Advertisement

Berechnungsmethoden für Stoffeigenschaften

  • Verein Deutscher Ingenieure
  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC)
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

In den Gleichungen zur Berechnung des Wärmeübergangs sind Stoffeigenschaften enthalten, die die übertragenen Wärmeströme mehr oder weniger stark beeinflussen. So benötigt man beim Wärmeübergang mit erzwungener Konvektion außer der stets erforderlichen Wärmeleitfähigkeit und der spezifischen Wärmekapazität zusätzlich die in die Reynolds-Zahl eingehende kinematische Viskosität, sowie oft noch getrennt die Dichte und die dynamische Viskosität, an dieser Stelle einfach als Viskosität bezeichnet.

Schrifttum

  1. [1]
    Landolt-Börnstein: Zahlenwerte und Funktionen.Google Scholar
  2. [2]
    Reid, R. C., J. M. Prausnitz u. B. E. Poling: The Properties of Gases and Liquids. McGraw Hill 1987.Google Scholar
  3. [3]
    D’Ans, J., u. E. Lax: Taschenbuch für Chemiker und Physiker. Springer Verl.Google Scholar
  4. [4]
    Gmehling, J., U. Onken: Vapor-Liquid-Equilibrium Data Collection. Chemistry Data Series, Vol. 1, Part 2 a. Dechema, Frankfurt 1978.Google Scholar
  5. [5]
    Gmehling, J., U. Onken u. W. Alt: Vapor-Liquid-Equilibrium Data Collection. Chemistry Data Series, Vol. 1, Part 2 b. Dechema, Frankfurt 1978.Google Scholar
  6. [6]
    Hala, E., J. Pick, V. Fried u. O. Vilim: Vapor-Liquid-Equilibrium. Pergamon Press 1967.Google Scholar
  7. [7]
    Stull, D. R., E. F. Westrum u. G. C. Sinke: The Chemical Thermodynamics of Organic Compounds. Wiley 1969.Google Scholar
  8. [8]
    Touloukian, Y S., S. C. Saxena u. P. Hestermans: Viscosity. Thermophysical Properties of Matter. The TPRC Data Series. Vol. 11. Plenum Press 1975.Google Scholar
  9. [9]
    Stephan, K., u. K. Lucas: Viscosity of Pure Dense Fluids. Plenum Press 1979.Google Scholar
  10. [10]
    Touloukian, Y. S., u. C. Y. Ho: Thermal Conductivity. Thermophysical Properties of Matter. The TPRC Data Series. Vol. 3. Plenum Press.Google Scholar
  11. [Il]
    Jamieson, D. T, J. B. Irving u. J. S. Tudhope: Liquid Thermal Conductivity: A Data Survey to 1973. Her Majesty’s Stationery Office, Edinburgh 1975.Google Scholar
  12. [12]
    Marrero, T. R., u. E. A. Mason: J. Phys. Chem. Ref. Data, 1 (1972), 3.Google Scholar
  13. [13]
    Jasper, J. J.: J. Phys. Chem. Ref. Data 1 (1972), 841.Google Scholar
  14. [14]
    Mo, K. C., u. K. E. Gubbins: Mol.Phys. 31 (1976), 529.Google Scholar
  15. [15]
    Leland, T W, J. S. Rowlinson u. G. A. Sather: Trans. Farad. Soc. 64 (1969), 1447.Google Scholar
  16. [16]
    Lydersen, A. L: Estimation of Critical Properties of Organic Compounds. Univ. Wisconsin Coll. Eng., Eng. Exp. Stn. Rep. 3, Madison, Wis.; April 1955.Google Scholar
  17. [17]
    Pitzer, K. S.: J. Am. Chem. Soc. 77 (1955), 3427.Google Scholar
  18. [18]
    Pitzer, K. S., D. Z. Lippmann, R. F. Curl, C. M. Huggins u. D. E. Peterson: J. Am. Chem. Soc. 77 (1955), 3433.Google Scholar
  19. [19]
    Ogata, Y, u. M. Tsuchida: Ind. Engng. Chem. 49 (1957), 415.Google Scholar
  20. [20]
    Nelson, L. C., u. E. F. Obert: Trans. ASME 76 (1954), 1057.Google Scholar
  21. [21]
    Lee, B. I., u. M. G. Kesler: AICHE J. 21 (1975), 510.Google Scholar
  22. [22]
    Lo, H. Y, u. L. I. Stiel: Ind. Eng. Chem. Fund. 8 (1969), 713.Google Scholar
  23. [23]
    Gunn, R. D., u. T Yamada: AICHE J. 17 (1971), 1341.Google Scholar
  24. [24]
    Schmidt, E. K., K. Stephan u. F. Mayinger: Technische Thermodynamik. Springer-Verlag, 1975.Google Scholar
  25. [25]
    Treszczanowicz, A. J., u. G. C. Benson: J. Chem. Thermo. 10 (1978), 967.Google Scholar
  26. [26]
    Prausnitz, J. M., u R. D. Gunn: AICHE J. 4 (1958), 430, 494.Google Scholar
  27. [27]
    Huang, E. T. S., G. W. Swift u. F. Kurata: AICHE J. 13 (1967), 846.Google Scholar
  28. [28]
    Watson, K. M.: Ing. Engng. Chem. 35 (1943), 399.Google Scholar
  29. [29]
    Vetere, A.: New Generalized Correlations for Enthalpy of Vaporization of pure Compounds. Laboratore Richerche Chimica Industriale, SNAM PROGETTI, San Donato, Milanese, 1973.Google Scholar
  30. [30]
    Rihani, D. N., u. L. K. Doraiswamy: Ing. Eng. Chem. Fun-dam. 4 (1965), 17.Google Scholar
  31. [31]
    Bier, K., G. Ernst, J. Kunze u. G. Maurer: Verfahrenstechnik 6 (1972), 261.Google Scholar
  32. [32]
    Bondi, A.: Ind. Eng. Chem. Fundam. 5 (1966), 443.Google Scholar
  33. [33]
    Rowlinson, J. S.: Liquids and Liquid Mixtures. London: Butterworth 1969.Google Scholar
  34. [34]
    Lucas, K: C.I.T. 46 (1974), 157.Google Scholar
  35. [35]
    Letsou, A., u. L. I. Stiel: AICHE J. 19 (1979), 293.Google Scholar
  36. [36]
    Souders, M.: J. Am. Chem. Soc. 60 (1938), 154.Google Scholar
  37. [37]
    Carmichael, L. T, V. Berry, u. B. H. Sage: J. Chem. Eng. Data 12 (1967), 44.Google Scholar
  38. [38]
    Heric, E. L, u. J. G. Brewer: J. Chem Eng. Data 12 (1967), 574.Google Scholar
  39. [39]
    Bromley, L. A.: Thermal Conductivity of Gases at Moderate Pressure. Univ. California Rad. Lab. UCRL-1852, Berkeley, Calif. June 1952.Google Scholar
  40. [40] Mason, E. A., u. S. C. Saxena: Phys. Fluids 1 (1958), 361. [41]
    Stiel, L. I., u. G. Thodos: AICHE J. 10 (1964), 26.Google Scholar
  41. [42]
    Rosenbaum, B. M., u. G. Thodos: J. Chem. Phys. 51 (1969), 1361.Google Scholar
  42. [43]
    Robbins, L A., u. C. L. Kingrea: Hydrocarbon Proc. Pet. Ref. 41 (1962), 133.Google Scholar
  43. [44]
    Lenoir, J. M.: Pet. Refiner 36 (1957), 162.Google Scholar
  44. [45]
    Bird, R. B., W. E. Stewart u. E. N. Lightfoot: Transport Phenomena. Wiley 1960.Google Scholar
  45. [46]
    Fuller, E. N., u. J. G. Giddings: Ind. Eng. Chem. 3 (1965), 222.Google Scholar
  46. [47]
    Fuller, E. N., P. D. Schettler u. J. C. Giddings: Ind. Eng. Chem. 58 (1966), 18.Google Scholar
  47. [48]
    Dawson, R. F., F. Khoury u. R. Kobayashi: AICHE J. 16 (1970), 725.Google Scholar
  48. [49]
    Wilke, C. R., u. P. Chang: AICHE J. 1 (1955), 264.Google Scholar
  49. [50]
    Vignes, A.: Ind. Eng. Chem. Fund. 5 (1966), 189.Google Scholar
  50. [51]
    Czworniak, K. J.: Chem. Phys. 11 (1975), 451.Google Scholar
  51. [52]
    Haase, R.: Thermodynamik der irreversiblen Prozesse. Steinkopff-Verlag, 1963.Google Scholar
  52. [53]
    Hirschfelder, J. O. C., F. Curtiss u. R. B. Bird: Molecular Theory of Gases and Liquids. Wiley, 1964.Google Scholar
  53. [54]
    Brock, J. R., u. R. B. Bird: AICHE J. 1 (1955), 174.Google Scholar
  54. [55]
    Miller, D. G.: Ind. Eng. Chem. Fund. 2 (1963), 78.Google Scholar
  55. [56]
    Hakim, D. I., D. Steinberg u. L I. Stiel: Ind. Eng. Chem. Fund. 10 (1971), 174.Google Scholar
  56. [57]
    Tamura, M., M. Kurata u. H. Odani: Bull. Chem. Soc. Jpn. 28 (1955), 83.Google Scholar
  57. [58]
    Lucas, K.: C.I.T. 53 (1982), 959.Google Scholar
  58. [1]
    Release on The IAPS Formulation 1984 for the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use. Dez. 1984.Google Scholar
  59. [2]
    Release on The IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance. Nov. 1985.Google Scholar
  60. [3]
    Release on The IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance. Nov. 1985.Google Scholar
  61. [4]
    Release on Surface Tension of Water Substance. Jan. 1976.Google Scholar
  62. [5]
    Release on IAPS Statement 1983 of Values of Temperature, Pressure and Density of Ordinary and Heavy Water Substance at their Respective Critical Points. Mai 1983.Google Scholar
  63. [6]
    Sato, H.: An Equation of State for the Thermodynamic Properties of Water in The Liquid Phase including the Metastable State. Proc. 11th Internat. Conf. Properties of Water and Steam, Prag 1989. New York: Hemiphere Publish. Corp., s. bes. S. 48/55.Google Scholar
  64. [1]
    Baehr, H.D. u. K. Schwier: Die thermodynamischen Eigenschaften der Luft. Berlin: Springer-Verl. 1961Google Scholar
  65. [2]
    Kadoya, K., N. Matsunaga u. A. Nagashima: Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase in a Wide Range of Temperature and Pressure. J. Phys. Chem. Ref. Date 14 (1985) 4, S. 947/970Google Scholar
  66. [3]
    Stephan, K., u. A. Laesecke: The Thermal Conductivity of Fluid Air. J. Phys. Chem. Ref. Data 14 (1985) 1, S. 227/234Google Scholar
  67. [1]
    Jacobsen, R. T, u. R. B. Stewart: International Thermodynamic Tables of the Fluid State — 6 Nitrogen. Hrsgg. v. S. Angus, K. M. de Reuck u. B. Armstrong, IUPAC. Oxford: Pergamon Press 1979.Google Scholar
  68. [2]
    Wagner, W: Eine mathematisch-statistische Methode zum Aufstellen thermodynamischer Gleichungen — gezeigt am Beispiel der Dampfdruckkurve reiner fluider Stoffe. Fortschr.-Ber. VDI-Z. R. 3 Nr. 39. Düsseldorf: VDI-Verl. 1974.Google Scholar
  69. [3]
    Stephan, K., R. Krauss u. A. Laesecke: Viscosity and Thermal Conductivity of Nitrogen for a Wide Range of Fluid States. J. Phys. Chem. Ref. Data 16 (1987) 4, S. 993/1023.Google Scholar
  70. [1]
    Span, R., u. W. Wagner: A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 Mpa. J. Phys. Chem. Ref. Data 25 (1996) 6, S. 1509/1596.Google Scholar
  71. Span, R: Eine neue Fundamentalgleichung für das fluide Zustandsgebiet von Kohlendioxid bei Temperaturen bis zu 1100 K und Drücken bis zu 800 Mpa. VDI-Fortschr.-Ber. R. 6, Nr. 285, Düsseldorf: VDI-Verlag, 1993.Google Scholar
  72. [2]
    Vesovic, V., W.A. Wakeham, G.A. Olchowy, J.V. Sengers, J.T.R. Watson u. J. Millat: The Transport Properties of Carbon Dioxide. J. Phys. Chem. Ref. Data 19 (1990) 3, S. 763/808.Google Scholar
  73. [1]
