Genericity in Expert Process Planning Systems

  • Jean Patrick Tsang


From an AI point of view, process planning is a typical planning problem that can be formulated as follows: given the initial state which is the raw material, the goal state which is the manufactured part, the repertory of permissible actions (operations) and the available resources (machines, tools,...), the problem is to determine the sequence of actions (process plan) which enables the goal state to be reached starting from the initial state. The fact that the process planning know-how required is typically ill-defined and intuitive explains why the expert system paradigm is so well suited to automate such a process. However, process planning being a vast collection of problem areas (e.g. machining, assembly, moulding, forging,..) and subareas (e.g. prismatic parts, rotational parts, sheet metal parts,... for the machining area), situations where different problem areas/subareas involving slightly different problem-solving methodologies would require distinct traditional expert systems. Generic expert systems may spare us this wasteful duplication of efforts by encompassing a broader scope of problem areas. We are presently developing a generic process planning expert system XPS-E whose scope includes subareas of machining and assembly. It is based on experience gained from GARI, a prismatic parts process planning expert system. In this paper, we describe a generic structure for internal representation and manipulation of process plans which confers a high degree of domain parametrizability to the system built around it.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    CAM-I: “Results of CAPP Users Survey” (Report R-79-PPP-01, CAM-I Inc, Arlington, Texas, 1979)Google Scholar
  2. [2]
    CAM-I: “Detailed Conceptual Design of an Experimental Planning System, XPS-l” (Report R-82-PPP-02 Vol 1 & 2, CAM-I Inc, Arlington, Texas 1982)Google Scholar
  3. [3]
    CAM-I: “XPS-E: An Expert System for Process Planning” (Reports R-84-PPP-03, CAM-I Inc, Arlington, Texas, Aug 1984 and R-85-PPP-02, CAM-I Inc, Arlington, Texas, Jul 1985)Google Scholar
  4. [4]
    I Darbyshire, B J Davies: “EXCAP: An Expert Generative Process Planning System” (UMIST 1984)Google Scholar
  5. [5]
    Y Descottes: “Représentation et exploitation de connaissances expertes en génération de plans d’actions — Application à la conception automatique de gammes d’usinage” (Thèse de 3eme cycle, INPG, Grenoble 1981)Google Scholar
  6. [6]
    Y Descottes, J C Latombe: “Compromising among antagonist constraints in a planner” (Report. RR417, IMAG, Grenoble 1984)Google Scholar
  7. [7]
    T El Milany: “Interactive Computer Assisted System for Turning Parts” (PhD Thesis, UMIST 1979)Google Scholar
  8. [8]
    H Eskicioglu, B J Davies: “An Interactive Planning System for Prismatic Parts” (Annals of the CIRP, Vol 32 1983)Google Scholar
  9. [9]
    W Eversheim, H Fuchs: “Integrated Generation of Drawings, Process Plans and NC-Tapes” (CASA-SME, Technical Paper, MS 79–1978)Google Scholar
  10. [10]
    W Eversheim et al:Automatische Arbeitsplan- und NC-Lochstreifenerstellung fur B’lechteile” (Industrie-Anzeiger 102 Jg Nr 1, 1980)Google Scholar
  11. [11]
    R E Fikes, N J Nilsson: “STRIPS: a new approach to the application of theorem proving to problem solving” (AI Handbook 2, 1971)Google Scholar
  12. [12]
    F Fricke: “Beitrag zur Automatisierung der Arbeitsplaung unter besonderer Berucksichtigung der Fertigung von Drehwerskucken” (Dissertation TU Berlin, 1974)Google Scholar
  13. [13]
    T Gongaware et al: “Application of Automated Process Planning to Electronics Manufacturing” (proc CAM-I’s 12th annual meeting and technical conference, Dallas, Texas, Nov 1983)Google Scholar
  14. [14]
    W Hoheisel: “Rechnerunterstutzte Arbeitsplanerstallung fur die spanende Bearbeitung von Teilen (SISPA) Unterlagen zum VDI-IPA-Seminar” (Zukunftsorientierte Formen der Fertigungs- und Montageplanerstellung, Stuggart, Mai 1982)Google Scholar
  15. [15]
    W Hoheisel: “Rechnerunterstutzte Arbeitsplanerstellung mit Kleinerechnern, dargestellt am Beispiel der Blechbearbeitung” (Forschung und Praxis 45, Springer-Verlag, 1981)CrossRefGoogle Scholar
  16. [16]
    Y Lagoude, J P Tsang: “A Plan Representation Structure for Expert Planning Systems” (ASME Symposium on Computer Aided Process Planning, Miami Beach, Florida, Nov 1985)Google Scholar
  17. [17]
    D Liu: “Utilization of Artificial Intelligence in Manufacturing” (proc CAM-I’s 13th annual meeting and technical conference, Clearwater Beach, Florida, Nov 1984)Google Scholar
  18. [18]
    W Lorenz: “Rechnerunterstutzte Arbeitsplanerstellung mit APLAN” (ZwF 76 (1981), 3)Google Scholar
  19. [19]
    K Matsushima, N Okada, T Sata: “The integration of CAD and CAM by application of Artificial Intelligence Techniques” (Annals of the CIRP, Vol 31, Nol, 1982)Google Scholar
  20. [20]
    E D Sacerdoti: “A Structure for Plans and Behavior” (Technical Note 109, AI Center, SRI-International, 1975)Google Scholar
  21. [21]
    H K Tonshoff et al: “DREKAL — Ein System Zur Automatischen Arbeitsplannerstellung, Teil 1 und 2” (Arbeitsvorbereitung, 18 Jg 1981, Nr 3/4)Google Scholar
  22. [22]
    J Tulkoff: “Applying GT for Automated Process Planning” (proc CAM-I’s 12th annual meeting and technical conference, Dallas, Texas, Nov 1983)Google Scholar
  23. [23]
    J P Tsang: “Representation and Manipulation of Process Plans in Generic Expert Planning Systems” (9th German Workshop on Artificial Intelligence, Dassel/Solling, Sep 1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Jean Patrick Tsang
    • 1
  1. 1.LIFIA (MAG)Saint Martin d’HèresFrance

Personalised recommendations