TNF in Septic Shock and Cerebral Malaria

  • R. Lucas
  • P. M. Suter
  • G. E. Grau
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1997)


A massive production of inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-1 (IL-1) and interferon-γ (IFN-γ) occurs in conditions such as sepsis and infectious diseases. This cytokine overproduction can have deleterious effects on various organs, including lungs, liver or brain. One of the major target cells of inflammatory cytokines is the microvascular endothelial cell (MVEC), that is both morphologically and functionally different from large vessel endothelial cells (Table 1). Apart from being sensitive towards the direct cytotoxicity of some of the inflammatory cytokines such as TNF, activated MVEC can also stimulate and attract leukocytes, via the production of chemokines, and regulate their extravasation into tissues. We will review the direct and indirect effects of TNF on endothelial cells that can be relevant for the pathogenesis of septic shock, with particular attention to acute respiratory distress syndrome (ARDS), and cerebral malaria.


Septic Shock Acute Respiratory Distress Syndrome Cerebral Malaria Tumor Necrosis Factor Receptor Adult Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hudson LD, Milberg JA,Anardi D, Maunder RJ (1995) Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med 151: 293–301Google Scholar
  2. 2.
    Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273: 306–309PubMedCrossRefGoogle Scholar
  3. 3.
    Suter PM, Suter S, Girardin E, Rouxlombard P, Grau GE, Dayer JM (1992) High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis. Am Rev Respir Dis 145: 1016–1022PubMedCrossRefGoogle Scholar
  4. 4.
    Parsons PE, Moore FA, Moore EE, Ikle DN, Henson PM, Worthen GS (1992) Studies on the role of tumor necrosis factor in adult respiratory distress syndrome. Am Rev Respir Dis 146: 694–700PubMedGoogle Scholar
  5. 5.
    Tahar MS, Renesto P, Balloy V, Chignard M (1994) Synergism between interleukin-8 and tumor necrosis factor-a for neutrophil-mediated platelet activation. Eur Cytokine Netw 5: 455–460Google Scholar
  6. 6.
    Cholletmartin S, Montravers P, Gibert C, et al (1993) High levels of interleukin-8 in the blood and alveolar spaces of patients with pneumonia and adult respiratory distress syndrome. Infect Immun 61: 4553–4559Google Scholar
  7. 7.
    Vogels MTE, VanderMeer JWM (1993) Interleukin-8 and adult respiratory distress syndrome. Lancet 341: 1356–1357PubMedGoogle Scholar
  8. 8.
    Jorens PG, Vandamme J, Debacker W, et al (1992) Interleukin-8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS. Cytokine 4: 592–597PubMedCrossRefGoogle Scholar
  9. 9.
    Milberg J (1993) Interleukin-8 and adult respiratory distress syndrome. Lancet 341: 1356PubMedCrossRefGoogle Scholar
  10. 10.
    Donnelly SC, Haslett C, Dransfield I, et al (1994) Role of selectins in development of adult respiratory distress syndrome. Lancet 344: 215–219PubMedCrossRefGoogle Scholar
  11. 11.
    Bone RC, Balk R, Slotman G, et al (1992) Adult respiratory distress syndrome. Sequence and importance of development of multiple organ failure. Chest 101: 320–326PubMedCrossRefGoogle Scholar
  12. 12.
    Imhof BA, Dunon D (1995) Leukocyte migration and adhesion. Adv Immunol 58: 412–416Google Scholar
  13. 13.
    Bevilacqua MP (1993) Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 11767: 804–808Google Scholar
  14. 14.
    Wiles ME, Welbourn R, Goldman G, Hechtman HB, Shepro D (1991) Thromboxane-induced neutrophil adhesion to pulmonary microvascular and aortic endothelium is regulated by CD18. Inflammation 15: 181–199PubMedCrossRefGoogle Scholar
  15. 15.
    Simms HH, D’Amico R (1991) Increased PMN CD1 lb/CD18 expression following post-traumatic ARDS. J Surg Res 50: 362–367PubMedCrossRefGoogle Scholar
  16. 16.
    Fein AM, Grant MM, Niederman MS, Kantrowitz N (1991) Neutrophil-endothelial cell interaction in critical illness. Chest 99: 1456–1462PubMedCrossRefGoogle Scholar
  17. 17.
    Laurent T, Markert M,Vonfliedner V, et al (1994) CD11b/CD18 expression, adherence, and chemotaxis of granulocytes in adult respiratory distress syndrome. Am J Respir Crit Care Med 149: 1534–1538PubMedGoogle Scholar
  18. 18.
    Vandenabeele P, Declercq W, Beyaert R, Fiers W (1995) Two tumour necrosis factor receptors: Structure and function. Tr Cell Biol 5: 392–399CrossRefGoogle Scholar
  19. 19.
    Goldblum SE, Brann TW, Ding X, Pugin J, Tobias PS (1994) Lipopolysaccharide (LPS)-binding protein and soluble Cd14 function as accessory molecules for LPS-induced changes in endothelial barrier function, in vitro. J Clin Invest 93: 692–702PubMedCrossRefGoogle Scholar
  20. 20.
    Redl H, Dinges HP, Buurman WA, et al (1991) Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Am J Pathol 139: 461–466PubMedGoogle Scholar
  21. 21.
    Luhan M (1996) Malaria. WHO Press Office Fact Sheet No. 94: 1–3Google Scholar
  22. 22.
    Warrell DA, Molyneux ME, Beales PF (1990) Severe and complicated malaria. Trans R Soc Trop Med Hyg 84: 1–65Google Scholar
  23. 23.
    Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P (1987) Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237: 1210–1212PubMedCrossRefGoogle Scholar
  24. 24.
    Grau GE, Taylor TE, Molyneux ME, et al (1989) Tumor necrosis factor and disease severity in children with Falciparum malaria. N Engl J Med 320: 1586–1591PubMedCrossRefGoogle Scholar
  25. 25.
    Falanga PB, Butcher EC (1991) Late treatment with anti-LFA-1 (CD11a) antibody prevents cerebral malaria in a mouse model. Eur J Immunol 21: 2259–2263PubMedCrossRefGoogle Scholar
  26. 26.
    Grau GE, Pointaire P, Piguet PF, et al (1991) Late administration of monoclonal antibody to leukocyte function-antigen 1 abrogates incipient murine cerebral malaria. Eur J Immunol 21: 2265–2267PubMedCrossRefGoogle Scholar
  27. 27.
    Porta J, Carota A, Pizzolato GP et al (1993) Immunopathological changes in human cerebral malaria. Clin Neuropathol 12: 142–146Google Scholar
  28. 28.
    Turner GDH, Morrison H, Jones M, et al (1994) An immunohistochemical study of the pathology of fatal malaria: Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 145: 1057–1069PubMedGoogle Scholar
  29. 29.
    Willimann K, Matile H, Weiss NA, Imhof BA (1995) In vivo sequestration of Plasmodium falciparum-infected human erythrocytes: A severe combined immunodeficiency mouse model for cerebral malaria. J Exp Med 182: 643–653PubMedCrossRefGoogle Scholar
  30. 30.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666–3670PubMedCrossRefGoogle Scholar
  31. 31.
    Robaye B, Mosselmans R, Fiers W, Dumont JE, Galand P (1991) Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol 138: 447–453PubMedGoogle Scholar
  32. 32.
    Renard N, Lienard D, Lespagnard L, Eggermont A, Heimann R, Lejeune F (1994) Early endothelium activation and polymorphonuclear cell invasion precede specific necrosis of human melanoma and sarcoma treated by intravascular high-dose tumour necrosis factor alpha (rTNF alpha). Int J Cancer 57: 656–663PubMedCrossRefGoogle Scholar
  33. 33.
    Leist M, Gantner F, Jilg S, Wendel A (1995) Activation of the 55 kD TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J Immunol 154: 1307–1316PubMedGoogle Scholar
  34. 34.
    Rothe J, Lesslauer W, Lotscher H, et al (1993) Mice lacking the tumour necrosis factor receptor-1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364: 798–802PubMedCrossRefGoogle Scholar
  35. 35.
    Pfeffer K, Matsuyama T, Kundig TM, et al (1993) Mice deficient for the 55kD tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L-monocytogenes infection. Cell 73: 457–467PubMedCrossRefGoogle Scholar
  36. 36.
    Erickson SL, Desauvage FJ, Kikly K, et al (1994) Decreased sensitivity to tumour necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372: 560–563PubMedCrossRefGoogle Scholar
  37. 37.
    Sheehan KCF, Pinckard JK, Arthur CD, Dehner LP, Goeddel DV, Schreiber RD (1995) Monoclonal antibodies specific for murine p55 and p75 tumor necrosis factor receptors: Identification of a novel in vivo role for p75. J Exp Med 181: 607–617Google Scholar
  38. 38.
    Swerlick RA, Garciagonzalez E, Kubota Y, Xu YL, Lawley TJ (1991) Studies of the modulation of MHC antigen and cell adhesion molecule expression on human dermal microvascular endothelial cells. J Invest Dermatol 97: 190–196PubMedCrossRefGoogle Scholar
  39. 39.
    Wong D, Dorovinizis K (1992) Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J Neuroimmunol 39: 11–22Google Scholar
  40. 40.
    Hewett PW, Murray JC (1993) Human lung microvessel endothelial cells: Isolation, culture, and characterization. Microvascular Res 46: 89–102CrossRefGoogle Scholar