    Schmidt, R., W. Wagner: A new Form of the Equation of State for Pure Substances and its Application to Oxygen. Fluid Phase Equilibria 19 (1985), S. 175/200.Google Scholar
  74. [2]
    Wagner, w., u. M. de Reuck: International Thermodynamic Tables of the Fluid State-9, Oxygen. Blackwell Scientific Publications, Oxford, 1987.Google Scholar
  75. [3]
    Laesecke, A., R. Krauss, K. Stephan u. W. Wagner: Transport Properties of Fluid Oxygen. J. Phys. Chem. Ref. Data 19 (1990) 5, S. 1089/122.Google Scholar
  76. [1]
    Tillner-Roth, R., E Harms-Watzenberg u. H. D. Baehr: Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht (20), Nürnberg 1993, Band II/1, S. 167/81.Google Scholar
  77. [2]
    Baehr, H. D., u. R. Tillner-Roth: Thermodynamische Eigenschaften umweltverträglicher Kältemittel. Springer-Verlag, Berlin Heidelberg, 1995.Google Scholar
  78. [3]
    Krauss, R.: Wärmeleitfähigkeit von Ammoniak. Interner Bericht, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik, Univ. Stuttgart, 1983 u. 1987.Google Scholar
  79. [4]
    Fenghour, A., W. A. Wakeham, V. Vesovic, J. T. R. Watson, J. Millat u. E. Vogel: The Viscosity of Ammonia. J. Phys. Chem. Ref. Data 24 (1995) 5, S. 1649/67.Google Scholar
  80. [1]
    Tillner-Roth, R., u. H. D. Baehr: An International Standard Formulation of the Thermodynamic Properties of 1,1,1,2Tetrafluoroethane (HFC-134a) for Temperatures between 170 K and 455 K at Pressures up to 70 MPa. J. Phys. Chem. Ref. Data. 23 (1994), 5, S. 657/729.Google Scholar
  81. [2]
    Baehr, H. D., u. R. Tillner-Roth: Thermodynamische Eigenschaften umweltverträglicher Kältemittel. Springer-Verl. Berlin Heidelberg, 1995.Google Scholar
  82. [3]
    Krauss, R., J. Luettmer-Strathmann, J. V. Sengers u. K. Ste- phan: Transport Properties of 1,1,1,2-Tetrafluoroethane (R134a). Int. J. Thermophys. 14 (1993) 4, S. 951/88.Google Scholar
  83. Ahrendts, J., u. H. D. Baehr: Die thermodynamischen Eigenschaften von Ammoniak. VDI-Forschungsheft 596, VDI-Verlag, Düsseldorf, 1979.Google Scholar
  84. Angus, S., B. Armstrong u. K. M. De Reuck: Chlorine-Tentative Tables. IUPAC Chemical Data Series, no. 31, Pergamon Press, Oxford, 1985.Google Scholar
  85. Assael, M. J., M. L. V. Ramires, C. A. Nietro de Castro u. W A. Wakeham: Benzene: A Further Liquid Thermal Conductivity Standard. J. Phys. Chem. Ref. Data, vol. 19, no. 1, 1990.Google Scholar
  86. Bondi, A.: Estimation of the Heat Capacity of Liquids. Ind. Eng. Chem. Fundam., vol. 5, pp 442/449, 1966.Google Scholar
  87. Borreson, R. W, G. R. Schorr u. C. L. Yaws: Correlation Constants for Chemical Compounds/Heat Capacities of Gases. Chem. Eng., 16, pp. 79/81, 1976.Google Scholar
  88. Brock, J. R., u. R. B. Bird: Surface Tension and the Principle of Corresponding States. AIChE J., vol. 1, pp. 174/177, 1955.Google Scholar
  89. Chang, H.-Y: Thermal Conductivity of Gases at AtmosphereGoogle Scholar
  90. Pressure. Chem. Eng., vol. 80, no. 9, pp. 229/232, 1973. Chase, J. D.: Persönliche Mitteilung, 1979.Google Scholar
  91. Chen, N. H.: Generalized Correlation for Latent Heat of Vapo-rization. J. Chem. Eng. Data, vol. 10, pp. 207/210, 1965. Chow, W. M., u. J. A. Bright Jr.: Heat Capacities of OrganicGoogle Scholar
