Advertisement

Algorithms for Max-Linear and Multi-Criteria Spanning Tree Problems

  • Horst W. Hamacher
  • Günther Ruhe
Conference paper

Abstract

Let 7 be the set of all spanning Trees T = (V.E(T)) of a given graph G = (V,E). With each edge e ∈ E is associated a vector of weights w(e) = (w1(e),…,wQ(e)). We consider two related problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Aksoy (1990): An interactive branch-and-bound algorithm for bicriterion nonconvex/mixed integer programming. Naval Research Logistics Quarterly 37, 403–417.Google Scholar
  2. P.M. Camerini; G. Galsiati; F. Maffioli (1984): The complexity of weighted multi-constrained spanning tree problems. Colloquium on the Theory of Algorithms, Pecs, July 23-27, 1984.Google Scholar
  3. S. Chung; H.W. Hamacher; F. Maffioli; K.G. Murty (1990): A note on combinatorial optimization with max-linear objective functions. Universität Kaiserslautern, Fachbereich Mathematik, Pre print No. 189. Accepted for Discrete Applied Mathematics.Google Scholar
  4. Z. Drezner; S.Y. Nof (1984): On optimizing bin packing and insertion plans for assembly robots. IEE Transactions 16 262–270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Horst W. Hamacher
    • 1
  • Günther Ruhe
    • 1
  1. 1.Fachbereich MathematikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations