Some Adaptive Clustering Algorithms

  • Hans-Joachim Mucha
Conference paper


Cluster analysis attempts to detect structures in the data. Often clustering methods are incorporated into statistical software systems. Some of the most important and widely used methods are the K-means clustering and Ward’s hierarchical algorithm. But there is a lack of known successful applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fisher, R.A. (1936): The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188CrossRefGoogle Scholar
  2. Hubert, L.J., Arabie, P. (1985): Comparing partitions. J. Classif. 2, 193–218CrossRefGoogle Scholar
  3. Mac Queen, J.B. (1967): Some methods for classification and analysis of multivariate observations. Proc. 5th. Berkeley Symp. Statist. and Prob., 287–297Google Scholar
  4. Mucha, H.-J. (1992a): Clusteranalyse mit Mikrocomputern. Akademie Verlag, BerlinGoogle Scholar
  5. Mucha, H.-J. (1992b): Specific Metrics for Cluster Analysis and Principal Components Analysis. In: Faulbaum, F. (Ed.): Soft Stat’91 Advances in Statistical Software 3. Gustav Fischer, Stuttgart, 249–258Google Scholar
  6. Mucha, H.-J. (1992c): Improvement of Stability in Cluster Analysis and PCA by Special Weighting the Variables. In: Gritzmann, P., Hettich, R., Horst, R., Sachs, E. (Eds.): Operations Research’ 91. Physica-Verlag, Heidelberg, 351–354Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Hans-Joachim Mucha
    • 1
  1. 1.Institute of Applied Analysis and StochasticsBerlinGermany

Personalised recommendations