  92. Liquids. Chem. Eng. Prog., vol. 49, pp. 175/180, 1953. Chung, T H., M. Ajlan, L. L. Lee u. K. E. Starling: Ind. Eng. Chem. Fundam., vol. 23, pp. 8, 1984.Google Scholar
  93. Das, T R., u. N. R. Kuloor: Thermodynamic Properties of n-Butane. Indian J. of Tech., vol. 5, pp. 33/39, 1967.Google Scholar
  94. Dixon, J. A., u. R. W. Schiesser: Viscosities of Benzene-d6 and Cyclohexane-d12. J. Phys. Chem., vol. 58, pp. 430/432, 1954.Google Scholar
  95. Donaldson, R. E., u. O. R. Quayle: J. Am. Chem. Soc., vol. 72, pp. 35, 1950.Google Scholar
  96. Edminster, W. C.: Applied Hydrocarbon Thermodynamics, p. 56, Gulf Publishing Co., Houston, Texas, 1961.Google Scholar
  97. Eighth International Conference on the Properties of Steam, Giens, France, September 1974, Release on Thermal Conductivity of Water Substance, December, 1977, International Association for the Properties of Steam, Brown Univ., Providence, Rhode Island.Google Scholar
  98. Elverum, G. W., u. R. N. Doescher: Physical Properties of Liquid Fluorine. J. Chem. Phys., vol. 20, pp. 1834/1836.Google Scholar
  99. Erbar, J. H.: GPA K H Program, Gas Processors Association, Tulsa, Oklahoma, 1977.Google Scholar
  100. Friend, D. G., F. Ely u. H. Ingham: Thermophysical Properties of Ethane. J. Phys. Chem. Ref. Data, vol. 20, pp. 275/347, 1991.Google Scholar
  101. Fugasi, P., u. C. I. J. Rudi: Specific Heats of Organic Vapors. Ind. Eng. Chem., vol. 30, p. 1029, 1938.Google Scholar
  102. Gallant, R. W: Physical Properties of Hydrocarbons. Vol. 1 und 2, Gulf Publishing Co., Houston, Texas, 1970.Google Scholar
  103. Gilgen, R., R. Kleinrahm u. W. Wagner: Measurement and Correlation of the (Pressure, Density, Temperature) Relation of Argon/II. Saturated-Liquid and Saturated-Vapour Densi-ties and Vapour Pressures Along the Entire Coexistence Curve. J. Chem. Thermodyn., vol. 26, pp. 399/413, 1994.Google Scholar
  104. Geist, J. M., u. M. R. Cannon: Viscosities of Pure Hydrocarbons, Ind. Eng. Chem. Anal. Ed., vol. 18, pp. 611/613, 1946.Google Scholar
  105. Golubev, I. F: Viscosity of Gases and Gas Mixtures. Fizmat Press, 1959.Google Scholar
  106. Gomez-Nieto, M., u. G. Thodos: Generalized Treatment for the Vapour Pressure Behaviour of Polar and Hydrogen-BondingGoogle Scholar
  107. Compounds. Can. J. Chem. Eng., vol. 55, pp. 445/449, 1977.Google Scholar
  108. Gomez-Nieto, M., u. G. Thodos: Generalized Vapour Pressure Equation for Nonpolar Substances. Ind. Eng. Chem. Fun-dam., vol. 17, pp. 45/51, 1978.Google Scholar
  109. Goodwin, R. D.: Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 bar. J. Phys. Chem. Ref. Data, vol. 17, pp. 1541/1635, 1988.Google Scholar
  110. Goodwin, R. D., u. W. M. Haynes: Thermophysical Properties of Propane from 85 to 700 K at Pressures to 70 MPa. NBS Monogr. 170 ( U.S. ), Boulder, 1982.Google Scholar
  111. Gorin, C. E., u. C. L. Yaws: Correlation Constants for Chemical Compounds/Heat of Vaporization, Chem. Eng., vol. 83, pp. 85/87, 1976.Google Scholar
  112. GPSA Engineering Data Book, Gas Processors Suppliers Association, Tulsa, Oklahoma, 1977.Google Scholar
