Advertisement

Aminopeptidases, Occurrence, Regulation and Nomenclature

  • Allen Taylor
Chapter
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Aminopeptidases (AP) catalyze the hydrolysis of amino acid residues from the amino terminus of peptide substrates. These enzymes generally have broad specificity, occur in several forms, and are widely distributed throughout the plant and animals kingdoms. Over 100 APs have been purified and/or studied, and over 50 genes have been cloned and characterized. Several forms of these enzymes have been found in many tissues or cells, on cell surfaces, and in soluble cytoplasmic or secreted forms in plants and animals1–7 (see chapters 2–8). In some cells they constitute a substantial proportion of enzyme protein.4,8,9

Keywords

Leucine Aminopeptidase Aminopeptidase Activity Bovine Lens pepC Gene Methionine Aminopeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McDonald JK, Barrett AJ. A brief history of the study of mammalian exopeptidases. In: McDonald JK, Barrett AJ, eds. Mammalian Proteases. Vol. 2. New York: Academic Press, 1986.Google Scholar
  2. 2.
    Taylor A, Surgenor T, Thomson DKR et al. Comparison of (concentration and amino acid sequence homology between) leucine aminopeptidase in human lens, beef lens, beef kidney, hog lens, and hog kidney. Exp Eye Res 1984; 38: 217–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Ledeme N, Vincent-Fiquet O, Hennon G et al. Human liver 1-leucine aminopeptidase: Evidence for 2 forms compared to pig liver enzyme. Biochimie 1983; 65: 397–404.PubMedCrossRefGoogle Scholar
  4. 4.
    Watt VM, Yip CC. Amino acid sequence deduced from a rat kidney cDNA suggests it encodes the Zn2+-peptidase aminopeptidase N. J Biol Chem 1989; 264: 5480–7.Google Scholar
  5. 5.
    Stirling VJ, Colloms SD, Collins JF et al. xerB, an Escherichia coli gene required for plasmid ColEl site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 1989; 8: 1623–7.PubMedGoogle Scholar
  6. 6.
    Ahmad S, Ward PE. Role of aminopeptidase activity of circulating angiotensins. J Pharmacol Exp Ther 1990; 252: 643–50.PubMedGoogle Scholar
  7. 7.
    Chang Y-H, Smith JA. Molecular cloning and sequencing of genomic DNA encoding aminopeptidase I from Saccharomyces cerevisiae. J Biol Chem 1989; 264: 6979–83.PubMedGoogle Scholar
  8. 8.
    Taylor A, Daims MA, Lee J et al. Identification and quantification of inactive leucine aminopeptidase in aged normal and cataractous human lenses and ability of bovine lens LAP to cleave bovine crystallins. Curr Eye Res 1982; 2: 47–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Taylor A, Brown MJ, Daims MA et al. Localization of leucine aminopeptidase in hog lenses using immunofluorescence and activity assays. Invest Ophthalmol Vis Sci 1983; 24: 1172–81.PubMedGoogle Scholar
  10. 10.
    Moerschell RP, Hosokawa Y, Tsunawa S et al. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. J Biol Chem 1990; 265: 19638–43.PubMedGoogle Scholar
  11. 11.
    Botbol V, Scornik OA. Measurement of instant rates of protein degradation in the livers of intact mice by the accumulation of bestatin-induced peptides. J Biol Chem 1991; 266: 2151–7.PubMedGoogle Scholar
  12. 12.
    Bachmair A, Finley D, Varshaysky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 1986; 234: 179–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor A, Dorey CK, Jacques PF. Oxidation and aging: impact on vision. In: Williams G, ed. Proc Int Conf on Antioxidants, vol. 8. Princeton, NJ: Princeton Scientific Press, 1993: 349–371.Google Scholar
  14. 14.
    Dice JF. Cellular and molecular mechanisms of aging. Phys Rev 1993; 73: 149–159.CrossRefGoogle Scholar
  15. 15.
    Zuo S, Guo Q, Ling C et al. Evidence that two zinc fingers in the methionine aminopeptidase from Saccharomyces cerevisiae are important for normal growth. Mol Gen Genet 1995; 246: 247–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Umezawa H, Ishizuka M, Aoyagi T et al. Enhancement of delayed-type hypersensitivity by bestatin, an inhibitor of aminopeptidase B and leucine aminopeptidase. J Antibiot 1976; 29: 857–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Nishizawa R, Saino T, Takita T et al. Synthesis and structure-activity relationships of bestatin analogues, inhibitors of aminopeptidase B. J Med Chem 1977; 20: 510–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Aoyagi T. Small molecular protease inhibitors and their biological effects. In: Kleinkauf H, Dohren H, eds. Biochemistry of Peptide Antibiotics. Berlin, New York: Walter de Greyter, 1990: 311–63.Google Scholar
  19. 19.
    Taylor A, Davies KJA. Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radic Biol Med 1987; 3: 371–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor A. Aminopeptidases: toward a mechanism of action. TIBS 1993; 18: 167–72.PubMedGoogle Scholar
  21. 21.
    Taylor A. Aminopeptidases: structure and function. FASEB J 1993; 7: 290–8.PubMedGoogle Scholar
  22. 22.
    Enzyme Nomenclature. New York: Academic Press, 1978.Google Scholar
  23. 23.
    Taylor A, Tisdell FE, Carpenter FH. Leucine aminopeptidase (bovine lens): synthesis and kinetic properties of ortho, meta, and para substituted leucyl-anilides. Arch Biochem Biophys 1981; 210: 90–7.PubMedCrossRefGoogle Scholar
  24. .Sanderink G-J, Artur Y, Seist G. Human aminopeptidases: a review of the literature. J Clin Chem Cli Biochem 1988; 26: 795–807.Google Scholar
  25. 25.
    Lin W-Y, Van Wart HE. Steady-state kinetics of hydrolysis of dansyl-peptide substrates by leucine aminopeptidase. Biochemistry 1988; 27: 5062–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Patterson EK. Inhibition by bestatin of a mouse ascites tumor dipeptidase. J Biol Chem 1989; 264: 8004–11.PubMedGoogle Scholar
  27. 27.
    Asano Y, Nakazawa A, Kato Y et al. Properties of a novel D-stereospecific aminopeptidase from Ochrobactrum anthropi. J Biol Chem 1989; 264: 14233–39.PubMedGoogle Scholar
  28. 28.
    Squire CR, Talebian M, Menon JG et al. Leucine aminopeptidaselike activity in Aplysia hemolymph rapidly degrades biologically active alpha-bag cell peptide fragments. J Biol Chem 1991; 266: 22355–63.PubMedGoogle Scholar
  29. 29.
    Gonzales T, Robert-Baudouy J. Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 1996, in press.Google Scholar
  30. 30.
    Turner AJ. Structural and immulological studies of GPI-anchored brush border hydrolases. Brazilian J Med Biol Res 1994; 27: 389–94.Google Scholar
  31. 31.
    Rich DH, Moon BJ, Harbeson S. Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes. J Med Chem 1984; 27: 417–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Strater N, Lipscomb WN. Transition state analogue L-leucinephosphonic acid bound to bovine lens leucine aminopeptidase: X-ray structure at 1.65 A resolution in a new crystal form. Biochemistry 1995; 34: 9200–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Malfroy B, Kado-Fong H, Gros C et al. Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: a member of a super family of zinc-metallohydrolases. Biochem Biophys Res 1989; Commun 161: 236–41.Google Scholar
  34. 34.
    Wallner BP, Hession C, Tizard R et al. Isolation of bovine kidney leucine aminopeptidase cDNA: Comparison with the lens enzyme and tissue-specific expression of two mRNAs. Biochemistry 1993; 32: 9296–301.PubMedCrossRefGoogle Scholar
  35. 35.
    Rawlings ND, Barrett AJ. Evolutionary families of metallopeptidases. Methods Enzymol 1995; 248: 183–228.PubMedCrossRefGoogle Scholar
  36. 36.
    Shibata K-L, Watanabe T. Purification and characterization of an aminopeptidase from Mycoplasma salivarium. J Bacteriol 1987; 169: 3409–13.PubMedGoogle Scholar
  37. 37.
