The Distribution for Continuous Multiple Life Functions

  • Martine Van Wouwe
  • Sabine Lorimier
Conference paper


Only recently the actuarial literature on life contingencies introduced the use of probability theory. In particular, Bowers, Gerber, Wolthuis and others have shown that probability theory in life insurances is of extended importance in the construction of measures for the actual risk of the insurer. In an article Wolthuis proved that the pure premium for the endowment insurance on one life can be less than the sum of the pure premiums of the composing elements, by considering a risk measure through probability theory.


  1. [1]
    Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., Nesbitt, C. J., (1986), Actuarial Mathematics. The Society of Actuaries, Itasca, Illinois.Google Scholar
  2. [2]
    De Pril, N. (1989), The Distribution of Actuarial Functions, Mitteilungen der Schweizerische Vereinigung der Versicherungsmathematiker, p. 173–183.Google Scholar
  3. [3]
    Wolthuis, H., Van Hoek, L, (1986), Stochastic Models for Life Contingencies. Insurance: Mathematics and Economics 5, p. 217–254.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Martine Van Wouwe
    • 1
  • Sabine Lorimier
    • 1
  1. 1.Department of Mathematics & Computer ScienceUniversity of Antwerp, UIAAntwerpenBelgium

Personalised recommendations