  41. 41.
    Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P (1996) Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human intestinal microvascular endothelial cells. J Immunol 156: 2558–2565PubMedGoogle Scholar
  42. 42.
    To SST, Newman PM, Hyland VJ, Robinson BG, Schrieber L (1996) Regulation of adhesion molecule expression by human synovial microvascular endothelial cells in vitro. Arthritis Rheum 39: 467–477PubMedCrossRefGoogle Scholar
  43. 43.
    Grau GE, Mili N, Lou JN, et al (1996) Phenotypic and functional analysis of pulmonary micro-vascular endothelial cells from patients with acute respiratory distress syndrome. Lab Invest 74: 761–770PubMedGoogle Scholar
  44. 44.
    Grau GE, de Moerloose P, Bulla O, et al (1997) Haemostatic properties of human pulmonary and cerebral microvascular endothelial cells. Thromb Haemost (In press)Google Scholar
  45. 45.
    Meyrick B, Christman B, Jesmok G (1991) Effects of recombinant tumor necrosis factor-alpha on cultured pulmonary artery and lung microvascular endothelial monolayers. Am J Pathol 138: 93–101PubMedGoogle Scholar
  46. 46.
    Polunovsky VA, Wendt CH, Ingbar DH, Peterson MS, Bitterman PB (1994) Induction of endothelial cell apoptosis by TNF alpha: Modulation by inhibitors of protein synthesis. Exp Cell Res 214: 584–594PubMedCrossRefGoogle Scholar
  47. 47.
    Swerlick RA, Lee KH, Wick TM, Lawley TJ (1992) Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol 148: 78–83PubMedGoogle Scholar
  48. 48.
    Reid T, Louie P, Heller RA (1994) Mechanisms of tumor necrosis factor cytotoxicity and the cytotoxic signals transduced by the p75-tumor necrosis factor receptor. Circ Shock 44: 84–90Google Scholar
  49. 49.
    Lucas R, Lou J, Juillard P, Moore M, Bluethmann H, Grau GE (1997) Respective roles of TNF receptors in the development of experimental cerebral malaria. J Neuroimmunol (In press)Google Scholar
  50. 50.
    Grau GE, Tacchini-Cottier F,Vesin C, et al (1993) TNF-induced microvascular pathology: Active role for platelets and importance of the LFA-1/ICAM-1 interaction. Eur Cytokine Netw 4: 415–419PubMedGoogle Scholar
  51. 51.
    Marinos G, Naoumov NV, Rossol S, et al (1995) Tumor necrosis factor receptors in patients with chronic hepatitis B virus infection. Gastroenterology 108: 1453–1463PubMedCrossRefGoogle Scholar
  52. 52.
    Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W (1993) Tumor necrosis factor-alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177: 1277–1286PubMedCrossRefGoogle Scholar
  53. 53.
    Grell M, Douni E, Wajant H, et al (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kD tumor necrosis factor receptor. Cell 83: 793–802Google Scholar
  54. 54.
    Tartaglia LA, Pennica D, Goeddel DV (1993) Ligand Passing: The 75-kD tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kD TNF receptor. J Biol Chem 268: 18 542–18 548Google Scholar
  55. 55.
    Decoster E, Vanhaesebroeck B, Vandenabeele P, Grooten J, Fiers W (1995) Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem 270: 18473–18478PubMedCrossRefGoogle Scholar
  56. 56.
    Auerbach R, Alby L, Morrissey LW, Tu M (1985) Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res 29: 401–411PubMedCrossRefGoogle Scholar
  57. 57.
    Swerlick RA, Lee KH, Li LJ, Sepp NT, Caughman SW, Lawley TJ (1992) Regulation of vascular cell adhesion molecule-1 on human dermal microvascular endothelial cells. J Immunol 149: 698–705PubMedGoogle Scholar
  58. 58.
    Swerlick RA, Garcia-Gonzalez E, Kubota Y, Xu YL, Lawley TJ (1991) Studies of the modulation of MHC antigen and cell adhesion molecule expression on human dermal microvascular endothelial cells. J Invest Dermatol 97: 190–196PubMedCrossRefGoogle Scholar
  59. 59.
    Detmar M, Tenorio S, Hettmannsperger U, Ruszczak Z, Orfanos CE (1992) Cytokine regulation of proliferation and ICAM-1 expression of human dermal microvascular endothelial cells in vitro. J Invest Dermatol 98: 147–153PubMedCrossRefGoogle Scholar
  60. 60.
    Lee KH, Lawley TJ, Xu YL, Swerlick RA (1992) VCAM-1-independent ELAM-1-independent, and ICAM-1-independent adhesion of melanoma cells to cultured human dermal microvascular endothelial cells. J Invest Dermatol 98: 79–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Lucas
  • P. M. Suter
  • G. E. Grau

There are no affiliations available

Personalised recommendations