Advertisement

The Fundamentals of the Space-Time Finite Element Method

  • M. Witkowski
Conference paper

Abstract

The problems of structural dynamics, described by partial differential equations, are usually solved in two phases. Firstly the partial equations system becomes the ordinary differential equations as a result of introducing the generalized coordinates g(t), that are the time functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argyris, J.H., Chan, A.S.L. (1972) Applications of Fi nite Elements in Space and Time, Ing.Archiv, 41, p.235–257.CrossRefzbMATHGoogle Scholar
  2. 2.
    Argyris, J. H. , Scharpf, D.W. ( 1969 ) Finite Elements in Time and Space, Aero. J. of the RAS, 73, p. 1041 -1044.Google Scholar
  3. 3.
    Biot, M.A. (1959) New Thermoelastical Reciprocity Relations with Application to Thermal Stresses, J.Aero/Space Sciences, 26. p.401–408.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Kacprzyk, Z. , Lewiński, T. (1983) Comparison of some Numerical Integration Methods for the Equations of Motion of System with a Finite Number of Degrees of Fre, edom Engineering Transactions, 31 , 2, p.213–240.zbMATHGoogle Scholar
  5. 5.
    Kączkowski, Z. ( 1975) The Method of Finite Space-Time Elements in Dynamics of Structures, J.Techn.Phys. , 16, 1 , p.69–84.Google Scholar
  6. 6.
    Kączkowski, Z. ( 1979) General Formulation of the Stiffness Matrix for the Space-Time Finite Elements, Arch.In ynierii Ladowej, 25, 3, p.351–357.Google Scholar
  7. 7.
    Kączkowski, Z. (1982) On Variational Principles in Thermoelasticity, Bull. de lAcad.Pol. des Scientes, Appl.Mech. , 30, 5–6, p.81–86.Google Scholar
  8. 8.
    Oden, J.T. (1969) A General Theory of Finite Elements. II. Applications, Int.J.Num.Meth.Eng. , 1 , 3, p.247–259.CrossRefzbMATHGoogle Scholar
  9. 9.
    Washizu, K. (1974) Variational Methods in Elasticity and Plasticity, Pergamon Press, Inc. , Elmsford, N.Y.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • M. Witkowski
    • 1
  1. 1.Technical University of WarsawPoland

Personalised recommendations