Advertisement

Behältersieden unterkühlter Flüssigkeiten (Sieden bei freier Konvektion)

  • Verein Deutscher Ingenieure
  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC)
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Der Trend zur Anordnung von mikroelektronischen Bauelementen auf kleinstem Raum stellt zunehmend höhere Anforderungen an das dazugehörige Kühlsystem. Trotz zeitweise auftretender flächenspezifischer Dissipationsleistungen von mehr als 10 W/cm2 dürfen die Temperaturen wegen der stets vorhandenen Lötstellen nicht über 125°C steigen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schrifttum

  1. [1]
    Lee, S., u. M. M. Yovanovich: Linearization of natural convection from a vertical plate with arbitrary heat-flux distributions. J Heat Transfer, Vol. 114 (1992) S. 909/16.Google Scholar
  2. [2]
    Park, A. K., u. A. Bergles: Natural convection heat transfer characteristics of simulated microelectronic chips. ASME Publication HDT Vol. 48, Heat Transfer in Electronic Equipment (1985) S. 29/37.Google Scholar
  3. [3]
    Stephan, K., u. M. Abdelsalam: Heat-transfer correlations for natural convection boiling. Int. J. Heat Mass Transfer, Vol. 23 (1980) S. 73/87.Google Scholar
  4. [4]
    Zuber, N.: Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. Int. J. Heat Mass Transfer, Vol. 6 (1963) S. 53/78.Google Scholar
  5. [5]
    Bankoff, S. G.: On the mechanism of subcooled nucleate boiling, Part I: Preliminary considerations. Chemical Engineering Progress Symposium Series No. 32, Vol. 57 (1960) S. 156/63.Google Scholar
  6. [6]
    Bankoff, S. G.: On the mechanism of subcooled nucleate boiling, Part II: Sequential rate process model. Chemical Engineering Process Symposium Series No. 32, Vol. 57 (1960) S. 164/72.Google Scholar
  7. [7]
    Wessely, H., W. Türk, K.-H. Schmidt u. G. Nagel: Computer packaging, Siemens Forsch.-Entwickl.-Ber., Bd. 17, Nr. 5 (1987) S. 234/39.Google Scholar
  8. [8]
    Hermann, R.: Wärmeübergang bei freier Konvektion. Physik. Zeitschr., 33. Jahrg. (1932) Nr. 11, S. 425/34.Google Scholar
  9. [9]
    Zhang, J., u. J. Orozco: Subcooled nucleate boiling from a horizontal multicylinder bundle in pool boiling. Int. Comm. Heat Mass Transfer, Vol. 18 (1991) S. 321/31.Google Scholar
  10. [10]
    Kimura, S., u. A. Bejan: The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side. J. Heat Transfer, Vol. 106 (1984) S. 98/103.Google Scholar
  11. [11]
    Normington, P. J. C., M. Mahalingam u. T. Y T Lee: Thermal management control without overshoot using combinations of boiling liquids. InterSociety Conference on Thermal Phenomena (1992) S. 49/58.Google Scholar
  12. [12]
    Kristiansen, H., A. Bjorneklett, P. Ohlckers u. T. Gleditsch: Thermal management evaluation of evaporation cooling with fluorcarbon liquids using naked test chips. IEPS Proc. (1990) S. 1133/46.Google Scholar
  13. [13]
    Bar-Cohen, A., W Tong u. T. W. Simon: Theoretical aspects of nucleate pool boiling with dielectric fluids. Journal of Thermal Science, Vol. 1 (1992) No. 1, S. 46/57.Google Scholar
  14. [14]
    Bar-Cohen, A., u. T. W. Simon: Wall superheat excursion in the boiling incipience of dielectric fluids. Heat Transfer Engineering, Vol. 9 (1988) No. 3, S. 19/31.Google Scholar
  15. [15]
    Tong, W, A. Bar-Cohen, T. W Simon u. S. M. You: Contact angle effects on boiling incipience of highly-wetting liquids. Int. J. Heat Mass Transfer, Vol. 33 (1990) No. 1, S. 91/103.Google Scholar
  16. [16]
    You, S. M., T. W. Simon, A. Bar-Cohen, u. W. Tong: Experimental investigation of nucleate boiling incipience with a highly-wetting dielectric fluid (R-113). Int. J. Heat Mass Transfer, Vol. 33 (1990) No. 1, S. 105 /17.Google Scholar
  17. [17]
    You, S. M., T. W Simon u. A. Bar-Cohen: Experiments on boiling incipience with a highly-wetting dielectric fluid; effects of pressure, subcooling and dissolved gas content. Proc. 9th Int. Heat Transfer Conference, Jerusalem, Aug. 1990, Vol. 2, S. 337/42.Google Scholar
  18. [18]
    Guo, Z., u. M. S. El-Genk: An experimental study of saturated pool boiling from downward facing and inclined surfaces. Int. J. Heat Mass Transfer, Vol. 35 (1992) No. 9, S. 2109/17.Google Scholar
  19. [19]
    Shi, M. H., u. J. Ma: A study of the influence of solid particles on boiling hysteresis. Journal of Thermal Science, Vol. 1 (1992) No. 1, S. 41/45.Google Scholar
  20. [20]
    Skripov, V. P: Metastable states. J. Non-Equilib. Thermodyn., Vol. 17 (1992) No. 3, S. 193/236.Google Scholar
  21. [21]
    Zuber, N., M. Tribus, u. J. W. Westwater: Hydrodynamic crisis in pool boiling of saturated and subcooled liquids. Int. Heat Transfer Conf. Boulder, 1961, Paper No. 27, S. 230/36.Google Scholar
  22. [22]
    Bergles, A. E., u. M.-C. Chyu: Characteristics of nucleate pool boiling from porous metallic coatings. ASME Publication HDT Vol. 48, Heat Transfer in Electronic Equipment (1985) S. 61/71.Google Scholar
  23. [23]
    Marto, P. J., u. Lt. V. J. Lepere: Pool boiling heat transfer from enhanced surfaces to dielectric fluids. ASME Publication HDT Vol. 48, Heat Transfer in Electronic Equipment (1985) S. 93/102.Google Scholar
  24. [24]
    Merker, G. P: Konvektive Wärmeübertragung, Springer-Verlag, 1987.Google Scholar
  25. [25]
    Gebhard, B., Y Jaluria, R. L. Mahajan u. B. Sammakia: Buoyancy-induced flows and transport. Hemisphere Publishing Corporation, New York, 1988.Google Scholar
  26. [26]
    Tarasova, N. V, u. V. M. Orlov: Teploenergetika 6 (1962) S. 48/52.Google Scholar
  27. [27]
    Macbeth, R. V, u. R. W. Wood: European Two-Phase Flow Group Meeting. Univ. Strathclyde, Paper F1, 1980.Google Scholar
  28. [28]
    Papell, S. S., u. R. W. Heendricks: Adv. Cryo. Eng., Vol. 23 (1977) S. 284/94.Google Scholar
  29. [29]
    Robertson, J. M.: AIChE Symp. Ser., Vol. 189 (1979) S. 151/64.Google Scholar
  30. [30]
    Toral, H.: Flow boiling heat transfer in mixtures. D. Phil. Thesis, Oxford University, 1979.Google Scholar
  31. [31]
    Hino, R., u. T. Ueda: Studies on heat transfer and flow characteristics in subcooled flow boiling, Part 1: Boiling characteristics. Int. J. Multiphase Flow, Vol. 11 (1985) No. 3, S. 269/81.Google Scholar
  32. [32]
    Spindler, K., u. E. Hahne: Beitrag zum Siedebeginn beim unterkühlten Sieden mit Zwangskonvektion. CIT 60 (1988) Nr. 1, S. 54/55.Google Scholar
  33. [33]
    Hahne, E., K. Spindler u. N. Shen: Incipience of flow boiling in subcooled well wetting fluids. Proc. 9th Int. Heat Transfer Conference, Jerusalem, Aug. 1990, Vol. 2, S. 69/74.Google Scholar
  34. [34]
    Brauer, H., u. F Mayinger: Subcooled boiling heat transfer to R 12 in an annular vertical channel. Chem. Eng. Technol. 11 (1988) S. 320/27.Google Scholar
  35. [35]
    Brauer, H.: Wärmeübergang and Siedebeginn beim unterkühlten Sieden unter Zwangskonvektion. Dissertation TU München, 1988.Google Scholar
  36. [36]
    Brauer, H., F. Mayinger u. G. Stängl: Onset of nucleate boiling, heat transfer, void fraction and pressure drop in subcooled convective boiling with R 12. Proc. 9th Int. Heat Transfer Conference, Jerusalem, Aug. 1990, Vol. 3, S. 419/24.Google Scholar
  37. [37]
    Butterworth, D., u. R. A. W. Shock: Flow boiling, Proc. 7. IHTC Vol. 1, paper RK 15 (1982) S. 11/30.Google Scholar
  38. [38]
    Kältemaschinenregeln, 7. Aufl., C. F. Müller Verl., 1981.Google Scholar
  39. [39]
    Abdelmessih, A., A. Fakhri u. S. T. Yui: Hysteresis effects in incipient boiling of freon-I1. Proc. 5. IHTC Vol. IV, paper B 4.5, 1974, S. 165/69.Google Scholar
  40. [40]
    Tehver, J., H. Sui u. V. Temkina: Heat transfer and hysteresis phenomena in boiling on porous plasma-sprayed surface. Experimental Thermal and Fluid Science, Vol. 5 (1992) No. 6, S. 714/27.Google Scholar
  41. [41]
    Zhang, N., W-J. Yang u. G. W. Yang: Two-tier model for nucleate pool boiling on microconfigured composite surfaces. Int. Comm. Heat Mass Transfer, Vol. 19 (1992) S. 767/79.Google Scholar
  42. [42]
    Yang, G. W, W.-J. Yang u. N. Zhang: Mechanisms of nucleate pool boiling on composite surfaces. Int. Comm. Heat Mass Transfer, Vol. 19 (1992) S. 781/90.Google Scholar
  43. [43]
    Stephan, K., u. J. Mitrovic: Heat transfer in natural convective boiling of refrigerants and refrigerant-oil-mixtures in bundles of T-shaped finned tubes. Advances in Enhanced Heat Transfer (1981) ASME, S. 131 /46.Google Scholar
  44. [44]
    Sato, T, u. H. Matsumura: On the conditions of incipient subcooled boiling with forced convection. Bulletin ISME, Vol. 7 (1963) No. 26, S. 392/98.Google Scholar
  45. [45]
    Davis, E. J., u. G. H. Anderson: The incipience of nucleate boiling in forced convection flow. AIChE Journal, Vol. 12 (1966) No. 4, S. 774/80.Google Scholar
  46. [46]
    Murphy, R. W, u. A. E. Bergles: Subcooled flow boiling of fluorocarbons — Hysteresis and dissolved gas effects on heat transfer. Proc. of Heat Transfer and Fluid Mech. Inst., Stanford Univ. Press (1972) S. 400/16.Google Scholar
  47. [47]
    Collier, J. G.: Convective boiling and condensation. McGraw-Hill, 1981, Second Edition, Ch. 12, S. 394/426.Google Scholar
  48. [48]
    Stephan, K.: Wärmeübergang beim Kondensieren and beim Sieden. Springer-Verl. Berlin Heidelberg 1988.Google Scholar
  49. [49]
    Kutateladze, S. S.: Kritische Wärmestromdichte bei einer unterkühlten Flüssigkeitsströmung. Energetika 7, 1959, S. 229/239 and Izvestia Akademia Nauk Otdelinie Tekhnicheski Nauk 4 (1951) S. 529.Google Scholar
  50. [50]
    Zuber, N.: On the stability of boiling heat transfer. J. Heat Transfer, Vol. 80 (1958) S. 711/20.Google Scholar
  51. [51]
    Zuber, N., u. M. Tribus: Further remarks on the stability of boiling heat transfer. UCLA Rept. No. 58/5, Univ. of Calif. Los Angeles, 1958.Google Scholar
  52. [52]
    Fluorinert Electronic Liquids Product Manual, 127 p, 1993, 3 M Co., St. Paul, Minnesota, USA.Google Scholar
  53. [53]
    Ponter, A. B., u. C. P. Haigh: Sound emission and heat transfer in low pressure pool boiling. Int. J. Heat Mass Transfer, Vol. 12 (1969) S. 413/28.Google Scholar
  54. [54]
    Farajisarir, D.: Growth and collapse of vapour bubbles in convective subcooled boiling of water. Master Thesis, Univ. of Brit. Columbia, 1993.Google Scholar
  55. [55]
    Schröder, J. J., S. McGill, F. Podzelny u. M. Dierbach: Secondary nucleation, ambivalent heat transfer and sound emission in low pressure subcooled pool boiling. Proceedings of Eurotherm Seminar 48, Paderborn 1996.Google Scholar
  56. [56]
    Fujii, T, u. M. Fujii: The dependence of local Nusselt number on Prandtl number in the case of free convection along a vertical surface with uniform heat flux. Int. J. Heat Mass Transfer, Vol. 19 (1976) S. 121/22.Google Scholar
  57. [1]
    Nukijama, S.: Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. J. Soc. Mech. Engrs. 37 (1934) S. 53/54 u. 367/74.Google Scholar
  58. [2]
    Gorenflo, D.: Wärmeübergang bei Blasensieden, Filmsieden und einphasiger freier Konvektion in einem großen Druckbereich. Abh. deutsch. Kälte- und Klimatechn. Ver. Nr. 22. Karlsruhe: Verl. C. F. Müller 1977.Google Scholar
  59. [3]
    Stephan, K.: Beitrag zur Thermodynamik des Wärmeübergangs beim Sieden. Abh. deutsch. Kältetech. Ver. Nr. 18. Karlsruhe: Verlag C. F. Müller 1963. Vgl. auch Chem. Ing. Techn. 35 (1963) S. 775/84.Google Scholar
  60. [4]
    Han, C. Y, u. P. Griffith: The mechanism of heat transfer in nucleate pool boiling. Int. J. Heat Mass Transfer 8 (1965) S. 887/914.Google Scholar
  61. [5]
    Stralen, S. J. D. van: The mechanism of nucleate boiling in pure liquids and in binary mixtures. Int. J. Heat Mass Transfer 9 (1966) S. 995/1046.Google Scholar
  62. [6]
    Beer, H.: Beitrag zur Wärmeübertragung beim Sieden. Progr. Heat Mass Transfer 2 (1969) S. 311/70.Google Scholar
  63. [7]
    Stephan, K.: Stabilität beim Sieden. BWK 17 (1965) S. 571/78.Google Scholar
  64. [8]
    Stephan, K.: Übertragung hoher Wärmestromdichten an siedende Flüssigkeiten. Chem. Ing. Techn. 38 (1966) S. 112/17.Google Scholar
  65. [9]
    Kovalev, S. A.: On methods of studying heat transfer in transient boiling. Int. J. Heat Mass Transfer 11 (1968) S. 279/83.Google Scholar
  66. [10]
    Grassmann, P, u. H. Ziegler: Zur Stabilität von Strömungen in geschlossenen Kreisen. Chem. Ing. Techn. 41 (1969) S. 908/15.Google Scholar
  67. [11]
    Hale, L. A., u. G. B. Wallis: Thermal stability of surfaces heated by convection and cooled by boiling. I/EC Fundamentals 11 (1972) S. 46/52.Google Scholar
  68. [12]
    Hesse, G.: Heat transfer in nucleate boiling, maximum heat flux and transition boiling. Int. J. Heat Mass Transfer 16 (1973) S. 1611/27.Google Scholar
  69. [13]
    Hoffmann, E. G.: Wärmeübergang in waagerechten Rohren bei Blasen-und Übergangssieden großer Massenströme. Diss. Ruhr-Universität Bochum, 1975.Google Scholar
  70. [14]
    Krischer, O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik. 2. Aufl. Berlin: Springer-Verl. 1963.Google Scholar
  71. [15]
    B6rner, H.: Über den Wärme-und Stoffübergang an umspülten Einzelkörpern bei Überlagerung von freier und erzwungener Strömung. VDI-Forsch.-Heft 513. Düsseldorf: VDI-Verl. 1965 und: VDI-Wärmeatlas, Abschn. Fa. 3. Auflage, Düsseldorf: VDI-Verl. 1977.Google Scholar
  72. [16]
    Jakob, M., u. W. Linke: Der Wärmeübergang beim Verdampfen von Flüssigkeiten an senkrechten und waagerechten Flächen. Phys. Zeitschr. 36 (1935) S. 267/80.Google Scholar
  73. [17]
    Stralen, S. J. D. van, u. W. Zijl: Fundamental developments in bubble dynamics. Heat Transfer 1978, Toronto, Vol. 6, S. 429/50.Google Scholar
  74. [18]
    Cooper, M. G.: Nucleate boiling. Heat Transfer 1978, Toronto. Vol. 1, S. 463/72.Google Scholar
  75. [19]
    Stephan, K., u. M. Abdelsalam: Heat transfer correlations for natural convection boiling. Int. J. Heat Mass Transfer 23 (1980) S. 73/87.Google Scholar
  76. [20]
    Goetz, J.: Entwicklung und Erprobung einer Normapparatur zur Messung des Wärmeübergangs beim Blasensieden. Diss. Universität Karlsruhe (TH) 1981.Google Scholar
  77. [21]
    Bier, K., D. Gorenflo u. G. Wickenhäuser: Heat transfer to boiling refrigerants in a wide pressure range. Bull de l’Inst. Int. du Foid, Vol. 52, Annexe 1972/1, S. 63/73.Google Scholar
  78. [22]
    Bier, K., D. Gorenflo u. Y. M. Tanes: Measurements of heat transfer from horizontal plates with different surface roughness to boiling refrigerants in a wide pressure range. Bull. de l’Inst. Int. du Foid, Vol. 57, Annexe 1977/4, S. 23/32.Google Scholar
  79. [23]
    Bier, K., D. Gorenflo, M. I. Salem u. Y. M. Tanes: Pool boiling heat transfer and size of active nucleation centers for horizontal plates with different surface roughness. Heat Transfer 1978, Toronto, Vol. 1, S. 151/56.Google Scholar
  80. [24]
    Bier, K., D. Gorenflo, M. I. Salem u. Y. M. Tanes: Effect of pressure and surface roughness on pool boiling of refrigerants. Int. J. Refrig. 2 (1979) S. 211/19.Google Scholar
  81. [25]
    Haffner, H.: Wärmeübergang an Kältemittel bei Blasenverdampfung, Filmverdampfung und überkritischem Zustand des Fluids. BMBW-FB K 70/24, 1970.Google Scholar
  82. [26]
    Bier, K., D. Gorenflo u. G. Wickenhäuser: Zum Wärmeübergang beim Blasensieden in einem weiten Druckbereich. Chem. Ing. Techn. 45 (1973) S. 935/42.Google Scholar
  83. [27]
    Bier, K., H. R. Engelhorn u. D. Gorenflo: Wärmeübergang beim Blasensieden im Bereich niedriger Siededrücke. VDI-Bericht Nr. 290 (1977) S. 467/74.Google Scholar
  84. [28]
    Stephan, K., u. P Preußer: Wärmeübergang und maximale Wärmestromdichte beim Behältersieden binärer und ternärer Flüssigkeitsgemische. Chem.-Ing. Techn. MS 649/79, Synopse: Chem. Ing. Techn. 51 (1979) S. 37.Google Scholar
  85. [29]
    Slipcevic, B.: Ein Beitrag zum Wärmeübergang von Kältemitteln an einzelnen glatten Rohren. Klima-Kälte-Technik 15 (1973) S. 186/92.Google Scholar
  86. [30]
    Hirschberg, H. G.: Zur Berechnung von Röhrenkesselverdampfern. Kältetechnik 18 (1966) S. 155/160.Google Scholar
  87. [31]
    Bier, K., D. Gorenflo u. G. Wickenhäuser: Pool boiling heat transfer at saturation pressures up to critical. Beitrag in: Heat transfer in boiling, E. Hahne und U. Grigull, ed. Hem. Publ. Corp., Washington, 1977, S. 137/58.Google Scholar
  88. [32]
    Wickenhäuser, G.: Einfluß der Wärmestromdichte und des Siededruckes auf den Wärmeübergang beim Blasensieden von Kältemitteln. Diss., Univ. Karlsruhe (TH) 1972.Google Scholar
  89. [33]
    Wallner, R.: Der kältemittelseitige Wärmeübergang in überfluteten Rohrbündelverdampfern. Diss., Universität Stuttgart 1972.Google Scholar
  90. [34]
    Hesse, G.: Wärmeübergang bei Blasenverdampfung, bei maximaler Wärmestromdichte und im Übergangsbereich zur Filmverdampfung. Diss. Techn. Universität Berlin 1972.Google Scholar
  91. [35]
    Sauer, H. J., K. Gibson u. S. Chongrungreong: Influence of oil on the nucleate boiling of refrigerants. Heat Transfer 1978, Toronto, Vol. 1, S. 181/86.Google Scholar
  92. [36]
    Stephan, K: Einfluß des Öls auf den Wärmeübergang von siedendem Frigen 12 und Frigen 22. Kältetechnik 16 (1964) S. 152/66.Google Scholar
  93. [37]
    Bier, K., H. R. Engelhorn u. D. Gorenflo: Wärmeübergang an tiefsiedende Halogenkältemittel. Ki, Klima + Kälte-Ing. 4 (1976) S. 399/406.Google Scholar
  94. [38]
    Gorenflo, D.: Zur Druckabhängigkeit des Wärmeübergangs an siedende Kältemittel bei freier Konvektion. Chem. Ing. Techn. 40 (1968) S. 757/62.Google Scholar
  95. [39]
    Jungnickel, H., P. Wassilew u. W. E. Kraus: Investigations of the heat transfer of boiling binary refrigerant mixtures. Int. J. Refrigeration 3 (1980) S. 129/33.Google Scholar
  96. [40]
    Wassilew, P, u. W. E. Kraus: Berechnung von Wärmeübergangskoeffizienten siedender Halogenkältemittel bei tiefen Verdampfungstemperaturen. Luft-und Kältetechnik 16 (1980) S. 12/15.Google Scholar
  97. [41]
    Feurstein, G.: Der Einfluß des Druckes und der Geometrie auf den Wärmeübergang beim Behältersieden nahe dem kritischen Punkt. Diss. Techn. Univers. München, 1974.Google Scholar
  98. [42]
    Barthau, G.: Blasensieden von Ammoniak. Unveröffentlichte Messungen am Inst. f. Thermodynamik + Wärmetechnik, Universität Stuttgart, 1980.Google Scholar
  99. [43]
    Danilowa, G. N.: Heat transfer to boiling refrigerants. Beitrag in: Problems of Heat Transfer and Hydraulics of Two Phase Media, S. S. Kutateladze ed. Pergamon Press, Oxford 1969, S. 107/30.Google Scholar
  100. [44]
    Hofmann, T. M. E. von: Wärmeübergang beim Blasensieden verflüssigter Gase und ihrer binären Gemische. Diss. ETH Zürich 1977. Vgl. auch: Wärme-und Stoffübertragung 11 (1978) S. 189/93.Google Scholar
  101. [45]
    Sciance, C. T, C. P. Colver u. C. M. Sliepcevich: Pool boiling of methane between atmospheric pressure and the critical pressure. Adv. in Cryogenic Engng. 12 (1967) S. 395/408.Google Scholar
  102. [46]
    Ackermann, H., L. Bewilogua, R. Knöner, B. Kretzschmar, I. P. Usyugin u. H. Vinzelberg: Heat transfer in liquid nitrogen-methane mixtures under pressure. Cryogenics 15 (1975) S. 657/59.Google Scholar
  103. [47]
    Lyon, D. N.: Pool boiling of cryogenic liquids. Chem. Engng. Progr. Symp. Ser. No. 87, Vol. 64 (1968) S. 82/92.Google Scholar
  104. [48]
    Kosky, P. G., u. D. N. Lyon: Pool boiling heat transfer to cryogenic liquids. AIChE Journ. 14 (1968) S. 372/87.Google Scholar
  105. [49]
    Sciance, C. T, C. P. Colver u. C. M. Sliepcevich: Nucleate pool boiling and burnout of liquefied hydrocarbon gases. Chem. Engng. Progr. Symp. Ser. No. 77, Vol. 63 (1967) S. 109/14.Google Scholar
  106. [50]
    Kravchenko, V. A., u. Yu. N. Ostrovskij: Effect of surface roughness on boiling heat transfer to light hydrocarbons and nitrogen. Heat Transfer, Sov. Res. 11 (1979) S. 133/37.Google Scholar
  107. [51]
    Cichelli, M. T, u. C. E Bonilla: Heat transfer to liquids boiling under pressure. Trans. AIChE 16 (1945) S. 745/87.Google Scholar
  108. [52]
    Berenson, P. 1: Experiments on pool boiling heat transfer. Int. J. Heat Mass Transfer 5 (1962) S. 985/99.Google Scholar
  109. [53]
    Happel, O.: Wärmeübergang bei der Verdampfung binärer Gemische im Gebiet des Blasen-und Übergangssiedens. Diss. Ruhr-Universität Bochum 1975.Google Scholar
  110. [54]
    Dood, J. de: Nucleate pool boiling of pure liquids, liquid mixtures and polymer solutions at subatmospheric conditions. Diss. Univ. Amsterdam 1981.Google Scholar
  111. [55]
    Körner, M.: Beitrag zum Wärmeübergang bei der Blasenverdampfung binärer Gemische. Diss. TH Aachen 1967.Google Scholar
  112. [56]
    Gorodov, A. K, O. N. Kabankov, Yu. K. Martinov u. V. V. Yagov: Effect of the material and of the thickness of the heating surface on the heat transfer rate in boiling of water and ethanol at subatmospheric pressures. Heat Transfer Sov. Res. 11, No. 3 (1979) S. 44/52. VDI-Wärmeatlas B. Auflage 1997Google Scholar
  113. [57]
    Fritz, W, u. W. Wanninger: Blasenverdampfung im Sättigungszustand der Flüssigkeit an einfachen Heizflächen. VDI-Wärmeatlas, Abschn. Hb, 1. Aufl. 1963.Google Scholar
  114. [58]
    Jordan, D. P, u. G. Leppert: Nucleate boiling characteristics of organic reactor coolants. Nucl. Sci. Engng. 5 (1959) S. 349/59.Google Scholar
  115. [59] Golowin, V. S., B. A. Koltschugin u. D. A. Lahunzow: Untersuchung des Wärmeübergangs beim Sieden von Ethanol und Benzol an Heizflächen aus unterschiedlichem Material (russ.).
    Ing.-Fiz. Journ. 7 (1964) Nr. 6, S. 35 /39.Google Scholar
  116. [60]
    Mesler, R. B., u. J. T. Banchero: Effect of superatmospheric pressures on nucleate boiling of organic liquids. AIChE J. 4 (1958) S. 102/13.Google Scholar
  117. [61] Bier, K., J. Schmadl u. D. Gorenflo: Pool boiling heat transfer to mixtures of SF6 and R13B 1 at elevated saturation pressures. Heat Transfer 1982, München, Vol. 4, 35/40; vgl. auch: vt 16 (1982)
    S. 708/10 u. Chem. Eng. Fund. 1 (1982) S. 79/102.Google Scholar
  118. [62]
    Abadzic, E.: Wärmeübergang beim Sieden in der Nähe des kritischen Punktes. Diss. Techn. Universität München 1967.Google Scholar
  119. [63]
    Fedders, H.: Messung des Wärmeübergangs beim Blasensieden von Wasser an metallischen Rohren. Kernforschungsanlage Jülich, Jill-740 RB 1971.Google Scholar
  120. [64]
    Lorenz, J. J., B. B. Mikic u. W. M. Rohsenow: The effect of surface conditions on boiling characteristics. Heat Transfer 1974, Tokio, Vol. 4, S. 35/39.Google Scholar
  121. [65]
    Raben, I. A., R. T. Beauboeuf u. G. E. Commerford: A study of heat transfer in nucleate pool boiling of water at low pressure. Chem. Engng. Progr. Symp. Ser. No. 57, Vol. 61 (1965) S. 249/57.Google Scholar
  122. [66]
    Borishanskij, V. M., G. I. Bobrovich u. F. P. Minchenko: Heat transfer from a tube to water and to ethanol in nucleate pool boiling. Beitrag in: Problems of Heat Transfer and Hydraulics of Two-Phase Media, S. S. Kutateladze ed. Pergamon Press, Oxford 1969, S. 85/106.Google Scholar
  123. [67]
    Minchenko, F P., u. E. V. Firsova: Heat transfer to water and water-lithium salt solutions in nucleate pool boiling. Beitrag in: Problems of Heat Transfer and Hydraulics of Two-Phase Media, S. S. Kutateladze ed. Pergamon Press, Oxford 1969, S. 137/51.Google Scholar
  124. [68]
    Borishanskij, V. M., A. P. Kozyrev u. L. S. Svetlova: Heat transfer in the boiling of water in a wide range of saturation pressure. Teplofiz. Vysok. Temp. 2 No. 1 (1964) S. 119/21.Google Scholar
  125. [69] Golowin, V S., B. A. Koltschugin u. D. A. Labunzow: Experimentelle Untersuchungen des Wärmeübergangs und der kritischen Wärmestromdichte beim Sieden von Wasser bei freier Konvektion (russ.)
    Ing. Fiz. Journ. 6 Nr. 2 (1963) S. 3/7.Google Scholar
  126. [70]
    Akhmedov, F. D., V. A. Grigorev, u. A. S. Dudkevich: The boiling of nitrogen at pressures from atmospheric to critical. Teploenergetika 21, 1 (1974) S. 84/85.Google Scholar
  127. [71]
    Grigorev, V. A., Yu. M. Pavlov u. E. V. Ametistov: Correlating experimental data on heat transfer with pool boiling of several cryogenic liquids. Teploenergetika 20, 9 (1973) S. 57/63.Google Scholar
  128. [72]
    Ackermann, H., L. Bewilogua u. H. Vinzelberg: Buble boiling from heated surfaces of different material in liquid nitrogen. Cryogenics 15 (1975) S. 677/78.Google Scholar
  129. [73]
    Ackermann, H., L. Bewilogua, A. Jahn, R. Knöner u. H. Vinzelberg: Heat transfer in nitrogen-methane mixtures under pressure with film boiling. Cryogenics 16 (1976) S. 497/99.Google Scholar
  130. [74]
    Bewilogua, L., R. Knöner u. H. Vinzelberg: Heat transfer in cryogenic liquids under pressure. Cryogenics 15 (1975) S. 121/25.Google Scholar
  131. [75]
    Deev, V I., E. Keilin, I. A. Kovalev, A. K. Kondratenko u. V I. Petrovichev: Nucleate and film pool boiling heat transfer to saturated liquid helium. Cryogenics 17 (1977) S. 557/62.Google Scholar
  132. [76]
    Smith, R. V: Review of heat transfer to helium. I. Cryogenics 9 (1969) S. 11/19.Google Scholar
  133. [77]
    ] Jergel, M., u. E. Stevenson: Static heat transfer to liquid helium in open pools and narrow channels. Int. J. Heat Mass Transfer 14 (1971) S. 2099/107.Google Scholar
  134. [79]
    Tanes, M. Y: Zum Einfluß der Oberflächenbeschaffenheit der Heizfläche auf den Wärmeübergang beim Blasensieden. Diss. Universität Karlsruhe (TH) 1976.Google Scholar
  135. [80]
    Gorenflo, D., J. Goetz u. K. Bier: Vorschlag für eine Standard-Apparatur zur Messung des Wärmeübergangs beim Blasensieden. Wärme- u. Stoffübertragung 16 (1982) S. 69/78.Google Scholar
  136. [81]
    Slipcevic, B.: Wärmeübergang bei der Blasenverdampfung von Kältemitteln an glatten und berippten Rohrbündeln. Ki, Klima- u. Kälteingenieur 3 (1975) S. 279/86.Google Scholar
  137. [82]
    Palen, J. W, J. Taborek u. S. Yilmaz: Comments to the application of enhanced boiling surfaces in tube bundles. Int. Sem. “Advancements in Heat Exchangers”, ICHMT Dubrovnik, Sept. 1981.Google Scholar
  138. [83]
    Zimmermann, F: Messung der Wärmeübergangskoeffizienten von verdampfenden Kältemitteln bei überfluteter Verdampfung. Ki, Klima-Kälte-Heizung 10 (1982) S. 11/17.Google Scholar
  139. [84]
    Stephan, K., u. J. Mitrovic: Heat transfer in natural convective boiling of refrigerant-mixtures in bundles of T-shaped finned tubes. 20th Nat. Heat Transfer Conf. Milwaukee, 1981.Google Scholar
  140. [85]
    Burkhardt, J., u. E. Hahne: Influence of oil on the nucleate boiling of refrigerant 11. XVth Int. Congress of Refrigeration, Venedig 1979, Vol. 2, S. 537/44.Google Scholar
  141. [86]
    Müller, J., u. E. Hahne: Boiling heat transfer in finned tube bundles. Proceedings All Union Heat Transfer Conf., Minsk 1980.Google Scholar
  142. [87]
    Güttinger, M.: Die Verbesserung des Wärmeübergangs bei der Verdampfung. Heat Transfer 1970, Paris-Versailles, Vol. 1, Paper HE 2. 4.Google Scholar
  143. [88]
    Gorenflo, D.: Zum Wärmeübergang bei der Blasenverdampfung an Rippenrohren. Diss. TH Karlsruhe 1966.Google Scholar
  144. [89] Danilowa, G. N., u. V A. Djundin: Wärmeübergang bei der Verdampfung von R 12 und R 22 an Rippenrohrbündeln (russ.).
    Cholod. Techn. 48 (1971) S. 40/46.Google Scholar
  145. [90]
    Bonilla, C. F, u. C. W. Perry: Heat transmission to boiling binary liquid mixtures. Trans. AIChE 37 (1941) S. 685/705.Google Scholar
  146. [91]
    Afgan, N. H.: Boiling heat transfer and burnout heat flux of ethyl-alcohol-benzene mixtures. Heat Transfer 1966, Chicago, Vol. 3, 175/85.Google Scholar
  147. [92]
    Tolubinskij, V I., Yu. N. Ostrovskij, V Ye. Pisarev, A. A. Kriveshko u. D. M. Konstanchuk: Boiling heat transfer rate from a benzene/ethanol-mixture as a function of pressure. Heat Transfer Soviet Research 7 (1975) S. 118/21.Google Scholar
  148. [93]
    Stephan, K., u. M. Körner: Berechnung des Wärmeübergangs verdampfender binärer Flüssigkeitsgemische. Chem. Ing. Techn. 41 (1969) S. 409/16.Google Scholar
  149. [94]
    Stephan, K.: Wärmeübertragung beim Verdampfen von Gemischen in natürlicher Strömung. Verfahrenstechnik 14 (1980) S. 470/74.Google Scholar
  150. [95]
    Preußer, P: Wärmeübergang beim Verdampfen binärer und ternärer Flüssigkeitsgemische. Diss. Ruhr-Universität Bochum 1978.Google Scholar
  151. [96]
    Stephan, K., u. P. Preußer: Heat transfer in natural convection boiling of polynary mixtures. Heat Transfer 1978, Toronto, Vol. 1, S. 187/92.Google Scholar
  152. [97]
    Schmadl, J.: Zum Wärmeübergang bei der Blasenverdampfung binärer Stoffgemische unter hohem Druck. Diss. Universität Karlsruhe (TH), 1982.Google Scholar
  153. [98]
    Körner, M.: Wärmeübergang bei der Blasenverdampfung von Gemischen. VDI-Wärmeatlas 3. Auflage, Abschn. He 2. Düsseldorf: VDI-Verl. 1977.Google Scholar
  154. [99]
    Bell, K. J.: Heat exchangers with phase change. Proc. Int. Sem. “Advancements in Heat Exchangers” ICHMT Dubrovnik, Sept. 1981.Google Scholar
  155. [100]
    Palen, J. W, A. Jarden u. J. Taborek: Characteristics of boiling outside largescale horizontal multitube bundles. AIChE Symp. 68 (1972) S. 50/61.Google Scholar
  156. [101]
    Grant, I. D. R., u. D. Chisholm: Two-phase flow on the shell side of a segmentally baffled shell-and-tube heat exchanger. J. Heat Transfer 101 (1979) S. 38/42.Google Scholar
  157. [101]
    Grant, I. D. R., u. D. Chisholm: Horizontal two-phase flow across tube banks. Int. J. Heat and Fluid Flow 2 (1980) S. 97/100.Google Scholar
  158. [102]
    Grant, I. D. R., C. D. Colchin u. D. Chisholm: Tube submergence and entrainment on the shell-side of heat exchangers. Proc. Int. Sem. “Advancements in Heat Exchangers” ICHMT Dubrovnik, Sept. 1981.Google Scholar
  159. [103]
    Kulaleladze, S. S.: Kritische Wärmestromdichte bei einer unterkühlten Flüssigkeitsströmung. Energetika 7 (1959) S. 229/239 and Izvestia Akademia Nauk Otdelinie Tekhnicheski Nauk 4 (1951) S. 529.Google Scholar
  160. [104]
    Zuber, N.: On the stability of boiling heat transfer. J. Heat Transfer 80 (1958) S. 711.Google Scholar
  161. [105]
    Zuber, N., u. M. Tribus: Further Remarks on the stability of boiling heat transfer. UCLA Rept. No. 58/5, Univ. of Calif., Los Angeles 1958.Google Scholar
  162. [106]
    Zuber, N., M. Tribus u. J. W. Westwater: Hydrodynamic crisis in pool boiling of saturated and subcooled liquids. Int. Heat Transfer Conf. Boulder 1961, Pap. No. 27, S. 230/36.Google Scholar
  163. [107]
    Borishanskij, V M.: An equation generalizing experimental data on the cessation of bubble boiling in a large volume of liquid. J. Tekh. Fiz. 26 (1956) S. 452/56.Google Scholar
  164. [108]
    Noyes, R. C.: An experimental study of sodium pool boiling heat transfer. J. Heat Transfer 85 (1963) S. 125/31.Google Scholar
  165. [109]
    Moissis, R., u. P. J. Berenson: On the hydrodynamic transition in nucleate boiling. J. Heat Transfer 85 (1963) S. 221/29.Google Scholar
  166. [110]
    Lienhard, J. H., u. V K. Dhir: Hydrodynamic prediction of peak pool-boiling heat fluxes from finite bodies. J. Heat Transfer 95 (1973) S. 152/58.Google Scholar
  167. [111]
    Wright, R. D., u. C. D. Colver: Saturated pool boiling burnout of ethane-ethylene-mixtures. Chem. Engng. Prog. Symp. Ser. 65 (1969) S. 204/10.Google Scholar
  168. [112]
    Bier, K., H. R. Engelhorn u. D. Gorenflo: Heat transfer at burnout and Leidenfrost points for pressures up to critical. Beitrag in: Heat transfer in boiling, E. Hahne u. U. Grigull, ed. Hemisphere Publ. Corp. Washington 1977, S. 85/98.Google Scholar
  169. [113]
    Hahne, E., u. G. Feurstein: Heat transfer in pool boiling in the thermodynamic critical region: Effect of pressure and geometry. Beitrag in: Heat transfer in boiling, E. Hahne u. U. Grigull, ed. Hemisph. Publ. Corp. Washington 1977, S. 159/206.Google Scholar
  170. [114]
    Labunzow, D. A., V. V. Jagov u. A. K. Gorodov: Critical heat fluxes in boiling at low pressure region. Heat Transfer 1978, Toronto, Vol. 1, S. 221/25.Google Scholar
  171. [115]
    Diesselhorst, T, U. Grigull u. E. Hahne: Hydrodynamic and surface effects of the peak heat flux in pool boiling. Beitrag in: Heat transfer in boiling, E. Hahne u. U. Grigull, ed. Hemisphere Publ. Corp. Washington 1977, S. 99/136.Google Scholar
  172. [116]
    Bromley, L. A.: Heat transfer in stable film boiling. Chem. Engng. Progr. 46 (1950) S. 221/27.Google Scholar
  173. [117]
    Bromley, L. A., R. L. Norman u. J. A. Robbers: Heat transfer in forced convection film boiling. Ind. Engng. Chem. 45 (1953) S. 2639/46.Google Scholar
  174. [118]
    Roetzel, W: Berechnung der Leitung and Strahlung bei der Filmverdampfung an der ebenen Platte. Wärme-u. Stoffübertragung 12 (1979) S. 1/4.Google Scholar
  175. [119]
    Grigull, U., u. E. Abadzic: Heat transfer from a wire in the critical region. Proc. Instn. Mech. Engrs. 182, Part 31 (1968) S. 52/57.Google Scholar
  176. [120]
    Hesse, G., E. M. Sparrow u. R. J. Goldstein: Influence of pressure on film boiling heat transfer. J. Heat Transfer 98 (1976) S. 166/72.Google Scholar
  177. [121]
    Pitschmann, P., u. U. Grigull: Filmverdampfung an waagerechten Zylindern. Wärme-u. Stoffübertragung 3 (1970) S. 75/84.Google Scholar
  178. [122]
    Marschall, E.: Filmsieden eines Zweistoffgemischs. Wärme-u. Stoffübertragung 9 (1976) S. 167/72.Google Scholar
  179. [123]
    Happel, O., u. K. Stephan: Heat transfer from nucleate to the beginning of film boiling in binary mixtures. Heat Transfer 1974, Tokyo, Vol. 4, S. 340/44.Google Scholar
  180. [124]
    Tolubinskij, V. I., A. M. Kichigin u. S. G. Povsten: The critical heat flux density in free-convection boiling of water. Heat Transfer, Soviet Research 11 (1979) S. 6/11.Google Scholar
  181. [125]
    Borishanskij, V. M.: Correlation of the effect of pressure on the critical heat flux and heat transfer rates using the theory of thermodynamic similarity. Beitrag in: Problems of Heat Transfer and Hydraulics of Two-Phase Media, S. S. Kutateladze, ed. Pergamon Press, Oxford 1969, S. 16/37.Google Scholar
  182. [126]
    Mostinskij, I. L.: Anwendung des Korrespondenzprinzips zur Berechnung der Wärmeübertragung und der kritischen Wärmestromdichte für siedende Flüssigkeiten. Teploenergetika (Bd. 10, Heft 4) (1963) S. 66/71.Google Scholar
  183. [127]
    Gorenflo, D.: Stand der Berechnungsmethoden zum Wärmeübergang bei der Verdampfung von Kältemitteln in freier Konvektion. DKV-Tagungsbericht 9 (1982) Essen, S. 213/40.Google Scholar
  184. [128]
    Schlünder, E. U.: Über den Wärmeübergang bei der Blasenverdampfung von Gemischen. vt „verfahrenstechnik“ 16 (1982) S. 692/98.Google Scholar
  185. [129]
    Alpay, H. E., u. D. Gorenflo: Burnout heat transfer to SF6/R13B1-mixtures at near-critical saturation pressures. XVIth Int. Congress of Refrigeration, Paris 1983. Vol. 2, S. 155/162.Google Scholar
  186. [130]
    Gorenflo, D., V Knabe u. V. Bieling: Bubble density on surfaces with nucleate boiling - its influence on heat transfer and burnout heat flux at elevated saturation pressures. Proc. 8th Int. Heat Transfer Conf., San Francisco 1986, Vol. 4, S. 1995/2000.Google Scholar
  187. [131]
    Rüthlein, H.: Aufbau und Erprobung einer Apparatur zur Messung des Wärmeübergangs von einem horizontalen Rohr an tiefsiedende Flüssigkeiten. Diss., Univ. Karlsruhe (TH) 1984.Google Scholar
  188. [132]
    Blöchl, R.: Zum Einfluß der Oberflächenstruktur unterschiedlich bearbeiteter Heizflächen auf die Wärmeübertragung beim Blasensieden. Diss., Univ. Karlsruhe (TH) 1986.Google Scholar
  189. [133]
    Fath, W: Wärmeübergangsmessungen an Glatt-und Rippenrohren in einer Standardapparatur für Siedeversuche. Diss., Univ. (GH) Paderborn, 1987.Google Scholar
  190. [134]
    Siebert, M.: Untersuchung zum Einfluß des Wandmaterials und des Rohrdurchmessers auf den Wärmeübergang von horizontalen Rohren an siedende Flüssigkeiten. Diss., Univ. Karlsruhe (TH), 1987.Google Scholar
  191. [135]
    Bieling, V: Zum Wärmeübergang beim Blasensieden des Kältemittelstoffsystems R 22/R115 in einem großen Druckbereich. Diss., Univ. (GH) Paderborn, 1987.Google Scholar
  192. [136]
    Bland, M. E., C. A. Bailey u. G. Davey: Boiling from metal surfaces immersed in liquid nitrogen und liquid hydrogen. Cryogenics 13 (1973) S. 651/657.Google Scholar
  193. [137]
    Slipcevic, B.: Sieden von Halogen-Kältemitteln an einzelnen Rippenrohren. Maschinenmarkt 89 (1983) 5. 2090 /2093.Google Scholar
  194. [138]
    Fath, W, u. D. Gorenflo: Zum Einsatz von Rippenrohren in überfluteten Verdampfern bei hohen Siededrücken. DKV-Tagungsbericht 13 (1986), S. 315/332.Google Scholar
  195. [139]
    Gropp, U., u. E. U. Schlünder: The influence of liquid side mass transfer and selectivity during surface and nucleate boiling of liquid mixtures in a falling film. Chem. Eng. Process 20 (1986) S. 103/114.Google Scholar
  196. [140]
    Haselden, G. G., u. J. I. Peters: Heat transfer to boiling liquid oxygen and liquid nitrogen. Trans. Inst. Chem. Eng. (London) S. 201/208.Google Scholar
  197. [141]
    Thome, L. R., u. W. B. Bald: Nucleate pool boiling in cryogenic binary mixtures. Proc. 7th Int. Cryogenic Engineering Conference (1978) S. 523/530.Google Scholar
  198. [142]
    Levterov, A. I., M. Semena, V K. Zaripov u. A. N. Gershuni: Boiling of nitrogen on a porous surface. Thermal Engineering 30 (3), (1983) S. 174/177.Google Scholar
  199. [143]
    Lyon, D. N.: Peak nucleate boiling heat fluxes and nucleate boiling heat transfer coefficients for liquid N2, liquid 02 and their mixtures in pool boiling at atmospheric pressure. Heat Mass Transfer 7 (1964), S. 1097/1116.Google Scholar
  200. [144]
    Belyakov, V P., u. V. K. Orlov: Heat transfer at boiling of nitrogen under subatmospheric pressure and its intensification. Heat and Mass Transfer in Refrigeration and Cryogenics. J. Bougard and N. Afgan, ed. Hemisphere Publ. Corp., Washington 1987. S. 547/552.Google Scholar
  201. [145]
    Blanchero, J. T, G. E. Barker u. R. H. Boll: Heat transfer characteristics of boiling oxygen, fluorine and hydrazine. Eng. Res. Inst. Univ. of Michigan 1951. Aus: Vance, R. W: Cryogenic Technology, John Wiley and Sons, Inc., New York—London, 1963.Google Scholar
  202. [146]
    Verkin, B. 1., Yu. A. Kirichenko u. A. I. Charkin: Cryogenic liquid boiling in inhomogeneous magnetic field. Proc. 6th Int. Cryogenic Engineering Conference (1976), S. 292/294.Google Scholar
  203. [147]
    Astruc, J. M., P Perroud, A. Lacaze u. L. Weil: Pool Boiling heat transfer in liquid neon. Advances in Cryogenic Engineering Vol. 12, Plenum Press, New York (1967), S. 387/394.Google Scholar
  204. [148]
    Hodge, Brickwede from Richards, R. J., W. G. Steward u. R. B. Jacobs: A survey of the literature on heat transfer from solid surfaces to cryogenic fluids. NBS TN 122, Boulder Laboratories, Oct. 1961. Aus: Vance, R. W: Cryogenic Technology, John Wiley and Sons, Inc., New York—London, 1963.Google Scholar
  205. [149]
    Mulford, R. N., J. P. Nigon, J. G. Dash u. W E. Keller: Heat exchange between a copper surface and liquid hydrogen and nitrogen. Ext. from secret Doc. LAMS-1443. Aus.: Vance, R. W: Cryogenic Technology, John Wiley and Sons, Inc., New York—London, 1963.Google Scholar
  206. [150]
    Claas, C. R., J. R. DeHaan, M. Piccone u. R. B. Cost.’ Boiling heat transfer to liquid hydrogen from flat surfaces. Advanc. Cryog. Engng. 5 (1960), S. 254/261.Google Scholar
  207. [151]
    Weil, L., u. A. Lacaze: Heat exchanges in liquid hydrogen boiling under pressure. Proc. 9th Int. Congr. of Refrigeration, Paris (1955), Vol. I, Paper 1.13, S. 1024/1027.Google Scholar
  208. [152]
    Verkin, B. I., Yu. A. Kirichenko, S. M. Kozlov u. N. M. Levchenko: Heat transfer in helium I. Proc. 6th Int. Cryogenic Engng. Conference (1976), S. 289/291.Google Scholar
  209. [153]
    Holdredge, R. M. u. P. W McFadden: Heat transfer from horizontal cylinders to a saturated helium I bath. Proc. 16th Cryog. Engng. Conference (1970), S. 352/358.Google Scholar
  210. [154]
    Grigorev, V. A., V. V Klimenko, Yu. M. Pavlov, Ye. V. Ametistov u. A. V. Klimenko: Characteristic curve of helium pool boiling. Cryogenics 17 (1977), S. 155/156.Google Scholar
  211. [155]
    Shugaev, V A., Yu. M. Pavlov u. S. A. Potekhin: Certain principles of heat transfer with nucleate boiling of helium. Thermal Engineering, Vol. 30 (8), (1983), S. 487/490.Google Scholar
  212. [156]
    Jergel, M., u. R. Sterenson: Contribution to the static heat transfer to boiling liquid helium. Cryogenics 14 (1974), S. 431/433.Google Scholar
  213. [157]
    Karagounis, A.: Heat transfer coefficient for liquid helium. Bull. Inst. Intern. Froid., Annexe 2, 1956, S. 195/199.Google Scholar
  214. [158]
    Lyon, D. N.: Boiling heat transfer and peak nucleate boiling fluxes in saturated liquid helium between the lambda and critical temperatures. Advanc. Cryog. Engng. Vol. 10 b (1965), S. 371/379.Google Scholar
  215. [159]
    Stephan, K.: Wärmeübergang beim Kondensieren and beim Sieden. Reihe: Wärme- u. Stoffübertraguny. Hrsg. U. Grigull. Springer-Verl. Berlin, 1988.Google Scholar
  216. [160]
    Auracher, H.: Transition boiling. Heat Transfer 1990. Proc. 9th Int. Heat Transf. Conf. Jerusalem. Hrsg.: G. Hetsroni, Vol. 1., New York: Hem. Publ. Corp. 1990; S. 69/90.Google Scholar
  217. [161]
    Dhir, V. K.: Nucleate and transition boiling heat transfer under pool and external flow conditions. Heat Transfer 1990. Proc. 9th Int. Heat Transf. Conf., Jerusalem. Hrsg.: G. Hetsroni, Vol. 1. New York: Hem. Publ. Corp. 1990, S. 129/56.Google Scholar
  218. [162]
    ] Gorenflo, D., H. Schömann, P. Sokol u. S. Caplanis: Zum Einfluß der Oberflächenrauhigkeit und des Rohrdurchmessers beim Blasensieden an einzelnen Glatt- und Rippenrohren. Wärme- u. Stoffübertr. 25 (1990) S. 265/272.Google Scholar
  219. [164]
    Bier, K., u. H. Rüthlein: Apparatus for precise measurements of pool boiling heat transfer in the temperature range of liquid nitrogen. Int. J. Refrig. 11 (1988), S. 321/28.Google Scholar
  220. [165]
    Gorenflo, D., u. P. Sokol: Prediction method of pool boiling heat transfer with cryogenic liquids. Int. J. Refrig. 11 (1988), S. 315/20.Google Scholar
  221. [166]
    Bier, K., u. M. Lambert: Heat transfer in nucleate boiling of different low boiling substances. Int. J. Refrig. 13 (1990), S. 293/300.Google Scholar
  222. [167]
    Gorenflo, D., P Sokol u. S. Caplanis: Pool boiling heat transfer from single plain tubes to various hydrocarbons. Int. J. Refrig. 13 (1990), S. 286/92.Google Scholar
  223. [168]
    Sokol, P, P. Blein, D. Gorenflo, W Rott u. H. Schömann: Pool boiling heat transfer from plain and finned tubes to propane and propylene. Heat Transfer 1990. Proc. 9th Int. Heat Transf. Conf. Jerusalem. Hrsg. G. Hetsroni, Vol. 2, New York: Hem. Publ. Corp. 1990; S. 75/80.Google Scholar
  224. [169]
    Schömann, H.: Beitrag zum Einfluß der Heizflächenrauhigkeit auf den Wärmeübergang beim Blasensieden. Diss. Univ. (GH) Paderborn 1994.Google Scholar
  225. [170]
    Shi, K.: Wärmeübergang beim Sieden am waagerechten Draht. Diss. Univ. Stuttgart 1989; vgl. auch: Shi, K., E. Hahne, C. Möller u. U. Groß: Untersuchungen des Wärmeüberganges beim Sieden der Ersatzkältemittel R 134a und R 152a. DKV-Tagungsbericht 17 (1990), S. 313/321 und: Shi, K., E. Hahne u. U. Groß: Pool boiling heat transfer in HFC-134a, HFC-152a and their mixtures. Proc. 18th Int. Congr. Refrig., Montreal 1991, Vol. II, S. 459/463.Google Scholar
  226. [171]
    Schlünder, E. U.: Heat Transfer in nucleate boiling of mixtures. Heat Transfer 1986. Proc. 8th Int. Heat Transf. Conf., San Francisco. Vol. 4. New York: Hem. Publ. Corp. 1986; S. 2073/79.Google Scholar
  227. [172]
    Bayer, A.: Untersuchungen zum Blasensieden von binären Stoffgemischen in einem großen Druckbereich. Diss. Univ. Karlsruhe (TH) 1988; vgl. auch: Bier, K., u. A. Bayer: Pool boiling heat transfer to binary mixtures in a wide range of saturation pressures. Eurotherm Seminar No. 8, Paderborn 1989, S. 150/62.Google Scholar
  228. [173]
    Gorenflo, D., P Blein, G. Herres, W Rott, H. Schömann u. P. Sokol: Heat transfer at pool boiling of mixtures with R 22 and R 114. Int. J. Refrig. 11 (1988), S. 257/63.Google Scholar
  229. [174]
    Rott, W: Zum Wärmeübergang und Phasengleichgewicht siedender R 22/R 114-Kältemittel-Gemische in einem großen Druckbereich. Diss. Univ. (GH) Paderborn 1990.Google Scholar
  230. [175]
    Gorenflo, D., u. V Bieling: Heat transfer at pool boiling of mixtures. In: Heat and Mass Transfer in Refrigeration and Cryogenics. New York: Hem. Publ. Corp. 1987; S. 243/57.Google Scholar
  231. [176]
    Möller, C., U. Groß u. E. Hahne: Einfluß von 01 auf den Wärmeübergang beim Sieden neuer Kältemittel. DKV-Statusbericht 12 (1992), S. 81/87.Google Scholar
  232. [177]
    Hahne, E., J. Shen u. K. Spindler: Blasensieden von Propan am Draht. Unveröffentlichte Messungen am Institut f. Thermodynamik und Wärmetechnik, Universität Stuttgart, Nov. 1993.Google Scholar
  233. [178]
    Sokol, P.: Untersuchungen zum Wärmeübergang beim Blasensieden an Glatt- und Rippenrohren mit großem Außendurchmesser. Diss. Univ. (GH) Paderborn 1994.Google Scholar
  234. [179]
    Sokol, P, H. Schömann, W. Rott, S. Caplanis u. D. Gorenflo: Wärmeübergang beim Blasensieden neuer Kältemittel. DKV-Tagungsbericht 17 (1990), S. 323/340, vgl. auch: Gorenflo, D., P. Sokol u. S. Caplanis: Pool boiling heat transfer from single tubes to new refrigerants. Proc. 18th Int. Congr. Refrig., Montreal 1991, Vol. II, S. 423/428.Google Scholar
  235. [180]
    Gorenflo, D., P. Sokol u. S. Caplanis: Zum Wärmeübergang beim Blasensieden von Kohlenwasserstoffen und Halogen-Kältemitteln an einem Glattrohr und einem Hochleistungs-Rippenrohr. Wärme- und Stoffübertragung, 26 (1991), S. 273/281.Google Scholar
  236. [181]
    Leiner, W: Heat transfer by nucleate pool boiling — general correlation based on thermodynamic similarity. Int. J. Heat and Mass Transfer 37 (1994), S. 763/769.Google Scholar
  237. [181]
    Braun, R.: Wärmeübergang beim Blasensieden an der Außenseite von geschmirgelten und sandgestrahlten Rohren aus Kupfer, Messing und Edelstahl. Diss. Univ. Karlsruhe (TH) 1992.Google Scholar
  238. [182]
    Bednar, W. H.: Wärmeübergang beim Blasensieden von binären Kohlenwasserstoffgemischen. Diss., Univ. Karlsruhe (TH) 1993, vgl. auch: Bednar, W., u. K. Bier: Wärmeübergang beim Behältersieden von Propan/n-Butan-Gemischen. DKV-Tagungsbericht 20 (1993), Bd. II.1, S. 323 /340.Google Scholar
  239. [183]
    Buschmeier, M., P. Sokol, A. D. Pinto u. D. Gorenflo: Pool boiling heat transfer of propane/n-butane mixtures at a single tube with superimposed convective flow of bubbles or liquid. Heat Transfer 1994. Proc. 10th Int. Heat Transf. Conf. Brighton, Vol. V, S. 69/74, vgl. auch: Buschmeier, M., A. Luke, P. Sokol u. D. Gorenflo: Wärmeübergang beim Blasensieden von Propan/n-Butan-Gemischen mit Queranströmung, DKV-Tagungsbericht 20 (1993), Bd. II.1, S. 341/354.Google Scholar
  240. [1]
    VDI-Wärmeatlas, neueste Auflage.Google Scholar
  241. [2]
    Dix, G. E.: Vapor void fraction for forced convection with subcooled boiling at low flow rates. Ph.D. Thesis, University of California, Berkeley (1971).Google Scholar
  242. [3]
    Rouhani, S. Z.: Void measurements in the region of sub-cooled low quality boiling. Part II, AE-RTL-849 (1966).Google Scholar
  243. [4]
    Hewitt, G. F.: Simple momentum and energy balances and their related empirical correlations. Two Phase Flows and Heat Transfer. v. Karman Inst. Book, Hemisphere Publishing Corp. 1978.Google Scholar
  244. [5]
    Saha, A., u. N. Zuber: Point of net vapor generation and vapor void fraction in subcooled boiling. Proc. of the fifth intern. Heat Transf. Conf., Tokyo 74, Vol. IV, S. 175/79.Google Scholar
  245. [6]
    Guglielmini, G., E. Nannei u. C. Pisoni: Survey of heat transfer correlations in forced convection boiling. Wärme-und Stoffübertragung 13 (1980) S. 177/85.Google Scholar
  246. [7]
    Hodgson, A. S.: Forced convection subcooled boiling heat transfer with water in an electrically heated tube at 100 to 550 lb/in. Trans. Instn. Chem. Engrs. 46 (1968) S. 25/31.Google Scholar
  247. [8]
    Bucher, B.: Beitrag zum Siedebeginn beim unterkühlten Sieden mit Zwangskonvektion. Diss. 1979, Univ. Hannover.Google Scholar
  248. [9]
    Moles, F. D., u. J. F. C. Shaw: Boiling heat transfer to sub-cooled liquids under conditions of forced convection. Trans. Instn. Chem. Engrs. 50 (1972) S. 76/84.Google Scholar
  249. [10]
    Rouhani, S. Z: Experimental and theoretical studies of vapour volume fraction in two-phase flow. Diss. Norwegen 1979.Google Scholar
  250. [11]
    Zuber, N., u. J. A. Findlay: Average volumetric concentration in two-phase flow systems. J Heat Transfer, Vol. 87 (1965) S. 453/68.Google Scholar
  251. [12]
    Levy, S.: Forced convection subcooled boiling- prediction of vapor volumetric fraction. Int. J. Heat Mass Transfer, Vol. 10 (1967) S. 951/65.Google Scholar
  252. [13]
    Tarasova, N. V, u. V. M. Orlov: Teploenergetika 6 (1962) S. 48/52.Google Scholar
  253. [14]
    Costa, J.: Mesure de la perle de pression par acceleration et étude de l’apparition du taux de vide en ébullition locale à basse pression. Note TT No. 244, Ceng, Grenoble, France.Google Scholar
  254. [15]
    Bergles, A. E., u. W. M. Rohsenow: The determination of forced-convection surface boiling heat transfer. J. Heat Transfer, Vol. 86 (1964) S. 365/72.Google Scholar
  255. [16]
    Yusufova, V. F., A. J. Bronstein u. B. P. Ugretchelidze: The boundaries of boiling regimes at forced flow of aqueous salt solutions in tubes. Proc. VII Symp. Fresh Water from Sea, 1980, Vol. 1, S. 293/302.Google Scholar
  256. [17]
    Unal, H. C.: Determination of the initial point of net vapor generation in flow boiling systems. Int. J. Heat Mass Transfer, Vol. 18 (1975) S. 1095.Google Scholar
  257. [18]
    Staub, F. W.: The void fraction in subcooled boiling - prediction of the initial point of net vapor generation. J. Heat Transfer, Vol. 90 (1968) S. 151/56.Google Scholar
  258. [19]
    Ünal, H. C.: Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water. Int. J. Heat Mass Transfer, Vol. 20 (1977) S. 409/19.Google Scholar
  259. [20]
    Hein, D., W. Kastner u. W. Köhler: Der Einfluß der Strömungsrichtung auf den Wärmeübergang in einem Verdampferrohr. Vortrag der KWU Erlangen auf der GVC-Fachausschußsitzung Freudenstadt 1982.Google Scholar
  260. [21]
    Jain, P. K., K. Nourmohammadi u. R. P. Roy: A study of forced convective subcooled boiling in heated annular channels. Nuclear Engineering and Design 60 (1980) S. 401/11.Google Scholar
  261. [22]
    Badiuzzaman, M.: The Pakistan Engineer, 1967, 7, 759.Google Scholar
  262. [23]
    Kreith, F., u. M. Summerfield: Pressure drop and convective heat transfer with surface coiling at high heat flux; data for aniline and n-butyl alcohol. J. Heat Transfer, Vol. 72 (1950) S. 869/79.Google Scholar
  263. [24]
    Noel, M. B.: Experimental investigation of the forced-convection and nucleate boiling heat transfer characteristics of liquid ammonia. Calif. Inst. of Technology, Pasadena, Techn. Rept. 32 /125, 1961.Google Scholar
  264. [25]
    Noel, M. B.: Experimental investigation of heat transfer characteristics of hydrazine and a mixture of 90. Calif. Inst. of Technology, Pasadena, Techn. Rept. 32 /109, 1961.Google Scholar
  265. [26]
    Dormer, J., u. A. E. Bergles: Pressure drop with surface boiling in small-diameter tubes. Mass. Inst. Techn., Rep. No. 8767/31 (1964).Google Scholar
  266. [27]
    Mayinger, F., D. Bärmann u. D. Hein: Hydrodynamische Vorgänge and Stabilität der Strömung bei unterkühltem Sieden. Chem. Ing. Techn. 40 (1968) Heft 11, S. 515ff.Google Scholar
  267. [28]
    Borishansky, V. M.: Heat Transfer, Soviet Research 5 (1973) S. 137/46.Google Scholar
  268. [29]
    Borishansky, V. M., et al.: Some problems of heat transfer and hydraulics in two-phase flow. Int. J. Heat Mass Transfer, Vol. 16 (1973) S. 1073/85.Google Scholar
  269. [30]
    Kutateladze, S. S.: Fundamentals of Heat Transfer. E. Arnold, London 1962.Google Scholar
  270. [31]
    Kays, W. M.: Convective Heat and Mass Transfer. McGraw-Hill, N.Y. 1966.Google Scholar
  271. [32]
    Gungor, K. E., u. R. H. S. Winterton: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transfer, Vol. 29 (1986) S. 351/58.Google Scholar
  272. [33]
    Del Valle, V. H., u. D. B. R. Kenning: Subcooled flow boiling at high heat flux. Int. J. Heat Mass Transfer, Vol. 28 (1985) S. 1907/20.Google Scholar
  273. [34]
    Chen, J. C.: Correlation for boiling heat transfer to saturated fluids in convective flow. I et EC Process Design and Development Vol. 5 (1996) No. 3, S. 322/29.Google Scholar
  274. [35]
    Bennett, D. L., u. J. C. Chen: Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AIChE Journal Vol. 26 (1980) S. 454/61.Google Scholar
  275. [36]
    Bartolomei, C. G., L. T. Chun u. N. C. Huo: Heat Transfer, Soviet Research Vol. 16 (1985) No. 4, S. 60/63.Google Scholar
  276. [37]
    Bergles, A. E., J. G. Collier et al.: Two-Phase Flow and Heat Transfer in the Power and Process Industries. Hemisphere Publishing, Washington, New York, London, 1981.Google Scholar
  277. [38]
    Gungor, K. E., u. R. H. S. Winterton: Simplified General Correlation for Saturated Flow Boiling and Comparisons of Correlations with Data. Chem. Eng. Res. Des. Vol. 65 (1987) S. 148/79.Google Scholar
  278. [39]
    Forster, H. K., u. H. Zuber: Dynamics of Vapour Bubbles and Boiling Heat Transfer. AIChE Journal Vol. 9 (1955) No. 4, S. 531 ff.Google Scholar
  279. [40]
    Bartolini, R., G. Guglielmini u. E. Nannei: Experimental Study on Nucleate Boiling of Water in Vertical Upflow and Downflow. Int. J. Multiphase Flow, Vol. 9 (1983) No. 2, S. 161/65.Google Scholar
  280. [41]
    Sudo, Y, et al.: Experimental Study of Incipient Nucleate Boiling in Narrow Vertical Rectangular Channel Simulating Subchannel of Upgraded JRR-3. Journal of Nucl. Sci. and Techn., Vol. 23 (1986) No. 1, S. 73/82.Google Scholar
  281. [42]
    Spindler, K., N. Shen u. E. Hahne: Vergleich von Korrelationen zum Wärmeübergang beim unterkühlten Sieden. Wärme- and Stoffübertragung, Vol. 25 (1990) Nr. 2, S. 101/09.Google Scholar
  282. [43]
    Rogers, J. T, M. Salcudean, Z. Abdullah, D. McLeod u. D. Poirier: The onset of significant void in up-flow of water at low pressure and velocities. Int. J. Heat Mass Transfer, Vol. 30 (1987) No. 11, S. 2247/60.Google Scholar
  283. [44]
    Bräuer, H., u. E Mayinger: Subcooled Boiling Heat Transfer to R12 in an Annular Vertical Channel. Chem. Eng. Technol. 11 (1988) S. 320/27.Google Scholar
  284. [45]
    Müller-Steinhagen, H., N. Epstein u. A. P. Watkinson: Effect of Dissolved Gases on Subcooled Flow Boiling Heat Transfer. Chem. Eng. Process. 23 (1988) S. 115/24.Google Scholar
  285. [46]
    Clausse, A., u. R. T. Lahey, Jr.: The Influence of Flow Development on Subcooled Boiling. Int. Comm. Heat Mass Transfer, Vol. 17 (1990) S. 545/54.Google Scholar
  286. [47]
    Bar-Cohen, A., u. T. W. Simon: Wall superheat excursions in the boiling incipience of dielectric fluids. Heat Transfer Engineering, Vol. 9 (1988) S. 19/31.Google Scholar
  287. [48] You, S. M., T. W. Simon, A. Bar-Cohen u. W. Tong: Experimental investigation of nucleate boiling incipience with a highly-wetting dielectric fluid (R-113).
    Int. J. Heat Mass Transfer, Vol. 33 (1990) No. 1, S. 105 /17.Google Scholar
  288. [49]
    Tong, W, A. Bar-Cohen, T. W. Simon u. S. M. You: Contact angle effects on boiling incipience of highly-wetting liquids. Int. J. Heat Mass Transfer, Vol. 33 (1990) No. 1, S. 91/103.Google Scholar
  289. [50]
    You, S. M., T. W. Simon u. A. Bar-Cohen: Experiments on boiling incipience with highly-wetting dielectric fluid; effects of pressure, subcooling and dissolved gas content. Proc. 9th Int. Heat Transfer Conference, Jerusalem, Aug. 1990, Vol. 2, S. 337/42.Google Scholar
  290. [51]
    Hahne, E., K. Spindler u. N. Shen: Incipience of flow boiling in subcooled well wetting fluids. Proc. 9th Int. Heat Transfer Conference, Jerusalem, Aug. 1990, Vol. 2, S. 69/74.Google Scholar
  291. [52]
    Chae, H. B., J. W. Schmidt u. M. R. Moldover: Surface Tension of Refrigerants R123 and R134a. J. Chem. Eng. Data, No. 35, 1990, S. 6/8.Google Scholar
  292. [53] McLinden, M. O., et al.: Measurement and formulation of the thermodynamic properties of refrigerants 134a(1,1,1,2Tetrafluoroethane)
    and 123(1,1-Dichloro-2,2,2-Trifluoroethane). ASHRAE Transaction, Vol. 95 (1989) Pt. 2, S. 263 /83.Google Scholar
  293. [54]
    Bartolomei, G. G., u. V. P. Kovrizhnykh: Correlation of experimental data on hydraulic resistance with subcooled boiling. Thermal Engineering, Vol. 38 (1991) No. 12, S. 669/72.Google Scholar
  294. [55]
    Hoffman, M. A., u. C. E Wong: Prediction of pressure drops in forced convection subcooled boiling water flows. Int. J. Heat Mass Transfer, Vol. 35 (1992) S. 3291/99.Google Scholar
  295. [56]
    Murphy, R. W, u. A. E. Bergles: Subcooled flow boiling of fluorocarbons — Hysteresis and dissolved gas effects on heat transfer. Proc. of Heat Transf. and Fluid Mech. Inst., Stanford Univ. Press, 1972, S. 400/16.Google Scholar
  296. [57]
    Webb, R. L., u. N. S. Gupte: A critical review of correlations for convective vaporization in tubes and tube banks. Heat Transfer Engineering, Vol. 13 (1992) No. 3, S. 58/81.Google Scholar
  297. [58]
    Zeng, L. Z, u. J. E Klausner: Nucleation site density in forced convection boiling. Journal Heat Transfer, Vol. 115 (1993) S. 215/21.Google Scholar
  298. [59]
    Klausner, J. E, R. Mei, D. M. Bernhard u. L. Z. Zeng: Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transfer, Vol. 36 (1993) No. 3, S. 651/62.Google Scholar
  299. [60]
    ] Tsung-Chang, G., u. S. G. Bankof On the mechanism of forced-convection subcooled nucleate boiling. J. Heat Transfer, Vol. 112 (1990) S. 213/18.Google Scholar
  300. [62]
    Liu, Z., u. R. H. S. Winterton: A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int. J. Heat Mass Transfer, Vol. 34 (1991) No. 11, S. 2759/66.Google Scholar
  301. [63]
    Jayanti, S., u. G. E Hewitt: Prediction of onset of nucleate boiling, net vapour generation and subcooled CHF in coiled tube. Wärme- and Stoffübertragung, Vol. 26 (1991) S. 301/05.Google Scholar
  302. [64]
    Wenzel, U., u. H. Muller-Steinhagen: Unterkühltes Sieden strömender Flüssigkeitsgemische. Wärme- and Stoffübertragung, Vol. 26 (1991) S. 265/71.Google Scholar
  303. [65]
    Boyd, Sr. R. D.: Critical heat flux and heat transfer transition for subcooled flow boiling. J. Heat Transfer, Vol. 113 (1991) S. 264/66.Google Scholar
  304. [66]
    Hasan, A., R. P. Roy u. S. P. Kalra: Experiments on sub-cooled flow in a vertical annular channel. Int. J. Heat Mass Transfer, Vol. 33 (1990) No. 10, S. 2285/93.Google Scholar
  305. [67]
    Ahmad, S. Y: Axial distribution of bulk temperature and void fraction in a heated channel with inlet subcooling. J. Heat Transfer, Vol. 92 (1970) S. 595/609.Google Scholar
  306. [68]
    Leung, J. C., u. M. A. Grolmes: A generalized correlation for flashing choked flow of initially subcooled liquid. AIChE Journal, Vol. 34 (1988) No. 4, S. 688/91.Google Scholar
  307. [69]
    Bräuer, H., R Mayinger u. G. Stängl: Onset of nucleate boiling, heat transfer, void fraction and pressure drop in sub-cooled convective boiling with R12. Proc. 9th Int. Heat Transfer Conference, Jerusalem, Aug. 1990, Vol. 3, S. 419/24.Google Scholar
  308. [70]
    Müller-Steinhagen, H., N. Epstein u. A. P. Watkinson: Effect of dissolved gases on subcooled flow boiling heat transfer. Chem. Eng. Process, Vol. 23 (1988) S. 115/24.Google Scholar
  309. [71]
    Weisman, J., u. S. Ileslamlou: A phenomenological model for prediction of critical heat flux under highly subcooled conditions. Fusion Technology, Vol. 13 (1988) S. 654/59.Google Scholar
  310. [72]
    Yagov, V. V, u. V A. Puzin: Burnout under conditions of forced flow of subcooled Liquid. Themal Engineering, Vol. 32 (1985) No. 10, S. 569/72.Google Scholar
  311. [73]
    Rouhani, S. Z., u. E. Axelsson: Calculation of void volume fraction in the subcooled and quality boiling regions. Int. J. Heat Mass Transfer, Vol. 13 (1970) S. 383/93.Google Scholar
  312. [74]
    Griffith, P., J. A. Clark u. W M. Rohsenow: Void volumes in subcooled boiling systems. ASME Paper, No. 58-HT-19, 1958.Google Scholar
  313. [75]
    Ying, S. H., u. J. Weisman: Prediction of the heat flux in flow boiling at intermediate qualities. Int. J. Heat Mass Transfer, Vol. 29 (1986) S. 1639/48.Google Scholar
  314. [76]
    Sankaran, S., u. L. C. Witte: Highly subcooled flow boiling of freon-113 and water over cylinders. ASME/JSME Thermal Engineering Proceedings, Vol. 2 (1991) S. 3/9.Google Scholar
  315. [77]
    Chang, H., u. L. C. Witte: Liquid-solid contact during flow film boiling of subcooled freon-11. J. Heat Transfer, Vol. 112 (1990) S. 465/71.Google Scholar
  316. [78]
    Katto, Y: A prediction model of subcooled water flow boiling CHF for pressure in the range 0.1/20 MPa. Int. J. Heat Mass Transfer, Vol. 35 (1992) No. 5, S. 1115/23.Google Scholar
  317. [79]
    Yang, J. Y, u. J. Weisman: A phenomenological model of subcooled flow boiling in the detached bubble region. Int. J. Multiphase Flow, Vol. 17 (1991) No. 1, S. 77/94.Google Scholar
  318. [80]
    Peng, X. E, B. X. Wang u. G. P. Peterson: Film and transition boiling characteristics of subcooled liquid flowing through a horizontal flat duct. Int. J. Heat Mass Transfer, Vol. 35 (1992) No. 11, S. 3077/83.Google Scholar
  319. [81]
    Peng, X. E, u. B. X. Wang: Turbulent film boiling heat transfer for liquid flowing with high velocity through a horizontal flat duct. Int. J. Heat Mass Transfer, Vol. 34 (1991) No. 4/5, S. 1293/99.Google Scholar
  320. [82]
    Wang, B. X., u. X. F. Peng: An advanced study of forced turbulent-flow film boiling for subcooled liquid with high velocity in a circular tube. Wärme- und Stoffübertragung, Vol. 21 (1987) 5. 139 /44.Google Scholar
  321. [83]
    Wang, B. X., u. D. H. Shi: Forced-flow turbulent film boiling of subcooled liquid flowing with high velocity in a circular tube. Proc. of the 8th Int. Heat Transfer Conf., San Francisco 1986, Vol. 5, S. 2227/31.Google Scholar
  322. [84]
    Fukuyama, Y, u. M. Hirata: Boiling heat transfer characteristics with high mass flux and disappearance of CHF to DNB. Proc. of 7th Int. Heat Transfer Conf., München 1982, Vol. 4, S. 373/78.Google Scholar
  323. [85]
    Yilmaz, S., u. J. W. Westwater: Effect of velocity on heat transfer to boiling freon-113. J. Heat Transfer, Vol. 102 (1980) S. 26/31.Google Scholar
  324. [86]
    Dougall, R. S., u. T E. Lippert: Net vapour generation point in boiling flow of Trichlorotrifluoroethane at high pressures. NASA Contractor Report No. 2241, 1971.Google Scholar
  325. [87]
    Bibeau, E. L., u. M. Salcudean: The effect of flow direction on void growth at low velocities and low pressures. Int. Comm. Heat Mass Transfer, Vol. 17 (1990) S. 19/25.Google Scholar
  326. [88]
    Bibeau, E. L, u. M. Salcudean: Subcooled void growth for finned and circular annular geometries at low pressures and low velocities. Experimental Heat Transfer 3 (1993) S. 1183/90.Google Scholar
  327. [89]
    Edelmann, Z., u. E. Elias: Void fraction distribution in low flow rate subcooled boiling. Nuclear Engineering and Design, Vol. 66 (1981) S. 375/82.Google Scholar
  328. [90]
    Evangelisti, R., u. P. Lupoli: The void fraction in an annular channel at atmospheric pressure. Int. J. Heat Mass Transfer, Vol. 12 (1969) S. 699/711.Google Scholar
  329. [91]
    Hahne, E., K. Spindler u. H. Skok: A new pressure drop cor- relation for subcooled flow boiling of refrigerants. Int. J. Heat Mass Transfer, Vol. 36 (1993) No. 17, S. 4267/74.Google Scholar
  330. [1]
    Tong, L. S.: Boiling heat transfer and two-phase flow. New York: J. Wiley and Sons, Inc. 1967.Google Scholar
  331. [2]
    Butterworth, D., u. G. F. Hewitt: Two-Phase flow and heat transfer. Oxford: Oxford University Press 1978.Google Scholar
  332. [3]
    Ginoux, J. J.: Two-Phase flows and heat transfer with application to nuclear reactor design problems. Washington: Hemisphere Pub. Co. 1978.Google Scholar
  333. [4]
    Collier, J. G., u. J. R. Thome: Convective boiling and condensation. Oxford: Oxford University Press 1994.Google Scholar
  334. [5]
    Mayinger, F: Strömungen und Wärmeübergang in GasFlüssigkeits-Gemischen. Wien, New York: Springer-Verl. 1982.Google Scholar
  335. [6]
    Taitel, Y, D. Borneo u. A. E. Dukler: Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J., Vol. 16 (1980) No. 3, S. 345/54.Google Scholar
  336. [7]
    Taitel, Y, u. A. E. Dukler: A model for predicting flow regime transitions in horizontal and near horizontal gas — liquid flow. AIChE J. Vol. 22 (1976) No. 1, S. 47/55.Google Scholar
  337. [8]
    Steiner, D.: Zweiphasenströmung in Apparateelementen. In: Hochschulkurs Wärmeübertragung II. ForschungsGesellschaft Verfahrens-Technik e.V., Düsseldorf 1983.Google Scholar
  338. [9]
    Bonn, W: Wärmeübergang und Druckverlust bei der Verdampfung von Stickstoff und Argon im durchströmten horizontalen Rohr sowie Betrachtungen über die tangentiale Wärmeleitung und die maximal mögliche Flüssigkeitsüberhitzung. Diss. U Karlsruhe 1980.Google Scholar
  339. [10]
    Rouhani, S. Z: Modified correlations for void fraction and two-phase pressure drop. AB Atomenergi Sweden, AE RTV-841 (1969), S. 1/10.Google Scholar
  340. [11]
    Borneo, D., O. Shohan, Y. Taitel u. a.: Flow pattern transition for horizontal and inclined pipes; Experimental and comparison with theory. Int. J. Multiphase Flow, Vol. 6 (1980), S. 217/25.Google Scholar
  341. [12]
    Dukler, A. E.: Fluid mechanics and heat transfer in falling film systems. Chem. Eng. Progr. Symp. Ser., Vol. 56 (1960) No. 30, S. 1 ff.Google Scholar
  342. [13]
    Hewitt, G. F.: Analysis of annular two phase flow; Application of the Dukler analysis to vertical upward flow in a tube. Atomic Energy Research Establishment, Report AERE-R 3680 (1961).Google Scholar
  343. [14]
    Steiner, D.: Wärmeübergang beim Strömungssieden von Kältemitteln und kryogenen Flüssigkeiten in waagerechten und senkrechten Rohren. In: DKV-Tagungsbericht 1982, Essen, 9. Jahrgang, S. 241/60.Google Scholar
  344. [15]
    Chen, J. C.: Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Process Design Develop., Vol. 5 (1966) No. 3, S. 322/29.Google Scholar
  345. [16]
    Shah, M. M.: A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans. Vol. 82 (1976) No. 2, S. 66/86.Google Scholar
  346. [17]
    Steiner, D., u. J. Taborek: Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Trans. Engng., Vol. 13 (1992) No. 2, S. 43/69.Google Scholar
  347. [18]
    Bonn, W, J. Iwicki, D. Steiner u. a.: Über die Auswirkungen der Ungleichverteilung des Wärmeübergangs am Rohrumfang bei der Verdampfung im waagerecht durchströmten Rohr. Wärme- und Stoffübertragung 13 (1980), S. 165/74.Google Scholar
  348. [19]
    Martin, H.: Veröffentlicht von W. Bonn: Diss. U Karlsruhe 1980 (siehe [9]).Google Scholar
  349. [20]
    Martin, H.: Veröffentlicht von Müller-Steinhagen: Fortschr.-Ber. VDI-Z. Reihe 6 (1984) Nr. 143, S. 1/252 (siehe [115]).Google Scholar
  350. [21]
    Koumoutsos, N., R. Moissis u. A. Spyridonos: A study of bubble departure in forced-convection boiling. J. of Heat Transfer (1968) No. 5, S. 223/30.Google Scholar
  351. [22]
    Borishanskii, V M., I. I. Novikov u. S. S. Kutateladze: Use of thermodynamic similarity in generalizing experimental data of heat transfer. Proc. of the 1961/62 Heat Transfer Conference, Boulder, Aug. 28-Sept. 1 (1961), ASME, S. 475/82.Google Scholar
  352. [23]
    Stephan, K.: Beitrag zur Thermodynamik des Wärmeübergangs beim Sieden. Abh. des Deutschen Kältetechnischen Vereins Nr. 18, Karlsruhe, Verl. C. F. Müller 1964.Google Scholar
  353. [24]
    Nishikawa, K., Y. Fujita, H. Ohta u. a.: Effects of system pressure and surface roughness on nucleate boiling heat transfer. Memoires, Faculty of Engineering, Kyushu University, Vol. 42 (1982) No. 2, S. 95/123.Google Scholar
  354. [25]
    Collier, J. G.: Convective boiling inside horizontal tubes. In: HEDH - Heat Exchanger Design Handbook. Ed. E. U. Schlünder, K. J. Bell u. a. Washington: Hemisphere Publishing Corporation u. VDI-Verl. 1983.Google Scholar
  355. [26]
    Butterworth, D.: Air-water annular flow in a horizontal tube. Prog. Heat Mass Transfer (1972) No. 6, S. 235/51.Google Scholar
  356. [27]
    Müller-Steinhagen, H. M., u. E. U. Schlünder: Über den Einfluß des Wärmeleitvermögens der Rohrwand auf den umfangsgemittelten Wärmeübergangskoeffizienten beim Sieden im horizontalen Verdampferrohr. Chem. Eng. Process. 18 (1984) S. 303/16.Google Scholar
  357. [28]
    Gnielinski, V: Forced convection in ducts. In: HEDH - Heat Exchanger Design Handbook. Ed. E. U. Schlünder, K. J. Bell u. a. Washington: Hemisphere Publishing Corporation u. VDI-Verl. 1983.Google Scholar
  358. [29]
    Shah, R. K., u. A. L. London: Laminar flow forced convection in ducts. New York: Academic Press 1978.Google Scholar
  359. [30]
    Dengler, C. E.: Heat transfer and pressure drop for evapo- ration of water in a vertical tube. Sc. D. Thesis in Chem. Eng., Massachusetts Institute of Technology (1952).Google Scholar
  360. [31]
    Katsuki, N., K. Sekaguchi u. a.: Momentum and heat transfer in flow-boiling. (orig. japanisch) Master Thesis Kyushu University (March 1979).Google Scholar
  361. [32]
    Sani, R. L.: Downflow boiling and nonboiling heat transfer in a uniformly heated tube. Master Thesis, University of California, Lawrence Radiation Lab. Report UCRL-9023 (1960).Google Scholar
  362. [33]
    Schrock, V. E., u. L. M. Grossman: Forced convection boiling studies - forced convection vaporization project — Final report. University of California, Institute of Engineering Research. Series No. 73 308 - UCX 2182, TID-14 632 (1959).Google Scholar
  363. [34]
    Wright, R. M.: Downflow forced convection boiling of water in uniformly heated tubes. Ph. D. Thesis, University of California, Lawrence Radiation Lab. Report UCRL9744 (1961).Google Scholar
  364. [35]
    Yanai, M.: Flow boiling heat transfer in a vertical channel. (Orig. japanisch) Dr. Thesis Kyoto University 1971.Google Scholar
  365. [36] Bennett, J. A. R., J. G. Collier, H. R. C. Pratt u. a.: Heat transfer to two-phase gas-liquid systems. Part I. Steamwater mixtures in the liquid-dispersed region in an annulus. Report AERE-R 3159 (1959)
    und Trans. Instn. Chem. Engnrs. Vol. 39 (1961) S. 113/26.Google Scholar
  366. [37] Collier, J. G., P. M. C. Lacey u. D. J. Pulling: Heat transfer to two-phase gas-liquid systems. Part II. Further data on steam/water mixtures in the liquid dispersed region in an annulus. Report AERE-R 3809 (1962)
    und Trans. Instn. Chem. Engrs. Vol. 42 (1964) S. T 127/T 139.Google Scholar
  367. [38]
    Isbin, H. S., A. Kvamme, Y Yamazaki u. a.: Heat transfer to steam-water flows. Proc. of the 1961 Heat Transfer and Fluid Mechanics Institute, Stanford University Press., Stanford, California, 1961, S. 70/78.Google Scholar
  368. [39]
    Mumm, J. F.: Heat transfer to boiling water forced through a uniformly heated tube. Argonne National Laboratory Report, ANL-5276 (1954).Google Scholar
  369. [40] Styrikovich, M. A., u. Z. L. Miropolskii: Phasenschichtung bei Wasser-Dampf-Strömungen unter hohen Drücken in beheizten waagerechten Rohren (Orig. russ.)
    Dokl. Akad. Nauk SSSR, Vol. 71 (1950) No. 2, S. 279 /82.Google Scholar
  370. [41]
    Styrikovich, M. A., u. Z. L. Miropolskii: The temperature regime for operational horizontal and inclined steam-generating tubes at high pressures. In: Hydrodynamics and heat transfer during boiling in high pressure boilers. Ed.: M. A. Styrikovich. Moskau 1955, S. 244/72.Google Scholar
  371. [42]
    Davis, E. J., u. M. M. David: Heat transfer to high-quality steam-water mixtures flowing in a horizontal rectangular duct. Cand. J. Chem. Engng., Vol. 39 (1961) No. 3, S. 99/105.Google Scholar
  372. [43]
    Takagi, T: Critical heat flux in horizontal boiling channels. (Orig. japanisch). Dr. Thesis, Osaka University 1967.Google Scholar
  373. [44]
    Lis, J., u. J. A. Strickland: Local variations of heat transfer in a horizontal steam evaporation tube. Heat Transfer Paris-Versailles Vol. V (1970) B 4.6, S. 1/12.Google Scholar
  374. [45]
    Owhadi, A., K. J. Bell u. B. Crain: Forced convection boiling inside helically-coiled tubes. Int. J. Heat Mass Transfer Vol. 11 (1968), S. 1179/93.Google Scholar
  375. [46]
    Bell, K. J., u. A. Owhadi: Local heat-transfer measurements during forced-convection boiling in a helically coiled tube. Proc. Instn. Mech. Engnrs. Vol. 184 (1969/70) S. 52/58.Google Scholar
  376. [47]
    Bertoletti, S., J. Lesarge, C. Lombardi u. a.: A research program in two-phase flow. Part II. Work on the heat transfer loop. CISE-Report R-36 (1961) S. 1/221.Google Scholar
  377. [48]
    Cicchitti, A., C. Lombardi, M. Silvestri u. a.: Two-Phase cooling experiments: Pressure drop, heat transfer and burnout measurements. Energia Nucleare, Vol. 7 (1960) Nr. 6, S. 407/25.Google Scholar
  378. [49]
    Campolunghi, E., M. Cumo, G. Ferrari u. a.: Boiling heat transfer in L.M.F.B.R. steam generators. Comitato Nazionale Energia Nucleare, CNEN-Report, RT/ING (74) 17 (1974).Google Scholar
  379. [50]
    Campolunghi, E., M. Cumo, G. Palazzi u. a.: Subcooled and bulk boiling correlations for thermal design of steam generators. Comitato Nazionale Energia Nucleare, CNENReport, RT/ING (77) 10 (1977).Google Scholar
  380. [51]
    Era, A., G. P. Gaspari, A. Hassid u. a.: Heat transfer data in the liquid deficient region for steam water mixtures at 70 kg/cm2 flowing in tubular and annular conduits. CISE Report R-184 (1966).Google Scholar
  381. [52]
    Herkenrath, H., P Mörk-Mörkenstein, U. Jung u. a.: Wärmeübergang an Wasser bei erzwungener Strömung im Druckbereich von 140 bis 250 bar. Euratom, Bericht EUR 3658d (1967).Google Scholar
  382. [53]
    Herkenrath, H., u. P. Mörk-Mörkenstein: Die Wärmeübergangskrise von Wasser bei erzwungener Strömung unter hohen Drücken. Teil 1: Darstellung und Vorausbestimmung der kritischen Wärmestromdichte für Drücke von 170 bis 215 bar. Atomkernenergie 14 (1969) Nr. 3, S. 163/70. Teil 2: Der Wärmeübergang im Bereich der Krise. Atomkernenergie 14 (1969), S. 403/07.Google Scholar
  383. [54]
    Hein, D., W. Köhler u. W. Krätzer: Experimentelle und analytische Untersuchungen zum Wärmeübergang inGoogle Scholar
  384. [55]
    Dampferzeugerrohren. Kraftwerk Union AG, Bericht KWU-R 513 für Benson-Lizenznehmer (1979). Von KWU zur Veröffentlichung freigegeben.Google Scholar
  385. [56]
    Morozov, V. G.: Heat transfer during the boiling of water in tubes. In: Convective heat transfer in two-phase and one-phase flows. Ed.: V. M. Borishansky and I. I. Paleev. Israel Progr. for Scient. Trans., Jerusalem 1969.Google Scholar
  386. [57]
    Müller, F.: Wärmeübergang bei der Verdampfung unter hohen Drücken. VDI-Forsch.-H. 522. Düsseldorf: VDIVerl. 1967.Google Scholar
  387. [58] Bogdanov, V. V: Investigation of the effect of the rate of motion of the water current on the heat exchange coefficient on boiling in an inclined tube. (Orig. russ.).
    Izvestiya Akademii Nauk, Otdelenie Tekhnicheskikh Nauk (1955) No. 4, S. 136/40 und AERE Lib./Trans. 596.Google Scholar
  388. [59]
    Gilli, P R.: Forschungen auf dem Gebiet der Filmverdampfung. Mitteilungen der VGB, H. 86 (1963), S. 288/300.Google Scholar
  389. [60]
    Cumo, M., E. Fabrizi u. G. Palazzi: The influence of inclination on CHF in steam generators channels. Comitato Nazionale, Energia Nucleare, CNEN-Report, RT/ING (78) 11 (1978).Google Scholar
  390. [61]
    Carver, J. R., C. R. Kakerale u. J. S. Slotnik: Heat transfer in coiled tubes with two-phase flow. USAEC-Report TID20983 (1964).Google Scholar
  391. [62]
    Gilli, P. V, A. Edler, H. Halozan u. a.: Probleme des Wärmeüberganges, Druckverlustes und der Strömungsstabilität in thermisch hochbeanspruchten Dampferzeugerrohren. VGB Kraftwerkstechnik 55 (1975), H. 9, S. 589/600.Google Scholar
  392. [63]
    Schaup, P: Wärmeübergang und Wärmeübergangskrise der Zweiphasenströmung in Schraubenrohren. Diss. TH Graz 1973.Google Scholar
  393. [62a]
    Kefer, V: Strömungsformen und Wärmeübergang in Verdampferrohren unterschiedlicher Neigung. Diss. TU München 1989.Google Scholar
  394. [64] Barthau, G.: Experimental investigation of ammonia flow boiling at high pressures (Orig. russ.).
    Fifth All-Union Heat and Mass Transfer Conference, Minsk 1976, Vol. III-1, S. 220/25, und: Unveröffentlichte Messungen am Inst. f. Thermodynamik und Wärmetechnik, Universität Stuttgart 1980.Google Scholar
  395. [65]
    Gronnerud, R.: Two-phase heat resistance in boiling refrigerants — Calculations and influence on evaporator design. Institut for Kjpleteknikk, Norges Tekniske Ht gskole, Trondheim 1974, S. 1/28.Google Scholar
  396. [66]
    Haßdenteufel, W: Wärmeübergang und Druckverlust bei Zweiphasenströmung. Diss. U Stuttgart 1983.Google Scholar
  397. [67]
    Lavin, J. G.: Heat transfer to refrigerants boiling inside plain tubes and tubes with internal turbulators. S. D. Thesis, University of Michigan 1963.Google Scholar
  398. [68]
    Pujol, L.: Boiling heat transfer in vertical upflow and down-flow tubes. Ph. D. Thesis, Lehigh University 1968.Google Scholar
  399. [69] Riedle, K., J. C. Purcupile u. a.: Experimental and analytical investigation — boiling heat transfer in evaporator tubes — horizontal flow. Carnegie-Mellon University, NSF-Grant 257, CMU, No. 1-55 307 (1971)
    und: Experimental investigation boiling heat transfer in evaporator tubes-vertical flow, AIChE Preprint 18, 14th National Heat Transfer Conference, Atlanta 1973.Google Scholar
  400. [70]
    Altman, M., R. H. Norris u. F. W Staub: Local and average heat transfer and pressure drop for refrigerants evaporating in horizontal tubes. Jour. of Heat Transfer, Trans. ASME, Vol. 82 (1960) No. 3, S. 189/98.Google Scholar
  401. [71]
    Bandel, J.: Druckverlust und Wärmeübergang bei der Verdampfung siedender Kältemittel im durchströmten waagerechten Rohr. Diss. U Karlsruhe 1973.Google Scholar
  402. [71]
    Brendeng, E.: Influence of internal turbulators on heat transfer in evaporator tubes. 16th International Congress of Refrigeration, LI.R. Paris (1983) B1/459, S. 686/90.Google Scholar
  403. [72]
    Bryan, W. L., u. L. G. Seigel: Heat transfer coefficients in horizontal tube evaporators. Refrigerating Engineering, Vol. 63 (1955) S. 36/45.Google Scholar
  404. [73]
    Johnston, R. C., u. J. B. Chaddock: Heat transfer and pressure drop of refrigerants evaporating in horizontal tubes. ASHRAE Trans. Vol. 70 (1964), S. 163/71.Google Scholar
  405. [74]
    Chaddock, J. B., u. J. A. Noerager: Evaporation of refrigerant 12 in a horizontal tube with constant wall heat flux. ASHRAE Trans. Vol. 72 (1966), S. 90/103.Google Scholar
  406. [75]
    Chawla, J. M.: Wärmeübergang und Druckabfall in waagerechten Rohren bei der Strömung von verdampfenden Kaitemitteln. VDI-Forsch.-H. 523. Düsseldorf: VDI-Verl. 1967.Google Scholar
  407. [76] Djatschkow, E. N.: Untersuchungen des Wärmeübergangs und Druckverlustes bei der Verdampfung von R 22 in innenberippten Rohren (Orig. russ.).
    Cholodilnaja Technika (1977) H. 1, S. 36 /42.Google Scholar
  408. [77] Djatschkow, F. N., I. M. Kalnin u. W. N. Krotkow: Die Verallgemeinerung experimenteller Werte zum Wärmeübergang und zur Hydrodynamik beim Verdampfen von Freon 22 in innenberippten Rohren (Orig. russ.).
    Cholodilnaja Technika (1977) H. 7, S. 22 /28.Google Scholar
  409. [78]
    Fuchs, P H.: Influence of tube material and external heat load on heat transfer coefficients with separated flow in evaporators. XV International Congress of Refrigeration, Venedig (1979) BI-43, S. 1/4 und: Pressure drop and heat transfer during flow of evaporating liquid in horizontal tubes and in return bends (Orig. norweg.). Thesis, Institutt for KjOleteknikk, Norges Tekniske Hpgskole, Trondheim 1975.Google Scholar
  410. [79]
    Gouse, S. W, u. K. G. Coumou: Heat transfer and fluid flow inside a horizontal tube evaporator: Phase I. ASHRAE Trans. Vol. 71 (1965), S. 152/60.Google Scholar
  411. [80]
    Gouse, S. W, u. A. J. Dickson: Heat transfer and fluid flow inside a horizontal tube evaporator: Phase II. ASHRAE Trans. Vol. 72 (1966), S. 104/14.Google Scholar
  412. [81]
    Hofmann, E.: Efficiency of dry expansion evaporators with bare and inside-finned tubes. Bulletin de l’Institute International du Froid, Freudenstadt, Annexe 1972/1, S. 305/18.Google Scholar
  413. [82]
    Iwicki, J., u. D. Steiner: Einfluß des Massenstroms und des Rohrdurchmessers auf den Druckverlust und Wärmeübergang verdampfender Kältemittel im durchströmten Rohr — Aufklärung von Widersprüchen zwischen bekannten Berechnungsmethoden und neuen experimentellen Ergebnissen. Arbeitsgemeinschaft Industrieller Forschungsvereinigungen. AlF-Bericht Nr. 20: 3531/3, Köln (1979).Google Scholar
  414. [83]
    Kesper, B.: Wandschubspannung und konvektiver Wärmeübergang bei Zweiphasen-Flüssigkeits- Dampfströmung hoher Geschwindigkeit. Diss. U Karlsruhe 1974.Google Scholar
  415. [84]
    Lorentzen, G., u. R. Gronnerud: Investigation of liquid holdup, flow resistance and heat transfer in an R 12-evaporator coil with recirculation. Proc. of the XIIIth International Congress of Refrigeration, Washington, I.I.F. Annexe 1970/1, S. 193/203.Google Scholar
  416. [85] Malischev, A. A., G. N. Danilowa, W. M. Azarskow u. a.: Zum Einfluß der Strömungsform auf den Wärmeübergang beim Sieden in waagerechten Rohren (Orig. russ.).
    Cholodilnaja Technika (1982) H. 8, S. 30 /34.Google Scholar
  417. [86] Malek, A.: Influence de la presence d’huile dans le fluide frigorigene sur le transfer de chaleur à l’evaporation dans un tube horizontal (Orig. franz.).
    th International Congress of Refrigeration. I.I.R. Paris (1983) B1/489, S. 585 /88.Google Scholar
  418. [87]
    Naganagoudar, C. D., u. D. Steiner: Einfluß des Massenstroms und des Rohrdurchmessers auf den Druckverlust und Wärmeübergang verdampfender Kältemittel im durchströmten Rohr. Arbeitsgemeinschaft Industrieller Forschungsvereinigungen, AIF-Bericht Nr. 20: 3531 /2 (1977).Google Scholar
  419. [88]
    ] Pierre, B.: Wärmeübergangszahl bei verdampfendem F12 in horizontalen Rohren. Kältetechnik 7 (1955) Nr. 6Google Scholar
  420. S. 163/66, und: Wärmeübergang mit siedendem Kältemittel F-12 in horizontalen Rohren (Orig. schwed.). Kylteknisk Tidskrift (1953) Nr. 6, S. 76/81.Google Scholar
  421. [89]
    Schlünder, E. U., u. J. M. Chawla: Örtlicher Wärmeübergang und Druckabfall bei der Strömung verdampfender Kältemittel in innenberippten, waagerechten Rohren. Kältetechnik 21 (1969) Nr. 5, S. 136/39.Google Scholar
  422. [90]
    Schmidt, H.: Beitrag zum Verständnis des Wärmeübergangs im horizontalen Verdampferrohr. Fortschr.-Ber. VDI-Z. Reihe 19 (1986) Nr. 6.Google Scholar
  423. [91]
    Uchida, H., u. S. Yamaguchi: Heat transfer in two-phase flow of refrigerant 12 through horizontal tube. Proc. Third International Heat Transfer Conference, Chicago, Vol. 5 (1966), S. 69/79.Google Scholar
  424. [92]
    Worspe-Schmidt, P.: Some characteristics of flow pattern and heat transfer of freon 12 evaporating in horizontal tubes. Ingenioren Int. Ed., Vol. 3 (1959) Nr. 3, S. 98/104.Google Scholar
  425. [93]
    Zahn, W. R.: A visual study of two-phase flow while evaporating in horizontal tubes. J. of Heat Transfer (1961), S. 417/29.Google Scholar
  426. [94]
    Ahrens, K. H., u. F. Mayinger: Boiling heat transfer in the transition region from bubble flow to annular flow. Proc. In Two-Phase Energy and Chemical Systems. Int. Centre Heat Mass Transfer, ICHMT, Dubrovnik 1978.Google Scholar
  427. [95]
    Haffner, H.: Wärmeübergang an Kältemittel bei Blasenverdampfung, Filmverdampfung und überkritischem Zustand des Fluids. Bundesministerium für Bildung und Wissenschaft, Forschungsber. K 70/24 (1970).Google Scholar
  428. [96]
    Jallouk, P A.: Two-Phase flow pressure drop and heat transfer characteristics of refrigerants in vertical tubes. Ph. D. Thesis, University of Tennessee 1974.Google Scholar
  429. [97]
    Kaufmann, W. D.: Untersuchung des Wärmeübergangs und des Druckverlustes bei der Zweiphasenströmung von R 12 im senkrechten Rohr. Diss. ETH Zürich, Diss. Nr. 5196, 1974.Google Scholar
  430. [98]
    Zuber, N., E. W. Staub, G. Bijwaard u. a.: Steady state and transient void fraction in two-phase flow systems. Final Report for the Programm of Two-Phase Flow Investigation. GEAP-5417, EURAEC-1949 (1967), Vol. 1 und Vol. 2.Google Scholar
  431. a] Kattan, N., J. R. Thome u. D. Favrat: Flow boiling in horizontal and vertical tubes: The effect of tube orientation on heat transfer. Eng. Found. Conf., Convective Flow Boiling, Banff, Alberta, Canada 1995, S. 1/6.Google Scholar
  432. b] Hahne, E., N. Shen u. K. Spindler: Fully developed nucleate boiling in upflow and downflow. Int. J. Heat Mass Transfer 32 (1989), S. 1799/1808.Google Scholar
  433. [99]
    Bennett, D. L.: A study of internal forced convective boiling heat transfer for binary mixture. Ph. D. Thesis, Lehigh University 1976.Google Scholar
  434. [100]
    Tally, R. D.: A study of heat transfer to organic liquids in natural circulation vertical-tube boilers. Ph. D. Thesis, Univ. Delaware 1953.Google Scholar
  435. [101]
    Somerville, G. F.: Downflow boiling of n-butanol in a uniformly heated tube. M. S. Thesis, University of California, Lawrence Radiation Lab., Report UCRL-10 527 (1962).Google Scholar
  436. [102]
    Shock, R. A. W, V. V. Wadekar u. D. B. R. Kenning: Flow boiling of ethanol and cyclohexane in a vertical tube. Proc. UK-National Heat Transfer Conference, Leeds 1984.Google Scholar
  437. a] Calus, W. F., R. K. Denning, A. di Montegnacco u. J. Gadsdon: Heat transfer in a natural circulation single tube reboiler. Part I: Single component. Chem. Engng. 6 (1973), S. 233/50.Google Scholar
  438. b] Robertson, J. M., u. V. V Wadekar: Vertical upflow boiling of ethanol in a 10 mm diameter tube. 2nd UK Nat. Heat Transfer Conf. Vol. I, C 198/88 (1988), S. 67/77.Google Scholar
  439. [103]
    Hildebrandt, G.: Der Wärmeübergang an siedendes Helium I bei erzwungener Strömung im senkrechten Rohr. Diss. TU Berlin 1971.Google Scholar
  440. [104]
    Hildebrandt, U.: Experimentelle Untersuchung des Wärmeübergangs an Helium I bei Blasenverdampfung in einem senkrechten Rohr. Wärme- und Stoffübertragung, Bd. 4 (1971) Nr. 3, S. 142/51.Google Scholar
  441. [105]
    Johannes, C.: Studies of forced convection heat transfer to helium I. Advances in Cryogenic Engineering, Vol. 17 (1972), S. 352/60.Google Scholar
  442. [106]
    Keilin, V. E., I. A. Kovalev, V. V. Likov u. a.: Forced convection heat transfer to liquid helium I in the nucleate boiling region. Cryogenics 15 (1975) No. 3, S. 141/45.Google Scholar
  443. [107]
    Ogata, H., u. S. Sato: Forced convection heat transfer to boiling helium in a tube. Cryogenics 14 (1974), S. 375/80.Google Scholar
  444. [108]
    Lewis, J. P, P. H. Goodykoontz u. J. E. Kline: Boiling heat transfer to liquid hydrogen and nitrogen in forced flow. National Aeronautics and Space Administration. NASA Technical Note D-1314 (1962), S. 1/56.Google Scholar
  445. [109] Deew, W. U., W. W Archipow u. W N. Nowikow: Wärmeübergang beim Sieden von Stickstoff bei erzwungener Strömung (Orig. russ.).
    Teploenergetika (1984) Nr. 3, S. 26 /29.Google Scholar
  446. [110] Shorin, S. N., V.I. Sukhov, S. A. Shevyakova u. a.: Experimentelle Bestimmung des Wärmeübergangs beim Sieden von Sauerstoff in vertikalen Rohren und Kanälen (Orig. russ.).
    Inzh.-Fizich. Zh. 25 (1973) Nr. 5, S. 773 /79.Google Scholar
  447. [111]
    Wright, C. C., u. H. H. Walters: Single tube heat transfer tests gaseous and liquid hydrogen. Wright Air Development Center, WADC Technical Report 59/423 (1959) S. 1/46.Google Scholar
  448. [112]
    Mohr; V: Verdampfung von Neon in horizontalen Rohren. Diss. U Stuttgart 1975.Google Scholar
  449. [113]
    Steiner, D.: Wärmeübergang und Druckverlust von siedendem Stickstoff bei verschiedenen Drücken im waagerecht durchströmten Rohr. Diss. U Karlsruhe 1975.Google Scholar
  450. [114]
    Bonn, W: Wärmeübergang und Druckverlust bei der Verdampfung von Stickstoff und Argon im durchströmten horizontalen Rohr sowie Betrachtungen über die tangentiale Wärmeleitung und die maximal mögliche Flüssigkeitsüberhitzung. Diss. U Karlsruhe 1980.Google Scholar
  451. [115]
    Müller-Steinhagen, H.: Wärmeübergang und Fouling beim Strömungssieden von Argon und Stickstoff im horizontalen Rohr. Fortschr.-Ber. VDI-Z. Reihe 6 (1984) Nr. 143.Google Scholar
  452. [116]
    Klein, G.: Wärmeübertragung und Druckverlust bei der Strömung von verdampfendem Stickstoff im waagerechten Rohr. Diss. TH Aachen 1975.Google Scholar
  453. [117]
    Petukhov, B. S., V M. Zhukov u. V. M. Shieldcret: Investigation of heat transfer and hydrodynamics in the helium two-phase flow in a vertical channel. In: Heat Exchangers - Theory and Practice, Washington: Hemisphere Publishing Corporation (1983), S. 251/62.Google Scholar
  454. [118]
    Bennett, D. L., u. J. C. Chen: Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AIChE J. 26 (1980) Nr. 3, S. 454/61.Google Scholar
  455. [119] Schlünder, E.-U.: Über den Wärmeübergang bei der Blasenverdampfung von Gemischen. Verfahrenstechnik (vt)
    Nr. 9, S. 692 /98.Google Scholar
  456. [120]
    Arora, C. P: Boiling heat transfer data for pure and mixed refrigerants. Proc. XII Int. Congr. Refrig. Vol. II, Madrid 1967; S. 411/17.Google Scholar
  457. [121]
    Shock, R. A. W.: The evaporation of binary mixtures in for- ced convection. Ph. D. Thesis, Univ. Oxford 1973.Google Scholar
  458. [122]
    Calus, W. E, A. di Montegnacco u. R. K. Dennig: Heat transfer in a natural circulation single tube reboiler. Part II: Binary liquid mixtures. Chem. Engng. J. 6 (1973), S. 251/64.Google Scholar
  459. [123]
    Zizyukin, V. K., u. M. É. Aérov: Heat transfer to certain boiling hydrocarbons during their forced motion in a horizontal tube. Translated from Teoreticheskie Osnovy Khimicheskoi Technologii 9 (1975) Nr. 1, S. 54/59.Google Scholar
  460. [124]
    Mishra, M. P, H. K. Varma u. C. P. Sharma: Heat transfer coefficients in forced convection evaporation of refrigerant mixtures. Letters in Heat and Mass Transfer 8 (1981), S. 127/36.Google Scholar
  461. [125]
    Varma, H. K., C. P. Sharma, u. M. P. Mishra: Heat transfer coefficients during forced convection evaporation of R 12 and R 22 mixtures in annular flow regime. Proc. XV. Int. Congr. Refrig. Vol. II. Venedig 1979; S. 479/84.Google Scholar
  462. [126]
    Singal, L. C., C. P. Sharma, u. H. K. Varma: Experimental heat transfer coefficient for binary refrigerant mixtures of R13 and R12. ASHRAE Trans. 1 A (1983) 1, S. 175/88.Google Scholar
  463. [127]
    Singal, L. C., C. P. Sharma, u. H. K. Varma: Correlations for averaged heat transfer coefficients in flow boiling of refrigerant 12 and 13 mixtures. Proc. XVI. Int. Congr. Refrig. B. 1. Paris 1983, S. 159/64.Google Scholar
  464. [128]
    Toral, H.: Flow boiling heat transfer in mixtures. Ph. D. Thesis, Univ. Oxford 1979.Google Scholar
  465. [129]
    Toral, H., D. B. R. Kenning u. R. A. W. Shock: Flow boiling of ethanol/cyclohexane mixtures. 7. Int. Heat Transfer Conf. Vol. 4. München 1982; S. 255/60.Google Scholar
  466. [130]
    Jain, V. K., u. D. L. Dhar: Studies on flow boiling of mixtures of refrigerants R 12 and R 13 inside a horizontal tube. Proc. XVI. Int. Congr. Refrig. B. 1 Paris 1983; S. 287/93.Google Scholar
  467. [131]
    Ross, H.: An investigation of horizontal flow boiling of pure and mixed refrigerants. Ph. D. Thesis, Univ. Maryland, College Park, Md., 1985.Google Scholar
  468. [132]
    Radermacher, R., H. Ross u. D. Didion: Experimental determination of forced convection evaporative heat transfer coefficients for non-azeotropic refrigerant mixtures. ASME Nat. Heat Transfer Conf., Report ASME 83-WA/HT 54 (1983), S. 1/7.Google Scholar
  469. [133]
    Ross, H., u. R. Radermacher: Suppression of nucleate boiling of pure and mixed refrigerants in turbulent annular flow. Int. J. Multiphase Flow 13 (1987) Nr. 6, S. 759/71.Google Scholar
  470. [134]
    Ross, H., R. Radermacher, M. DiMarzo u. D. Didion: Horizontal flow boiling of pure and mixed refrigerants. Int. J. Heat Mass Transfer 30 (1987) Nr. 5, S. 979/91.Google Scholar
  471. [135]
    Jung, D. S., M. McLinden, R. Radermacher u. D. Didion: Horizontal flow boiling heat transfer experiments with a mixture of R 22/R114. Int. J. Heat Mass Transfer 32 (1989) Nr. 1, S. 131/45.Google Scholar
  472. [136]
    Kaiser; E. P.: Wärmeübertragung beim Sieden von binären Gemischen im Naturumlaufverdampfer. Diss. ETH Zürich, Diss. Nr. 8504, 1988.Google Scholar
  473. [137]
    Gropp, U.: Wärme- und Stoffübergang bei der Oberflächenverdampfung und beim Blasensieden eines binären Kältemittelgemisches am Rieselfilm. Diss. Univ. Karlsruhe 1985.Google Scholar
  474. [138]
    Palen, J. W: Falling film evaporation of wide-boilingrange mixtures inside a vertical tube. Diss. Ph. D. Lehigh Univ. 1988.Google Scholar
  475. [139]
    Niederkrüger, M., D. Steiner u. E.-U. Schlünder: Horizontal flow boiling experiments of saturated pure components and mixtures of R 846/R 12 at high pressures. Int. J. Refrig. Vol. 15 (1992) No. 1, S. 48/58.Google Scholar
  476. [140]
    Niederkrüger, M.: Strömungssieden von reinen Stoffen und binären azeotropen Gemischen im waagerechten Rohr bei mittleren und hohen Drücken. Fortschr.-Ber. VDI-Z. Reihe 3 (1991) Nr. 245.Google Scholar
  477. [1]
    Cumo, M., G. Palazzi u. G. C. Urbani: On the Limiting Critical Quality and the “Desposition Controlled” Burnout. CNEN — RT/ING (79)4 — (1979).Google Scholar
  478. [2]
    Drescher, G. u. W. Köhler: Die Ermittlung kritischer Siedezustände im gesamten Dampfgehaltsbereich für innendurchströmte Rohre, BWK 33, Nr. 10 (1981).Google Scholar
  479. [3]
    Doroshchuk, V. E., L. L. Levitan u. F. P. Lantsmann: Recommendations for Calculating Burnout in a Round Tube with Uniform Heat Release. Teploenergetika 22 (12) p. 66/70 (1975).Google Scholar
  480. [4]
    Academy of Sciences, USSR: Tabular Data for Calculating Burnout when Boiling Water in Uniformly Heated Round Tubes. Thermal Engg. Vol. 23, No. 9, p. 77/79 (1977).Google Scholar
  481. [5]
    Kon’kov, A. S.: Experimental Study of the Conditions under which Heat Exchange Deteriorates when a Steam-Water Mixture Flows in Heated Tubes. Teploenergetika, Vol. 13, No. 12, p. 77 (1965).Google Scholar
  482. [6]
    Alad’yev, L G., L. D. Gorlov, L. D. Dodonov u. O. S. Fedynskiy: Heat transfer to Boiling Potassium in Uniformly heated tubes. Heat Transfer-Soviet Research, Vol. 1, No. 4, July 1969, S. 14/26.Google Scholar
  483. [7]
    Sevast’yanov, R. I., Y. V. Zakharov u. L T Alad’yev: Izvestiya, Akad. Nauk, SSSR, Energetika i Transport, No. I, 1965.Google Scholar
  484. [8]
    Thompson, B. u. R. Macbeth: Boiling Water Heat Transfer Burnout in Uniformly Heated Round Tubes. AAEW-R356 (1964).Google Scholar
  485. [9]
    Cumo, M., F Fabrizi u. G. Palazzi: The Influence of Inclination on CHF in Steam Generators Channels. CNENRT/ING (78)11 — (1978).Google Scholar
  486. [10]
    Merilo, M.: Critical Heat Flux Experiments in a Vertical and Horizontal Tube with both Freon-12 and Water as Coolant. Nuclear Engineering and Design 44, pp. 1/16 (1977).Google Scholar
  487. [11]
    Chojnowski, B., P W. Wilson u. R. D. B. Whitcutt: Critical Heat Flux in Inclined Steam Generating Tubes. Symp. Multiphase Flow Systems, Univ. Strathelyde Paper E 3, Published in I. Chem. E. Symp. Series No. 38 (1974).Google Scholar
  488. [12]
    Watson, G., R. A. Lee u. M. Wiener: Critical Heat Flux in Inclined and Vertical Smooth and Ribbed Tubes. 5th Int. Heat Transf. Conference, Tokyo (1974), Paper B 6. 8.Google Scholar
  489. [13]
    Kefer, V: Strömungsformen and Wärmeübergang in Verdampferrohren unterschiedlicher Neigung. Dissertation Techn. Univ. München (1989).Google Scholar
  490. [14]
    Unal, H. C.: Some Aspects of Two-Phase Flow Heat Transfer and Dynamic Instabilities in Medium and High Pressure Steam Generators. Dissert. Technische Hochschule Delft, 1981.Google Scholar
  491. [15]
    Roumy, R.: Dryout in Helically Coiled Tubes with Boiling Freon 12. European Two-Phase Flow Group Meeting, Copenhagen, 1971.Google Scholar
  492. [16]
    Campolunghi, E, M. Cumo, G. Ferrari u. G. Palezzi: Full Scale Tests and Thermal Design Correlations for Coiled Once-Through Steam Generators. CNEN-RT/ING (75) 11.Google Scholar
  493. [17]
    Cumo, M., G. E. Farello u. G. Ferrari: The Influence of Curvature in Post Dryout Heat Transfer. Intern. Journ. Heat Mass Transfer, Vol. 15 (1972), S. 2045/62.Google Scholar
  494. [18]
    Naitoh, M., A. Nakamura u. H. Ogasawara: Dryout in Helically Coiled Tube of Sodium Heated Steam Generator. ASME 74-WA/HT-48 (1974).Google Scholar
  495. [19]
    Duchatelle, L., L. De Nucheze u. M. G. Robin: Departure from Nucleate Boiling in Helical Tubes of Liquid Metal Heated Steam Generators. ASME 73-HT-57 (1973).Google Scholar
  496. [20]
    Unal, H. C., M. L. G. van Gasselt u. P. M. van T’Verlaat: Dyrout and Two-Phase Flow Pressure Drop in Sodium Heated Helically Coiled Steam Generators Tubes at Elevated Pressures. Intern. Journ. Heat Mass Transfer, Vol. 24 (1981), S. 285/98.Google Scholar
  497. [21]
    Miropol’skiy, Z. L., u. V Yu. Pikus: Critical Boiling Heat Fluxes in Curved Channels. Heat Transfer-Soviet Research, Vol. 1, N. 1 (1969).Google Scholar
  498. [22]
    Babarin, V P, R. I. Sevat’yanov, I. T. Alad’yev, V. F. Khudyakow u. V. A. Tzachev: Critical Heat Flux in Tubular Coils. Heat-Transfer-Soviet Research, Vol. 3, No. 4 (1971).Google Scholar
  499. [23]
    Alad’yev, I. T, C. I. Petrov, A. I. Rzayev u. V. F. Khudyakov: Heat Transfer in a Sodium-Potassium Heat Exchanger (Potassium Boiler) Made of Helically-Coiled Tubes. Heat Transfer-Soviet Research, Vol. 8, No. 3 (1976).Google Scholar
  500. [24]
    Butterworth, D.: A Model for Predicting Dryout in a Tube with a Circumferential Variation in Heat Flux. AERE-M 2436, Harwell (1971).Google Scholar
  501. ] Cumo, M., G. Palazzi, G. Urbani u. F. V. Frazolli: Full Scale Tests on Axial Profile Heat Flux. Influence on the Critical Quality in PWR Steam Generators. CNEN-RT/ING (80) 5 — (1980).Google Scholar
  502. [27]
    Cocilovo, M., M. Cumo u. G. Palazzi: On DNB Location with Axially Disuniform Heat Flux. CNEN — RT/ING (79) 21 — (1979).Google Scholar
  503. [28]
    Doroshchuk, C. E., L. L. Levitan et al.: Investigations into Burnout Mechanism in Steam-Generating Tubes. 6th Int. Heat Transf. Conf. Toronto, August 7/11 (1978), Paper FB-21.Google Scholar
  504. [29]
    Peskov, O. L., O. V. Remizoo u. O. A. Sudnitsyn: Some Features of Heat Transfer Burnout in Tubes with Non-Uniform Axial Heat Flux Distribution. 6th Int. Heat Transf. Conf. Toronto, August 7/11 (1978), Paper NR-10.Google Scholar
  505. [30]
    Keeys, R. K. F, I. C. Ralph u. D. N. Roberts: Post-Burnout Heat Transfer in High Pressure Steam-Water Mixtures in an Tube with Cosine Heat Flux Distribution. Progr. in Heat and Mass Transf., Vol. 6, pp. 99/118 (1972).Google Scholar
  506. [31]
    Becker, K. M., u. A. Letzter: Burnout Measurements for Flow of Water in an Annulus with Two-Sided Heating. KTH-NEL-23. European Two-Phase Flow Group Meeting Haifa, 1975.Google Scholar
  507. [32]
    Zernick, Currin, Elyash u. Previti: THINC, A Thermal Hydrodynamic Interaction Code for a Semi-Open or Closed Channel Core. WCAP-3704, Febr. 1962.Google Scholar
  508. [33]
    Chelemer, Weismann u. Tong: Subchannel Thermal Analysis of Rod Bundle Core. WCAP-7014, June 1967.Google Scholar
  509. [34]
    Bowring, R. W: HAMBO — A Computer Program for the Subchannel Analysis of the Hydraulic and Burnout Characteristics of Rod Clusters. AEEW R524, 1967.Google Scholar
  510. [35]
    Rowe, D. S.: Crossflow Mixing Between Parallel Flow Channels During Boiling. Part 1: COBRA — Computer Program for Coolant Boiling. BNWL-371, Pt. 1, March 1967.Google Scholar
  511. [36]
    Rowe, D. S.: COBRA IIIC: A Digital Computer Program for Steady State and Transient Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements. BNWL-1965, March 1973.Google Scholar
  512. [37]
    Hochreiter u. Chelemer: Application of the THINC-IV Program to PWR Design. WCAP-8195, Sept. 1973.Google Scholar
  513. [38]
    Ulrych: Strömungsvorgänge mit unterkühltem Sieden in Brennstabbündeln wassergekühlter Kernreaktoren. TU Braunschweig, Diss. 1976.Google Scholar
  514. [39]
    Suchy, P, G. Ulrych, H. Kemner u. E. Kurz: Application of Tables of Critical Heat Fluxes to Rod Bundles. Transactions of the ENC ‘79 Conference of the European Nuclear Society.Google Scholar
  515. [40]
    Lahey, R. T, u. D. A. Drew: An Assessment of the Literature Related to LWR Instability Modes. NUREG/CR-1414, April 1980.Google Scholar
  516. [41]
    Katto, Y, u. H. Ohno: An Improved Version of the Generali- zed Correlation of Critical Heat Flux for the Forced Con- vective Boiling in Uniformly Heated Vertical Tubes. Int. J. Heat Mass Transfer, Vol. 27, No. 9 (1984), S. 1641/48.Google Scholar
  517. [42]
    Katto, Y: A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes — a Supplementary Report. Int. J. Heat Mass Transfer, Vol. 22 (1979), S. 783/94.Google Scholar
  518. [43]
    Katto, Y, u. S. Yokoya: CHF of Forced Convection Boiling in Uniformly Heated Vertical Tubes: Experimental Study of HP-Regime by the Use of Refrigerant 12. Int. J. Multiphase Flow, Vol. 8 (1982), S. 165/81.Google Scholar
  519. [44]
    Groeneveld, D. C.: The Occurrence of Upstream Dryout in Uniformly Heated Channels. Proc. of the 5th Int. Heat Transfer Conf., Vol. 4 (1976), S. 265/69.Google Scholar
  520. [45]
    Katto, Y: A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes. Int. J. Heat Mass Transfer, Vol. 21 (1978), S. 1527/42.Google Scholar
  521. [46]
    Katto, Y: An Analysis of the Effect of Inlet Subcooling on Critical Heat Flux of Forced Convection Boiling in Vertical Uniformly Heated Tubes. Int. J. Heat Mass Transfer, Vol. 22 (1979), S. 1567/75.Google Scholar
  522. [47]
    Int. J. Heat Mass Transfer, Vol. 23 (1980), S. 1573/80.Google Scholar
  523. [48]
    Katto, Y: A Study of Limiting Exit Quality of CHF of Forced Convection Boiling in Uniformly Heated Vertical Channels. Trans. Am. Soc. Mech. Engrs, Series C, J. Heat Transfer (1982), S. 40/47.Google Scholar
  524. [49]
    Katto, Y: On the Heat-Flux/Exit-Quality Type Correlation of CHF of Forced Convection Boiling in Uniformly Heated Vertical Tubes. Int. J. Heat Mass Transfer, Vol. 24 (1981), S. 533/39.Google Scholar
  525. [50]
    Katto, Y, u. S. Ashida: CHF in High-Pressure Regime for Forced Convection Boiling in Uniformly Heated Vertical Tube of Low Length-to-Diameter Ratio. Proc. 7th Int. Heat Tranfer Conf., Vol. 4 (1982), S. 291/96.Google Scholar
  526. [51]
    Nishikawa, K., S. Yoshida, A. Yamada u. M. Ohno: Experimental Investigation of Critical Heat Flux in Forced Convection Boiling of Freon in a Tube at High Subcritical Pressure. Proc. 7th Int. Heat Transfer Conf., Vol. 4 (1982), S. 321/26.Google Scholar
  527. [52]
    Katto, Y: An Analytical Investigation on CHF of Flow Boiling in Uniformly Heated Vertical Tubes with Special Reference to Governing Dimensionsless Groups. Int. J. Heat Mass Transfer, Vol. 25 (1982), S. 1353/61.Google Scholar
  528. [53]
    Groeneveld, D. C.: Freon Dryout Correlations and their Applicability to Water. AECL 3418.Google Scholar
  529. [54]
    Ilic, V.: The Effect of Pressure on Burnout in a Round Tube Cooled by Freon 12. AAEC/E 325.Google Scholar
  530. [55]
    Barnett, P G., u. R. W. Wood: An Experimental Investigation to Determine the Scaling Laws of Forced Convection Boiling Heat Transfer, Part 2: An Examination of Burnout Data for Water, Freon 12 and Freon 21 in Uniformly Heated Round Tubes. AEEW-R443 (1965).Google Scholar
  531. [56]
    Staub, F. W.: Two Phase Fluid Modelling — the Critical Heat Flux. Nucl. Science and Eng., Vol. 35 (1969), S. 190/99.Google Scholar
  532. [57]
    Purcupile, J. C., u. S. W. Gouse: Reynolds Flux Model of Critical Heat Flux in Subcooled Forced Convection Boiling. ASME-72-HT-4.Google Scholar
  533. [58]
    Dix, G. E.: Freon-Water Modelling of the CHF in Round Tubes. ASME 70-HT-26.Google Scholar
  534. [59]
    Katto, Y, u. S. Yokoya: Critical Heat Flux of Liquid HeliumGoogle Scholar
  535. (I).
    in Forced Convective Boiling. Int. J. Multiphase Flow, Vol. 10, No. 4 (1984), S. 401/13.Google Scholar
  536. [60]
    Lewis, J. P, u. J. H. Goodykoontz u. J. F. Kline: Boiling Heat Transfer to Liquid Hydrogen and Nitrogen in Forced Flow. NASA, Techn. Note D-1314.Google Scholar
  537. [61]
    Alad’yev, T, I. G. Gorlov, L. D. Dodonov u. O. S. Fedynskiy: Heat Transfer to Boiling Potassium in Uniformly Heated Tubes. Heat Transfer-Soviet Research, Vol. 1, No. 4 (1969).Google Scholar
  538. [62]
    Hoffman, H. W, u. A. I. Krakoviak: Convective Boiling with Liquid Potassium. Oak Ridge National Laboratory, Oak Ridge, USA.Google Scholar
  539. [63]
    Noel, M. B.: Experimental Investigation of the Forced-Convection and Nucleate-Boiling Heat-Transfer Characteristics of Liquid Ammonia. JPL-Tech. Notes Report No. 32/125.Google Scholar
  540. [64]
    Cumo, M., R. Bertoni, R. Cipriani u. G. Palazzi: Up-Flow and Down-Flow Burnout. Inst. Mech. Engrs. Conf. Publ. 1977/8 (1977), S. 183/92.Google Scholar
  541. [65]
    Jensen, M. K., u. A. Bergles: Critical Heat Flux in Helically Coiled Tubes. J. Heat Transfer, Vol. 103 (1981), S. 660/66.Google Scholar
  542. [66]
    Ahmad, S. Y: Fluid-to-Fluid Modelling of CHF: A Compensated Distortion Model. Int. J. Heat Mass Transfer, Vol. 16 (1973), S. 641/62.Google Scholar
  543. [67]
    Katsaounis, A.: Literaturbewertung zur Fluidähnlichkeit für die kritische Heizflächenbelastung. GKSS 81/E/10.Google Scholar
  544. [68]
    Katsaounis, A.: Verification of Ahmad’s Fluid-to-Fluid Scaling Law by Bundle Experiments. Winter Annual Meeting of ASME, Chicago, HDT-Vol. 14 (1980).Google Scholar
  545. [69]
    Katsaounis, A.: Comparison of Various CHF-Data Performed in Different Fluids and Test Sections with Various CHF-Correlations. Europ. Two-Phase flow Group Meeting. Eindhoven, 1981 and GKSS 81/E/35.Google Scholar
  546. [70]
    Auracher, H., u. A. Marroquin: Critical Heat Flux and Minimum Heat Flux of Film Boiling of Binary Mixtures Flowing Upwards in a Vertical Tube. In: Convective Flow Boiling Ed. J. C. Chen, Taylor and Francis, Washington DC (1996), S. 213/18.Google Scholar
  547. [71]
    Stephan, K., u. M. Körner: Berechnung des Wärmeübergangs verdampfender binärer Flüssigkeitsgemische. Chem.Ing. Techn. (1969), S. 409/34.Google Scholar
  548. [72]
    Sterman, L., A. Abramov u. G. Checheta: Investigation of Boiling Crisis at Forced Motion of High Temperature Organic Heat Carriers and Mixtures. Int. Symposium on Research into Co-current Gas-Liquid Flow. Univ. of Waterloo, Canada, paper E 2, 1968.Google Scholar
  549. [73]
    Celata, G. P, M. Cumo u. T. Setaro: Critical Heat Flux in Upflow-Convective Boiling of Refrigerant Binary Mixtures. Int. J. Heat Mass Transfer, Vol. 37 (1994), S. 1143/53.Google Scholar
  550. [74]
    Tolubinskiy, V. I., u. A. S. Matorin: Forced Convection Boiling Heat Transfer-Soviet Research, Vol. 5, No. 2 (1973).Google Scholar
  551. [75]
    Tong, L. S.: Boiling Crisis and Critical Heat Flux. AEC Critical Review Series. TID — 25887, 1972.Google Scholar
  552. [76]
    Bergles, A. E.: Burnout in Boiling Heat Transfer. Part I: Pool-Boiling System. Nuclear Safety, Vol. 16, No. 1, Jan.—Febr. 1975.Google Scholar
  553. [77]
    Bergles, A. E.: Burnout in Boiling Heat Transfer. Part II: Subcooled and Low-Quality Forced-Convection Systems. Nuclear Safety, Vol. 18, No. 2, March—April 1977.Google Scholar
  554. [78]
    Bergles, A. E.: Burnout in Boiling Heat Transfer. Part III: High-Quality Forced-Convection Systems. Nuclear Safety, Vol. 20, No. 6, Nov.—Dec. 1979.Google Scholar
  555. [79]
    Hewitt, G. F.: Critical Heat Flux in Flow Boiling. Int. Heat Transf. Conference, Toronto, Aug. 1978, Vol. 6, Paper KS-13.Google Scholar
  556. [80]
    Collier, J. G.: Convective Boiling and Condensation, London 1972.Google Scholar
  557. [81]
    Hewitt, G. F., u. N. S. Hall-Taylor: Annular Two-Phase Flow. Oxford 1970.Google Scholar
  558. [82]
    Wallis, G. B.: One-dimensional Two-Phase-Flow. New York (1969).Google Scholar
  559. [83]
    Bergles, A. E. et al.: Two-Phase Flow and Heat Transfer in the Power and Process Industries. Hemisphere Publishing Corporation, Washington (1981).Google Scholar
  560. [84]
    Butterworth, D., u. G. F. Hewitt: Two-Phase Flow and Heat Transfer. Oxford University Press, 1977.Google Scholar
  561. [1]
    Groeneveld, D. C., u. C. W. Snoek: Comprehensive examination of heat transfer correlations suitable for reactor safety analysis. Multiphase Science and Technology, Chapter 3; Ed. Hewitt, G. F., J. M. Delhaye u. N. Zuber: Hemisphere Publishing Corp., Washington, and Springer Verlag, Berlin, Vol. 2 (1986).Google Scholar
  562. [2]
    Mayinger, F.: Strömung and Wärmeübertragung in Gas-Flüssigkeitsgemischen. Springer Verlag, 1984.Google Scholar
  563. [3]
    Katsaounis, A.: Post dryout correlations and models compared to experimental data from different fluids. Proceedings of the XVIII International Symposium on Heat and Mass Transfer in Cryoengineering and Refrigeration, Hemisphere Publishing Corp., Washington, 1987; ICHMTSymposium, Sept. 1986, Dubrovnik, Yugoslavia. Preprint GKSS 86/E/41.Google Scholar
  564. [4]
    Bergles, A. E., J. G. Collier, J. M. Delhaye, G. E Hewitt u. E. Mayinger: Two-phase flow and heat transfer in the power and process industries. Hemisphere Publishing Corp., Washington, 1981.Google Scholar
  565. [5]
    Collier, J. G.: Post-dryout heat transfer — a review of the current position. Advanced Study Institute on Two-Phase Flows and Heat Transfer, Istanbul, 1976.Google Scholar
  566. [6]
    Hetsroni, G.: Handbook of multiphase systems. Hemisphere Publ. Corp., Washington, and McGraw-Hill Book Corp., New York, 1982.Google Scholar
  567. [7]
    Hein, D., u. W. Köhler: The role of thermal non-equilibrium in post-dryout heat transfer. European Two-Phase Flow Group Meeting, Grenoble, 1977.Google Scholar
  568. [8]
    Hein, D., u. W. Köhler: A simple-to-use post-dryout heat transfer model accounting for thermal non-equilibrium. Proceedings of the 1st Intern. Workshop on Fundamental Aspects of Post Dryout Heat Transfer, Salt Lake City, USA, 1986.Google Scholar
  569. [9]
    Köhler, W.: Einfluß des Benetzungszustandes der Heizfläche auf Wärmeübergang und Druckverlust in einem Verdampferrohr. Diss. Lehrstuhl A für Thermodynamik, TU-München, 1984.Google Scholar
  570. [10]
    Gnielinski, V: Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forsch.-Ing. Wes. 41 (1975), Nr. 1, S. 8/16.Google Scholar
  571. [11]
    Groeneveld, D. C., u. G. G. J. Delorme: Prediction of thermal non-equilibrium in the post-dryout regime. Nuclear-Eng. and Design 36 (1976), S. 17/26.Google Scholar
  572. [12]
    Saha, P.: A non-equilibrium heat transfer model for dispersed droplet post-dryout regime. Int. J. Heat Mass Transfer, Vol. 23 (1980), S. 483/92.Google Scholar
  573. [13]
    Chen, J. C., E. T. Ozkaynak u. R. K. Sundaram: Vapor heat transfer in post-CHF region including the effect of thermodynamic non-equilibrium. Nuclear Engineering and Design 51 (1979), S. 143/155, and: A phenomenological correlation for post-CHF heat transfer. Nuclear Regulatory Commission of USA NUREG-0237 (1977).Google Scholar
  574. [14]
    Webb, S. W, J. C. Chen u. R. K. Sundaram: Vapor generation rate in non-equilibrium convective film boiling. Intern. Heat Transfer Conf. München, Vol. 4 (1982), FB 45, S. 437/42.Google Scholar
  575. [15]
    Jones, Jr. O. C., u. N. Zuber: Post-CHF heat transfer: A non-equilibrium, relaxation model. American Society of Mechanical Engineering ASME 77-HT-79 (1977).Google Scholar
  576. [16]
    Miropol’skiy, Z. L.: Heat transfer in film boiling of a steam water mixture in steam generating tubes. Teploenergetika, Vol. 10, No. 5 (1963), S. 49/53.Google Scholar
  577. [17]
    Groeneveld, D. C.: An investigation of heat transfer in the liquid deficient regime. Atomic Energy of Canada Limites AECL-3281 (1969).Google Scholar
  578. [18]
    Dougall, R. S., u. W. M. Rohsenow: Film boiling on the inside of vertical tubes with upward flow of the fluid at low qualities. Massachusetts Institute of Technology — Technical Report-9079/26 (1963).Google Scholar
  579. [19]
    Glahn, U. H. von: A correlation of film-boiling heat transfer coefficients obtained with hydrogen, nitrogen and freon 113 in forced flow. NASA-TN-D-2294 (1964).Google Scholar
  580. [20]
    Herkenrath, H., u. P. Mörk-Mörkenstein: Die Wärmeübergangskrise von Wasser bei erzwungener Strömung unter hohen Drücken. Teil 2: Der Wärmeübergang im Bereich der Krise. Atomkernenergie (ATKE) S. 403/07.Google Scholar
  581. [21]
    Herkenrath, H., u. P. Mörk-Mörkenstein, K. Jung u. E.-J. Weckermann: Wärmeübergang am Wasser bei erzwungener Strömung im Bereich von 140 bis 250 bar. EUR 3658d, 1967.Google Scholar
  582. [22]
    Becker, K. M., C. H. Ling, S. Hedberg u. G. Strand: An experimental investigation of the post dryout heat transfer. Royal Inst. of Technology, Stockholm, KTH-NEL 33, 1983.Google Scholar
  583. [23]
    Schnittger, R. B.: Untersuchungen zum Wärmeübergang bei vertikalen und horizontalen Rohrströmungen im Post-dryout-Bereich. Diss. TU Hannover 1982, siehe auch Chem.Ing.-Techn. 54 (1982), Nr. 10.Google Scholar
  584. [24]
    Hendricks, R. C., R. W. Graham, Y. Y. Hsu u. A. A. Medeiros: Correlation of hydrogen heat transfer in boiling and super-critical pressure states. ARS-Journal, Feb. 1962, S. 244/52 and NASA Technical Notes D-765, May 1961.Google Scholar
  585. [25]
    Grigull, K.: Zustandsgrößen von Wasser und Wasserdampf in SI-Einheiten. Springer-Verlag, Berlin, 1982.Google Scholar
  586. [26]
    Katsaounis, A.: Zur Berechnung der Wärmeübertragung nach der Siedekrise. GKSS 88/E/46.Google Scholar
  587. [27]
    Dimmick, G. R.: Measurements of drypatch spreading and post-dryout temperatures in a 3-rod bundle cooled by freon 12 in vertical and horizontal orientation. Atomic Energy of Canada Limited AECL-6683 (1979).Google Scholar
  588. [28]
    Hynek, S. J., W. M. Rohsenow u. A. B. Bergles: Forced convection dispersed flow film boiling. Massachusetts Institute of Technology — Heat Transfer Lab. Report No. DSR70586/63 (1969).Google Scholar
  589. [29]
    Plummer, D. N., O. C. Iloeje, W. M. Rohsenow, P. Griffith u. E. Ganic: Post-critical heat transfer to flowing liquid in a vertical tube. Massachusetts Institute of Technology — Dep. of Mechan. Eng. Report No. 72718/91 (1974).Google Scholar
  590. [30]
    Hein, D., W. Kastner u. W. Köhler: Influence of the orientation of a flow channel on the heat transfer in a boiler tube. Eur. Two-Phase Flow Group Meeting, Paris, 1982.Google Scholar
  591. [31]
    Auracher, H.: Partielles Filmsieden in Zweiphasenströmungen. Fortschr.-Ber. VDI, Reihe 3, Nr. 142, VDI-Verl. Düsseldorf, 1987.Google Scholar
  592. [32]
    Breen, B. P., u. J. W. Westwater: Effect of diameter of horizontal tubes on film boiling heat transfer. Chem. Eng. Progr. Vol. 58 (1962), S. 67/72.Google Scholar
  593. [33]
    Hesse, G.: Heat transfer in nucleate boiling maximum heat flux and transition boiling. Int. J. Heat Mass Transfer, Vol. 16 (1973), S. 1611/27.Google Scholar
  594. [34]
    Johannsen, K., u. W. Meinen: Post-CHF low void heat transfer of water. Measurements in the complete transition boiling region at atmosphere pressure. Proc. of the 1st Intern. Workshop on Fundamental Aspects of Post-Dryout Heat Transfer. Salt Lake City, 1984.Google Scholar
  595. [35]
    Groeneveld, D. C.: Inverted annular and low quality film boiling. A state-of-the-art report. Proceedings of the 1st Intern. Workshop on Fundamental Aspects of Post-Dryout Heat Transfer. Salt Lake City, 1984.Google Scholar
  596. [36]
    Sudo, Y: Film boiling heat transfer during reflood phase in postulated PWR-LOCA. Journ. of Nuclear Science and Technology, Vol. 7 (1980), S. 516/30.Google Scholar
  597. [37]
    Stewart, J. C., u. D. C. Groeneveld: Low quality and sub-cooled film boiling of water at elevated pressures. Nuclear Eng. and Design, 67 (1981), S. 259/72.Google Scholar
  598. [38]
    Groeneveld, D. C., u. K. K. Fung: Forced convective transition boiling. Review of literature and comparison of prediction methods. Atomic Energy of Canada, Ltd., AECL-5543 (1976).Google Scholar
  599. [39]
    Leonard, J. E., K. H. Sun u. G. E. Dix: Low flow film boiling heat transfer on vertical surfaces. Solar and Nuclear Heat Transfer, AIChE-Symposium Series, No. 164, Vol. 73.Google Scholar
  600. [40]
    Denham, M. K.: Inverted annular film boiling and the Bromley-model. United Kingdom Atomic Energy Authority, AEEW-R 1950, 1983.Google Scholar
  601. [41]
    Bressler, R. G.: A review of physical models and heat transfer correlations for free-convection film boiling. Adv. Cryogenic Eng. Vol. 17 (1972), K-2, S. 382/406.Google Scholar
  602. [42]
    Hsu, Y. Y: A review of film boiling at cryogenic temperatures. Advances in Cryogenic Engineering, Bd. 17 (1972), S. 361/81.Google Scholar
  603. [43]
    Weber, P.: Experimentelle Untersuchungen zur Siedekrise und zum Übergangssieden von strömendem Wasser unter erhöhtem Druck. Diss. TU-Berlin. Fortschr.-Ber. VDI, R. 3, Nr. 226, VDI-Verl. Düsseldorf 1990.Google Scholar
  604. [44]
    Huang, X.: Vergleichende Untersuchung von Siedevorgängen aus temperaturgeregelten Messungen und Quenching-versuchen bei erzwungener Strömung von Wasser. Diss. TU Berlin. Fortschr.-Ber. VDI, Reihe 19, Nr. 65, VDI-Verlag Düsseldorf, 1993.Google Scholar
  605. [45]
    France, D. M., I. S. Chan u. S. K. Shin: High-Pressure Transition Boiling in Internal Flows. Journal of Heat Transfer, Transactions of the ASME, Vol. 109, S. 498 /502 (May 1987).Google Scholar
  606. [46]
    Auracher, H.: Transition Boiling. Proc. of the Ninth Int. Heat Transfer Conf., Vol. 1, S. 69/90, Jerusalem, Israel (Aug. 1990).Google Scholar
  607. [47]
    Katsaounis, A.: A Prediction method of the transition boiling heat transfer in vertical tubes during forced convection in comparison to experimental data. Proc. of the 2nd European Thermal-Science Conf., Vol. 1, S. 425/32, Rome, 29/31 May, 1996.Google Scholar
  608. [48]
    Weber, P., u. K. Johanssen: Convective Transition Boiling of Water at Medium Pressure. Proc. of the Ninth Int. Heat Transfer Conf., Vol. 6, S. 35/40, Jerusalem, Israel (Aug. 1990).Google Scholar
  609. [49]
    Ragheb, H. S., S. C. Cheng u. D. C. Groeneveld: Observations in Transition Boiling of Subcooled Water under Forced Convective Conditions. Int. J. Heat Mass Transfer, Vol. 24, S. 1127 /1137, 1981.Google Scholar
  610. [50]
    Cheng, S. C., W. W L. Ng u. K. T. Heng: Measurements of Boiling Curves of Subcooled Water under Convective Conditions. Int. J. Heat Mass Transfer, Vol. 21, S. 1387 /1392, 1978.Google Scholar
  611. [51]
    Katsaounis, A., H. Fulfs u. M. Kreubig: Experimental Results of Critical Heat Flux Measurements in 25-Rod Bundles with Different Types of Grid Spacers. Proc. of Heat Transfer in Nuclear Reactor Safety. Ed. S. G. Bankoff a. N. H. Afgan, Int. Centre for Heat a. Mass Transfer. Hemisphere Publ. Corp., Washington, 1982.Google Scholar
  612. [52]
    Sparrow, E. M., u. R. D. Cess: The effect of subcooled boiling on laminar film boiling. Trans. of the ASME, J. Heat Transfer, Vol. 84 (1962), S. 149/56.Google Scholar
  613. [53]
    Nishikawa, K. T, u. T Ito: Two-phase boundary layer treatment of free convective film boiling. Int. J. Heat Mass Transfer 9 (1966), S. 103/15.Google Scholar
  614. [54]
    Greitzer, E. M., u. F. H. Abernathy: Film boiling on vertical surfaces. Int. J. Heat Mass Transfer, Vol. 15 (1972), S. 475/91.Google Scholar
  615. [55]
    Lauer, H.: Untersuchung des Wärmeübergangs und der Wiederbenetzung beim Abkühlen heißer Metallkörper. EUR. 5702 d, 1976.Google Scholar
  616. [56]
    Lauer, H., u. W. Hufschmidt: Heat transfer and surface rewet during quenching. Advanced Study Inst. on Two-Phase Flows and Heat Transfer, Istanbul, 1976.Google Scholar
  617. [57]
    Bromley, L. A., N. R. Leroy u. J. A. Robbers: Heat transfer in forced convection film boiling. Industrial and Engineering Chemistry, Vol. 45 (1953), No. 1, S. 2639/46.Google Scholar
  618. [58]
    Motte, E. I., u. L. A. Bromley: Film boiling of flowing sub-cooled liquids. Industr. and Engin. Chemistry, Vol. 49 (1957), No. 11, S. 1921/28.Google Scholar
  619. [59]
    Raznjevic, K.: Thermodynamische Tabellen. Düsseldorf: VDI-Verl. 1977.Google Scholar
  620. [60]
    Vargaftik, N. B.: Tables on the thermophysical properties of liquids and gases. Hemisphere Publishing Corp., Washington-London, 1975.Google Scholar
  621. [61]
    Leidenfrost, J. G.: On the fixation of water in diverse fire. Int. J. Heat Mass Transfer, Vol. 9 (1966), S. 1153/66.Google Scholar
  622. [62]
    Hein, D.: Modellvorstellungen zum Wiederbenetzen durch Fluten. Diss. TU Hannover (1981).Google Scholar
  623. [63]
    Nukiyama, S.: Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. Journ. Society Mechan. Eng., Japan Vol. 37 (1934), S. 53/54 u. 367/74.Google Scholar
  624. [64]
    Stephan, K.: Wärmeübertragung beim Kondensieren und beim Sieden. Berlin, Heidelberg, New York: Springer Verlag 1988.Google Scholar
  625. [65]
    Bui, T. D., u. V. K. Dhir: Transition boiling heat transfer on a vertical surface. Trans. ASME, J. Heat Transfer, Vol. 107 (1985) S. 756/63.Google Scholar
  626. [66]
    Schroeder-Richter, D.: Ein analytischer Beitrag zur Anwendung der Thermodynamik irreversibler Prozesse auf Siedephänomene. Diss. TU-Berlin. Fortschr.-Ber. VDI, R. 3, Nr. 259, VDI-Verl. Düsseldorf 1991.Google Scholar
  627. [67]
    Schroeder-Richter, D., u. G. Bartsch: The Leidenfrost Phenomenon Caused by a Thermodynamical Effect of Transition Boiling: A revised Problem of Non-equilibrium Thermodynamics. L. C. Witte and C. T. Avedisian: Proc. Fund. of Phase Change, Boiling and Condensation, New York, ASME-HTD, Vol. 136, S. 13 /20, 1990.Google Scholar
  628. [68]
    Hein, D., V. Kefer u. H. Liebert: Maximum wetting temperatures up to critical pressure. Proc. of the 1st Intern. Workshop of Fundamental Aspects of Post-Dryout Heat Transfer. Salt Lake City, 1984.Google Scholar
  629. [69]
    Kefer, V: Der Einfluß des Druckes auf das Benetzungsverhalten. Diplomarbeit am Institut A für Thermodynamik der TU München, 1982.Google Scholar
  630. [70]
    Groeneveld, D. C., u. J. C. Stewart: The minimum film boiling temperature for water during film boiling collapse. Intern. Heat Transfer Conference München, 1982, Paper FB 37, Vol. 4, S. 393/98.Google Scholar
  631. [71]
    Feng, Q.: Experimentelle Untersuchungen zur maximalen Temperatur des Übergangssiedens bei erzwungener Wasserströmung bis 1,2 MPa. Diss. TU-Berlin. Fortschr.-Ber. VDI, Reihe 3, Nr. 265, VDI-Verlag, Düsseldorf 1991.Google Scholar
  632. [72]
    Feng, Q., u. K. Johannsen: The high-temperature limit of the transition boiling regime for water in vertical upflow at medium pressure. Proc. of the Ninth Int. Heat Transfer Conf., Vol. 6, S. 29/34, Jerusalem, Israel (Aug. 1990).Google Scholar
  633. [73]
    Bolle, L., u. J. C. Moureau: Spray cooling of hot surfaces. Multiphase Science and Technology, Vol. 1. Ed. Hewitt, G. F., J. M. Delhaye u. N. Zuber: Hemisphere Publ. Corp., Washington; and McGraw-Hill Intern. Book Comp., Hamburg, 1982.Google Scholar
  634. [74]
    Berenson, P. J.: Film-boiling heat Transfer from a horizontal surface. Trans. ASME, J. Heat Transfer (1961).Google Scholar
  635. [75]
    Spiegler, P., J. Hopenfeld, M. Silberberg, C. F. Bumpus u. J. Norman: Onset of stable film boiling and the foam limit. Int. J. Heat Mass Transfer, Vol. 6 (1963), S. 886/994.Google Scholar
  636. [76]
    Baumeister, K. J., u. F. F. Simon: Leidenfrost Temperature — Its correlation for liquid metals, cryogens, hydrocarbons and water. Transaction ASME. J. Heat Transfer Vol. 95 (1973) S. 166/73.Google Scholar
  637. [77]
    Simon, F. F., u. R. J. Simoneau: Transition from film to nucleate boiling in vertical forced flow. American Society of Mechanical Engineering ASME 69-HT-26 (1969).Google Scholar
  638. [78]
    Henry, R. E.: A correlation of the minimum film boiling temperature. Heat Transfer-Research and Design. AIChESymposium Series No. 138, Vol. 70.Google Scholar
  639. [79]
    Kalinin, E. K., I. I. Berlin u. V. V. Kostyuk: Film boiling heat transfer. Advances in Heat Transfer, Academic Press Vol. 11 (1975), S. 51/197, New York, San Francisco, London.Google Scholar
  640. [80]
    Kalinin, E. K., S. A. Yarkho, I. I. Berlin, Yu. S. Kochelaev u. V. V. Kostyuk: Investigations of the crisis of film boiling in channels. Proc. Two-Phase Flow and Heat Transfer in Rod Bundles. ASME-Winter Annual Meeting, Los Angeles (1969).Google Scholar
  641. [81]
    Bell, K J.: The Leidenfrost phenomen: A survey. Chemical Eng. Progr. Symp. Series, Vol. 63, No. 79.Google Scholar
  642. [82]
    Sakurai, A., M. Shiotsu u. K Hata: Steady and unsteady film boiling heat transfer at subatmospheric and elevated pressures. In Heat Transfer Nuclear Reactor Safety. Ed. Bankoff, S. G., u. H. N. Kakac. Hemisphere Publ. Corp., Washington, 1982.Google Scholar
  643. [83]
    Sakurai, A., M. Shiotsu u. K. Hata: Transient boiling caused by vapor film collapse at minimum heat flux in film boiling. Nuclear Eng. and Design, Vol. 99 (1987), S. 167/75.Google Scholar
  644. [84]
    Andreyev, A. P, u. V. M. Borishanskij: Calculation of the Leidenfrost-Temperature and of the time required for vaporization of spheroidal droplets at this temperature. Heat Transfer-Soviet Research, Vol. 13 (1981), No. 1.Google Scholar
  645. [85]
    Yao, S., u. R. E. Henry: An Investigation of the minimum film boiling temperature on horizontal surfaces. Transaction ASME. J. Heat Transfer, Vol. 100 (1978), S. 260/67.Google Scholar
  646. [86]
    Michiyoshi, I., u. K. Makino: Heat transfer characteristics of evaporation of a liquid droplet on heated surfaces. Int. J. Heat Mass Transfer, Vol. 21 (1978), S. 605/13.Google Scholar
  647. [87]
    Chowdhury, S. K., u. R. H. S. Winterton: Transition boiling on surfaces of different surface energy. Proc. of the 1st Intern. Workshop on Fundamental Aspects of Post-Dryout Heat Transfer. Salt Lake City, 1984.Google Scholar
  648. [88]
    Emmerson, G. S.: The effect of pressure and surface material on the Leidenfrost point of discrete drops of water. Int. J. Heat Mass Transfer, Vol. 18 (1975), S. 381/86.Google Scholar
  649. [89]
    Emmerson, G. S., u. C. W. Snoek: The effect of pressure on the Leidenfrost point of discrete drops of water and freon on a brass surface. Int. J. Heat Mass Transfer, Vol. 21 (1978), S. 1081/86.Google Scholar
  650. [90]
    Komnos, A.: Ein thermo-hydrodynamisches Modell zur Wiederbenetzung. Diss. TU München (1981).Google Scholar
  651. [91]
    Bradfield, W. S.: On the effect of subcooling on wall superheat in pool boiling, J. Heat Transfer ASME, Vol. 89 (1967), S. 269/70.Google Scholar
  652. [92]
    Taitel, Y, u. A. E. Dukler: A model for predicting flow transition in horizontal and near horizontal gas-liquid flow. AIChE J. Vol. 22, Vol. 1 (1976), S. 47/95 und 900.Google Scholar
  653. [93]
    Wallis, G. B.: One-dimensional two-phase flow. New York: McGraw-Hill-Verlag 1969.Google Scholar
  654. [94]
    Hein, D., W. Kastner u. W. Köhler: Einfluß der Rohrlage auf den Wärmeübergang in einem Verdampferrohr. Brennst.Wärme-Kraft 34 (1982) S. 489/93.Google Scholar
  655. [95]
    Kefer, V, W. Köhler u. W. Kastner: Critical heat flux (CHF)and post-CHF heat transfer in horizontal and inclined evaporation tubes. Int. J. Multiphase Flow, Vol. 15, No. 3 (1989), S. 386/92.Google Scholar
  656. [96]
    Kanzaka, M., M. Iwabuchi, T Matsuo, H. Haneda u. K. Yamamoto: Heat transfer characteristics of horizontal smooth tube in high pressure region. Intern. Heat Transfer Conf., San Francisco, USA (1986) Vol. 5, S. 2173/78.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Verein Deutscher Ingenieure
  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC)

There are no affiliations available

Personalised recommendations