the input/output operations, and to minimize the number of arithmetical operations.

The computer program has the possibility of generating automatically the starting i terati on vectors or, otherwise, the user can choose a manual selection.

The overrelaxation of the iteration vectors to accelerate the convergence is included with a detailed study on the choice of the overrelaxation factors.

The Sturm sequence property, to verify if the required eigenvalues and eigenvectors have been calculated, is also implemented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    - Bathe, K.J. (1971 )“Solution Methods for Large Generalized Eigenvalues Problems in Structural Engineering”. University of California, Berkeley, California.Google Scholar
  2. 2.
    - Bathe, K.J. and Wilson, E.L. (1976)“Numerical Methods in Finite Element Analysis”. Prentice-Hall , Inc. , Englewood Cliffs, New Jersey.zbMATHGoogle Scholar
  3. 3.
    - Bathe, K.J. and Wilson, E.L. (1972)“Large Eigenvalue Problems in Dynamic Analysis”. ASCE, Mechanics Division.Google Scholar
  4. 4.
    - Bathe, K.J. and Ramaswany, S. (1980 )“An Accelerated Subs pace I terati on Method”. Computer Methods in Applied Mechanics and Engineering 23.Google Scholar
  5. 5.
    - Bathe, K.J. (1977 )“Convergence of Subspace Iterati on” . in K.J. Bathe, J.T. Oden and W. Wunderlich (eds.), Formulations and Numerical Algorit hms in Finite Element Analysis ( MIT Press, Cambridge , MA ).Google Scholar
  6. 6.
    - Bathe, K.J. and Ramaswamy, S. (1977)“Subspace Iteration with Shifting for Solution of Large Eigensystems”. Report AVL 82448 - 7 (Dept. Mech. Eng. MIT, Cambridge, MA).Google Scholar
  7. 7.
    - Chee Hoong Loh (1984)“Chebyshev Filtering and Lanczos Pro cess in the Subspace Iteration Method”. — Int. Journal Numerical Methods in Engineering , Vol . 20, no 1 , Jan.Google Scholar
  8. 8.
    - Clough, R.W. and Penzien, J. (1975)“Dynamics of Structures”. Mc Graw -Hill Inc.zbMATHGoogle Scholar
  9. 9.
    - Gere, J.M. and Weaver, W. Jr. (1965)“Matrix Algebra for Engineers”. Van Nostram Reinhold Company.Google Scholar
  10. 10.
    - Meirovitch, L. and Baruth, H. (1981 )“On the Cholesky Algorithm with Shifts for the Eigensolution of Real Symmetric Matrices”. International Journal for Numerical Methods in Engineering, Vol - 17, 923 - 930.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    - Mills, A.B. and Wood, L.A. (198l )“Cray - 1 : A powerful De livery System for Engineering Software”. Advanced Engineeriong Software , Vol . 3, no 2.Google Scholar
  12. 12.
    - Paige, C.C. (1972)“Computational Variants of the Lanczos Method for the EigenProblem”. J. Inst. Math Appl. 10, 373–381.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    - Schwarz, H.R. (1974)“The Eigenvalue Problem (A- λB) X =0 for Symmetric Matrices of High Order”. Computer Methods in Applied Mechanics and Engineering 3.Google Scholar
  14. 14.
    - Soriano, H.L. (1981 )“Sistemas de Equações Algébricas Lineares em Problemas Estruturais” . Seminario 280, LNEC.Google Scholar
  15. 15.
    - Soriano, H.L. (1982 )“Reduction of Degrees of Freedom at Substructural Level in Dynamics”. Uni versi ty Of Southampton.Google Scholar
  16. 16.
    - Soriano, H.L. and Azevedo, A.V. (1982)“Implementação do Método de Iteração por Subespaços utilizando Mem6ria Auxiliar de Computador”. Revista Protuguesa de Engenharia de Estruturas, R. P. E. E. , nọl4, Ano IV.Google Scholar
  17. 17.
    - Wilkinson, J.M. (1965)“The Algebraic Eigenvalue Problem”. Clarendon Press, Oxford.zbMATHGoogle Scholar
  18. 18.
    - Wilson, E.L. (1978)“Numerical Methods for Dynamic Analysis”. Numerical Methods in Offshore Engineering , John Wiley & Sons.Google Scholar
  19. 19.
    - Yamamoto, Y. and Ohtsubo, H. (1976)“Subspace Iteration Acceleration by Using Chebyshev Polynomials for Eigenvalue Problems with Symmetric Matrices”. Int. J. Numer. Meths. Eng. 10, 935–944.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • A. Vale e Azevedo
    • 1
  1. 1.LNEC - National Laboratory of Civil EngineeringLisbonPortugal

Personalised recommendations