    Stoll E, Ericsson LH, Zuber H. The function of the two subunits of thermophilic aminopeptidase I. Proc Natl Acad Sci USA 1973; 70: 3781–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Stoll E, Hermodson MA, Ericsson LH et al. Subunit structure of the thermophilic aminopeptidase I from Bacillus stearothermophilus. Biochemistry 1972; 11: 4731–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Guenet C, Lepage P, Harris BA. Isolation of the leucine aminopeptidase gene from Aeromonas proteolytica. J Biol Chem 1992; 267: 8390–5.PubMedGoogle Scholar
  40. 40.
    Matsushima M, Takahashi T, Ichinose M et al. Purification and characterization of prolyl aminopeptidases from pig intestinal mucosa and human liver. Structural, immunological and enzymatic evidence for identity with leucyl aminopeptidase. Biochem Biophys Res Commun 1991; 178: 1459–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Turzynski A, Mentlein R. Prolyl aminopeptidase from rat brain and kidney. Eur J Biochem 1990; 190: 509–15.PubMedCrossRefGoogle Scholar
  42. 42.
    Gibson AM, Biggins JA, Lauffart B et al. Human brain leucyl aminopeptidase: isolation, characterization, and specificity against some neuropeptides. Neuropeptides 1991; 19: 163–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Ball LA, Kaesberg P. Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro. J Mol Biol 1973; 79: 531–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Hausman MS, Snyderman R, Mergenhagen SE. Humoral mediators of chemotaxis of mononuclear leukocytes. J Infect Dis 1972; 125: 595–602.PubMedCrossRefGoogle Scholar
  45. 45.
    Takeda M, Webster RE. Protein chain initiation and deformylation in B. subtilis homogenates. Proc Nat Acad Sci USA 1968; 60: 1487–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Tsunasawa S. Amino-terminal processing of nascent proteins: their role and implication on biological function. [Review] Tanpakushitsu Kakusan Koso—Protein, Nucleic Acid, Enzyme. 1995; 40: 389–98.Google Scholar
  47. 47.
    Wilcox C, Hu J-S, Olson EN. Acylation of proteins with myristic acid occurs cotranslationally. Science 1987; 238: 1275–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Ben-Basset A, Bauer K, Chang S-Y et al. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 1987; 169: 751–757.Google Scholar
  49. 49.
    Miller CG, Strauch KL, Kukral AM et al. N-terminal methioninespecific peptidase in Salmonella typhimurium. Proc Natl Acad Sci USA 1987; 84: 2718–22.PubMedCrossRefGoogle Scholar
  50. 50.
    Miller CG, Kukral AM, Miller JL et al. PepM is an essential gene in salmonella typhimurium. J Bacteriol 1989; 171: 5215–17.PubMedGoogle Scholar
  51. 51.
    Takahashi S-I, Ohishi Y, Kato H et al. The effects of bestatin, a microbial aminopeptidase inhibitor, on epidermal growth factor-induced DNA synthesis and cell division in primary cultured hepatocytes of rats. Exp Cell Res 1989; 183: 399–412.PubMedCrossRefGoogle Scholar
  52. 52.
    Reeve CA, Bockman AT, Martin A. Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella typhimurium. J Bacteriol 1984; 157: 758–63.PubMedGoogle Scholar
  53. 53.
    Charlier D, Hassanzadeh G, Kholti A et al. carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of Co 1E1 multimers. J Mol Biol 1995; 250: 392–406.PubMedCrossRefGoogle Scholar
  54. 54.
    Chang YH, Teichert U, Smith JA. Molecular cloning, sequencing, deletion, and overexpression of a methionine aminopeptidase gene from Saccharomyces cerevisiae. J Biol Chem 1992; 267: 8007–11.PubMedGoogle Scholar
  55. 55.
    Cueva R, Garcia-Alvarez N, Suarez-Rendueles P. Yeast vacuolar aminopeptidase yscl isolation and regulation of the APEI (LAP4) structural gene. FEBS Lett. 1989; 259: 125–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Enenkel C, Wolf DH. BLH1 codes for a yeast thiol aminopeptidase, the equivalent of mammalian bleomycin hydrolase. J Biol Chem 1993; 268: 7036–43.PubMedGoogle Scholar
  57. 57.
    Ishizuka M, Masuda T, Kanbayashi N et al. Effect of bestatin on mouse immune system and experimental murine tumors. J Antibiot 1980; 33: 642–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Muller WEG, Zahn RK, Arendes J et al. Activation of DNA metabolism in T-cells by bestatin. Biochem Pharmacol 1979; 28: 3131–37.PubMedCrossRefGoogle Scholar
  59. 59.
