Advertisement

Collective Decisions on Euclidian Spaces

  • Wouter Peremans
  • Hans Peters
  • Hans v.d. Stel
  • Ton Storcken
Conference paper

Abstract

social Choice problems are considered where each individual i from a finite set of individuals N := {1, 2, 3, … , n} reports a point p(i) in an m-dimensional Euclidean space E := ℝm. For example these points could represent an individual proposal for a location of a public facility. A solution ϕ assigns a compromise point to each combination of reported points. Hence, ϕ is a function from EN to E.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbera S. and B. Peleg (1990) Strategy-Proof Voting schemes with continuous Preferences. Social Choice and Welfare 7: 31–38.CrossRefGoogle Scholar
  2. Border K.C. and J.S. Jordan (1983) Straightforward Elections, Unanimity and Phantom voters. Review of Economic Studies 50: 153–170.CrossRefGoogle Scholar
  3. Kim K.H. and F.W. Roush (1984) Nonmanipulability in Two Dimensions. Mathematical Social Sciences 8: 29–43.CrossRefGoogle Scholar
  4. Moulin H. (1980) On Strategy-Proofness and Single Peakedness Public Choice 35: 437–455.CrossRefGoogle Scholar
  5. Peremans W., H. Peters, H. v.d. Stel and T. Storcken (1992) Strategy-Proof Collective Decisions on Eudicean Spaces, Report, Tilburg, The Netherlands (forthcomming).Google Scholar
  6. Peters H., H. v.d. Stel and T. Storcken (1991) On Uncompromisingness and Strategy-Proofness, Report M 91-15, Maastricht, The Netherlands.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Wouter Peremans
    • 1
  • Hans Peters
    • 1
  • Hans v.d. Stel
    • 1
  • Ton Storcken
    • 1
  1. 1.Department of MathematicsEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations