A Least-Squares Algorithm for Interframe Displacement Estimation. Application to Stereo Vision.

  • Luis Pastor
  • Jose Maria Sebastian
Conference paper


Compared to 2D vision systems, 3D vision systems are at a very early stage in their development. Nevertheless, 3D information is required for many artificial vision applications, e. g., picking parts from bins (Kelley et al, 1982), complex robot assembly tasks, or guiding a rover to sort obstacles ( Moravec, 1980).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballard, D. M; Brown, C. M. (1982). Computer vision, Prentice Hall.Google Scholar
  2. 2.
    Cafforio, C. ; Rocca (1976). Methods for measuring small displacements, of television images. IEEE Trans. on Inf. Theo. vol IT 22, n-5, Sept. 76.CrossRefGoogle Scholar
  3. 3.
    Corrales Gonzalez, J.A. (1981). Un modelo estereoscópico desistemavisual para robots. Tesis Doctoral, Univ. de Zaragoza.Google Scholar
  4. 4.
    Faugeras et al. (1984). Polyhedral approxima tion of 3-D objects with holes. Computer Vision, Graphics and Image Processing 25 n-2, Feb. 1984.Google Scholar
  5. 5.
    Horn, B.K.P.; Schunck, B.G. (1981). Determining optical flow. Artificial Intelligence vol-17, May 1981.Google Scholar
  6. 6.
    Huang, T. S.; Tsai, R.Y. (1981) Image sequence analysis. In Huang, T. S. Ed. Image sequence analysis Springer-Verlag.CrossRefGoogle Scholar
  7. 7.
    Jarvis ,R.A. (1983). A perspective on range finding techniques for computer vision. IEEE Trans. on Patt. Anal. and Mach. Intel ., vol PAMI-5 n-2, March 1983.Google Scholar
  8. 8.
    Kelley, R. B. et al. (1982). A robot system which acquires cylindrical workpieces from bins. IEEE Trans. on Syst., Man and Cyb. vol-SMC-12, N. 2 March 1982 pp-204–213.Google Scholar
  9. 9.
    Limb, J.O.; Murphy, J.A. (1975). Estimating the velocity of moving images in television signals. Computer Graphics and Image Processing, Vol . 4 n-4 Dec. 1975.Google Scholar
  10. 10.
    Moravec, H. (1980). Obstacle avoidance and navigation in the real world by a seeing rob o t rover. Phd Thesis, Comp. Sci. Dep., Stanford Univ. Sept. 1980.Google Scholar
  11. 11.
    Nagel, H. H. (1978). Analysi s techniques for image sequences. Proc 4th Int. Joint. Conf. on Pattern Recognition, Nov 1978.Google Scholar
  12. 12.
    Nagel, H.H. (1982). Recent advances in motion estimation based on image sequences. IEEE Int. Conf. on Acoustics, Speech and Signal Proc. Paris, May 3–5, 1982.Google Scholar
  13. 13.
    Pastor, L. (1984). Estimación de velocidad en secuencias de imágenes. Aplicacióna la segmentación. 2 . Simp. Nac. IFAC sobre Automática en la Industria. Zaragoza, 14–16 Nov. 1984.Google Scholar
  14. 14.
    Pugh, A. (1983). Editor. Robot Vision. IFS publ.,CrossRefGoogle Scholar
  15. 15.
    Sorenson, H.W. (1980) Parameter estimation. Marcel Dekker.zbMATHGoogle Scholar
  16. 16.
    Tretiak, O.; Pastor, L. (1984). Velocity estimation from image sequences with second order differential operators. 7th Int. Conf. on Pattern Recognition . July 3th. August 2d 1984. Montreal, Canada.Google Scholar
  17. 17.
    Wohn, K. et al. (1983) Motion estimation based on multiple local constraints and nonlinear smoothing. Pattern Recognition, Vol-16,n-6.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Luis Pastor
    • 1
  • Jose Maria Sebastian
    • 1
  1. 1.Departamento de Autoḿatica E. T. S. I. IndustrialesUniversidad Politécnica de MadridSpain

Personalised recommendations