    Muller WEG, Zahn RK, Maidhof A et al. Bestatin, a stimulator of polysome assembly in T cell lymphoma (L5178y). 1981; 30: 3375–77.Google Scholar
  60. 60.
    Orning L, Krivi G, Bild G et al. Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril. J Biol Chem 1991; 266: 16507–11.PubMedGoogle Scholar
  61. 61.
    Minami M, Ohishi N, Mutoh H et al. Leukotriene A4 hydrolase is a zinc-containing aminopeptidase. Biochem Biophys Res Commun 1990; 173: 620–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Izumi T, Minami M, Ohishi N et al. Site-directed mutagenesis of leukotriene A4 hydrolase and aminopeptidase activities. J Lipid Mediators 1993; 6: 53–8.Google Scholar
  63. 63.
    Simmons WH, Orawski AT. Membrane-bound aminopeptidase P from bovine lung. Its purification, properties, and degradation of bradykinin. J Biol Chem 1992; 267: 4897–903.PubMedGoogle Scholar
  64. 64.
    Orawski AT, Simmons WH. Purification and properties of membrane-bound aminopeptidase P from rat lung. Biochemistry 1995; 34: 11227–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Yoneda J, Saiki I, Fujii H et al. Inhibition of tumor invasion and extracellular matrix degradation by ubenimex (bestatin). Clin Exp Metastasis 1992; 10: 49–59.PubMedCrossRefGoogle Scholar
  66. 66.
    Fujii H, Nakajima M, Saiki I et al. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin Exp Metastasis 1995; 13: 337–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Saiki I, Fujii H, Yoneda J et al. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int J Cancer 1993; 54: 137–43.Google Scholar
  68. 68.
    Delmas B, Gelfi J, Kut E et al. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J Virol 1994; 68: 5216–24.PubMedGoogle Scholar
  69. 69.
    Taylor WL, Dixon JE. Characterization of a pyroglutamate aminopeptidase from rat serum that degrades thyrotropin-releasing hormone. J Biol Chem 1978; 253: 6934–40.PubMedGoogle Scholar
  70. 70.
    Nyberg F, Thornwall M, Hetta J. Aminopeptidase in human CSF which degrades delta-sleep inducing peptide (DSIP). Biochem Biophys Res Commun 1990; 167: 1256–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Kunz J, Krause D, Kremer M et al. The 140 kDa protein of blood-brain barrier-associated pericytes is identical to aminopeptidase N. J Neurochem 1994; 62: 2375–86.CrossRefGoogle Scholar
  72. 72.
    Chauvel EN, Coric P, Llorens-Cortes C et al. Investigation of the active site of aminopeptidase A using a series of new thiol-containing inhibitors. J Medicinal Chem 1994; 37: 1339–46.CrossRefGoogle Scholar
  73. 73.
    McCulloch R, Burke ME, Sherratt DJ. Peptidase activity of Eschericia coli aminopeptidase A is not required for its role in Xer site-specific recombination. Mol Microbiol 1994; 12: 241–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Yeager CL, Ashmun RA, Williams RK et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 1992; 357: 420–2.Google Scholar
  75. 75.
    Delmas B, Gelfi JL, Haridon R et al. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 1992; 357: 417–20.Google Scholar
  76. 76.
    Shang F, Taylor A. Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem J 1995; 307: 297–303.PubMedGoogle Scholar
  77. 77.
    Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 1987; 262: 8303–13.PubMedGoogle Scholar
  78. 78.
    Huang LL, Shang F, Taylor A. Degradation of differentially oxidized a-crystallins in bovine lens epithelial cells. Exp Eye Res 1995; 61: 45–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Taylor A. Oxidative stress and antioxidant function in relation to risk for cataract. In: Sies H, ed. Antioxidants in Disease Mechanisms and Therapeutic Strategies (A Volume of Advances in Pharmacology Series). San Diego: Academic Press, in press.Google Scholar
  80. 80.
    Johnson ES, Ma PCM, Ota IM et al. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 1995; 270: 17442–56.PubMedCrossRefGoogle Scholar
  81. 81.
    Ganesh S, Klingel S, Kahle H et al. Flow cytometric determination of aminopeptidase activities in viable cells using fluorogenic rhodamine 110 substrates. Cytometry 1995; 20: 334–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Godin D, Marceau F, Beaule C et al. Aminopeptidase modulation of the pharmacological responses to synthetic thrombin receptor agonists. Eur J Pharmacol 1994; 253: 225–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim J, Kim K. The use of FAB mass spectrometry and pyroglutamate aminopeptidase digestion for the structure determination of pyroglutamate in modified peptides. Biochem Mol Biol Int 1995; 35: 803–811.PubMedGoogle Scholar
  84. 84.
    Klebert S, Kratzin HD, Zimmermann B. Primary structure of the murine monoclonal IgG2a antibody mAb735 against alpha (2–8) polysialic acid. 2. Amino acid sequence of the heavy (H-) chain Fd’ region. Biol Chem Hoppe-Seyler 1993; 374: 993–1000.PubMedCrossRefGoogle Scholar
  85. 85.
    Yoshpe-Besancon I, Gripon JC, Ribadeau-Dumas B. Xaa-Prodipeptidyl-aminopeptidase from Lactococcus lactis catalyses kinetically controlled synthesis of peptide bonds involving proline. Biotech Appl Biochem 1994; 20: 131–40.Google Scholar
  86. 86.
    Yoshpe-Besancon I, Auriol D, Monsan P et al. Reversible enzymic protection of the alpha-amino group of amino acid derivatives using an aminopeptidase A. Biotechnol Applied Biochem 1993; 18 (pt 1): 93–102.Google Scholar
  87. 87.
    Offner GD, Gong D, Afdhal NH. Identification of a 130-kilodalton human biliary concanavalin A binding protein as aminopeptidase N. Gastroenterol 1994; 106: 755–62.Google Scholar
  88. 88.
    Eisenhauer DA, Berger JJ, Peltier CZ et al. Protease activities in cultured beef lens epithelial cells peak and then decline upon progressive passage. Exp Eye Res 1988; 46: 579–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Harris CA, Hunte-McDonough B, Krauss MR et al. Induction of leucine aminopeptidase by interferon gamma identification by protein microsequencing after purification by preparative two-dimensional gel electrophoresis. J Biol Chem 1992; 267: 6865–9.PubMedGoogle Scholar
  90. 90.
    Shapiro LH, Ashmun RA, Roberts WM et al. Separate promoters control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells. J Biol Chem 1991; 266: 11999–12007.Google Scholar
  91. 91.
    Keller SR, Scott HM, Mastick CC et al. Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem 1995; 270: 23612–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Knight PJ, Knowles BH, Ellar DJ. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem 1995; 270: 17765–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Conlin CA, Hakensson K, Liljas et al. Cloning and nucleotide sequence of the cyclic AMP receptor protein-regulated Salmonella typhimurium pepE gene and crystallization of its product, an aaspartyl dipeptidase. J Bacteriol 1994; 176: 166–72.PubMedGoogle Scholar
  94. 94.
    Ludewig M, Fricke B, Aurich H. Leucine aminopeptidase in intracytoplasmic membranes of Acinetobacter calcoaceticus. J Basic Microbiol 1987; 27: 557–63.PubMedCrossRefGoogle Scholar
  95. 95.
    Aurich H, Jahreis G, Fricke B et al. Characterization of a bacterial aminopeptidase bound to intracytoplasmic membranes. Biol Chem Hoppe-Seyler 1986; 367: 175.Google Scholar
  96. 96.
    Carter TH, Miller CG. Aspartate-specific peptidase in Salmonella typhimuriam: mutants deficient in peptidase E. J Bacteriol 1984; 159: 453–9.Google Scholar
  97. 97.
    Mayo B, Kok J, Venema K et al. Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 1991; 57: 38–44.PubMedGoogle Scholar
  98. 98.
    Yan T-R, Ho S-C, Hou C-L. Catalytic properties of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. cremoris nTR. Biosci Biotech Biochem 1992; 56: 704–7.CrossRefGoogle Scholar
  99. 99.
    Vesanto E, Varmanen P, Steele JL et al. Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase. Eur J Biochem 1994; 224: 991–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Avora G, Lee BH. Purification and characterization of an aminopeptidase from Lactobacillus casei subsp. rhamnosus 593. Biotechnol Appl Biochem 1994; 19: 179–92.Google Scholar
  101. 101.
    Aphale JS, Strohl WR. Purification and properties of an extracellular aminopeptidase from Streptomyces lividans 1326. J Gen Microbiol 1993; 139: 417–24.CrossRefGoogle Scholar
  102. 102.
    Kiefer-Partsch B, Bockelmann W, Geis A. Purification of an X-prolyl dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subs. cremoris. Appl Microbiol Biotechnol 1989; 31: 75–8.CrossRefGoogle Scholar
  103. 103.
    Bordallo J, Cueva R, Suarez-Rendueles P. Transcriptional regulation of the yeast vacuolar aminopeptidase yscl encoding gene (APE1) by carbon sources (published erratum) FEBS Lett 1995; 369: 353.Google Scholar
  104. 104.
    Frey J, Rohm KH. Subcellular localization and levels of aminopeptidases and dipeptidases. Biochim Biophys Acta 1978; 527: 31–41.PubMedCrossRefGoogle Scholar
  105. 105.
    Jones EW, Zubenko GS, Parker RR. Pep4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. Genetics 1982; 102: 665–77.PubMedGoogle Scholar
  106. 106.
    Roncari G, Zuber H. Thermophilic aminopeptidase: API from Bacillus stearothermophilus. Meth Enzymol 1970; 19: 544–52.CrossRefGoogle Scholar
  107. 107.
    Moser P, Roncari G, Zuber H. Thermophilic aminopeptidases from Bacillus stearothermophilus. Int J Protein Res 1970; 2: 191–207.PubMedCrossRefGoogle Scholar
  108. 108.
    Roncari G, Stoll E, Zuber H. Thermophilic aminopeptidase I; Meth Enzymol 1976; 45 B:522–30.Google Scholar
  109. 109.
    Miller CG, Miller JL, Bagga DA. Cloning and nucleotide sequence of the anaerobically regulated pepT gene of Salmonella typhimurium. J Bacteriol 1991; 173: 3554–8.PubMedGoogle Scholar
  110. 110.
    Lazduski C, Busuttil J, Lazdunski A. Purification and properties of a periplasmic aminoendopeptidase from Eschericia coli. Eur J Biochem 1975; 60: 363–9.CrossRefGoogle Scholar
  111. 111.
    Gharbi S, Belaich A, Murgier M et al. Multiple controls exerted on in vivo expression of the pepN gene in Escherichia coli. Studies with pepN-lacZ operon and protein fusion strains. J Bacteriol 1985; 163: 1191–5.PubMedGoogle Scholar
  112. 112.
    Luzdunski A, Pellessier C, Lazdunski C. Regulation of Escherichia coli K10 aminoendopeptidase synthesis. Eur J Biochem 1975; 60: 357–62.CrossRefGoogle Scholar
  113. 113.
    Foglino M, Lazdunski A. Deletion analysis of the promoter region of the Escherichia coli pepN gene, a gene subject in vivo to multiple global controls. Mol Gen Genet 1987; 210: 523–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Strauch KL, Lenk JB, Gamble BL. Oxygen regulation in Salmonella typhimurium. J Bacteriol 1985; 161: 673–80.Google Scholar
  115. 115.
    Murgier M, Pellissier C, Lazdunski A. Existence, localization and regulation of the biosynthesis of aminoendopeptidase in gram-negative bacteria. Eur J Biochem 1976; 65: 517–20.PubMedCrossRefGoogle Scholar
  116. 116.
    Couton JM, Sarath G, Wagner FW. Purification and characterization of a soybean cotyledon aminopeptidase. Plant Sci 1991; 75: 9–17.CrossRefGoogle Scholar
  117. 117.
    Brown SB, Krause D, Ellem KA. Low fluences of ultraviolet irradiation stimulate HeLa cell surface aminopeptidase and candidate “TGF alpha ase” activity. J Cell Biochem 1993; 51: 102–15.PubMedCrossRefGoogle Scholar
  118. 118.
    Ben Meir D, Blumberg S. In: Biologicals from Recombinant Microorganisms and Animal Cells Production and Recovery. VCH Publishers, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Allen Taylor

There are no affiliations available

Personalised recommendations