  113. Groenier, W. S., u. G. Thodos: Viscosity and Thermal Conductivity of Ammonia in the Gaseous and Liquid States. J. Chem. Eng. Data, vol. 6, pp. 240/244, 1961.Google Scholar
  114. Gross, U., Y. W. Song u. E. Hahne: Thermal Coductivity of the New Refrigerants R134a, R152a and R123 Measured by the Transient Hot-Wire Method. Int. J. Thermophys., vol. 13, pp. 957/983, 1992.Google Scholar
  115. Van der Gulik, P. S.: The Viscosity of the Refrigerant 1,1-Difluoroethane Along the Saturation Line. Int. J. Thermophys., vol. 12, pp. 105/117, 1991.Google Scholar
  116. Gunn, R. D., u. T A. Yamada• Corresponding States Correlation of Saturated Liquid Volumes. AIChE J., vol. 17, pp. 1341/1345, 1971.Google Scholar
  117. Haynes, W. M.: Measurements of the Viscosity of Compressed Gaseous and Liquid Fluorine. Physica, vol. 76, pp. 1/20.Google Scholar
  118. Hendl, S., J. Millat, E. Vogel, V. Vesovic, W. A. Wakeham, J. Luettmer-Starthmann, J. V. Sengers u. M. J. Assael: The Transport Properties of Ethane, I. Viscosity. Int. J. Thermophys., vol. 15, pp. 1/33, 1994.Google Scholar
  119. Ho, C. Y: Data Series on Material Properties, vol. 5 — properties of inorganic and organic fluids. 1988.Google Scholar
  120. Holland, P. M., B. E. Eaton u. H. J. M. Hanley: A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene. J. Phys. Chem. Ref. Data, vol. 12, pp. 917/932, 1983.Google Scholar
  121. Horvath, A. L.: Physical Properties of Inorganic Compounds SI Units. Crane, Russak and Company, New York, 1975.Google Scholar
  122. Hu, I-H., H. L. Johnston u. D. White: The Density and Surface Tension of Liquid Fluorine between 66 and 80° K. J. Am. Soc., vol. 76, pp. 2584/2586, 1954. International critical tables.Google Scholar
  123. Jasper, J. I: The Surface Tension of Pure Liquid Compounds. J. Phys. Chem. Ref. Data, vol. 1, pp. 841/1009, 1972.Google Scholar
  124. Johnson, F M. J., u. D. McIntosh: Liquid Chlorine. J. Am. Chem. Soc., vol. 31, pp. 1138/1144, 1909.Google Scholar
  125. Jossi, J. A., L. I. Stiel u. G. Thodos: The Viscosity of Pure Substances in the Dense Gaseous and Liquid Phases. AIChE J., vol. 8, pp. 59/63, 1962.Google Scholar
  126. Kai, T, H. Nomoto, M. Deguchi u. T. Takahashi: Surface Tension of Ternary Mixtures of Nitrogen, Oxygen and Argon. J. Chem. Eng. Data, vol. 39, pp. 499/501, 1994.Google Scholar
  127. Knappstad, B., P. A. Skjolsvik u. H. A. Oye: Viscosity of Pure Hydrocarbons. J. Chem. Eng. Data, vol. 34, pp. 37/43, 1989.Google Scholar
  128. Kraus, R., J. Luettmer-Strahtmann, J., Sengers u. K. Stephan: Transport Properties of 1,1,1,2-Tetrafluorethane (R134a). Int. J. Thermophys., vol. 14, pp. 951/988, 1993.Google Scholar
  129. Kudchadker, A. P, G. H. Alani u. B. J. Zwolinski: Critical Constants of Organic Substances. vol. 68, pp. 729/735, 1968.Google Scholar
  130. Kumagi, A., u. S. Takahashi: Viscosity of Saturated Liquid Fluorocarbon Refrigerants From 273 to 353 K. Int. J. Thermophys., vol. 12, pp. 105/117, 1993.Google Scholar
  131. Letsou, A., u. L. I. Stiel: Viscosities of Saturated Nonpolar Liquids at Elevated Pressures. AIChE J., vol. 19, pp. 409/411, 1973.Google Scholar
  132. Lee, B. I., u. M. G. Kesler: A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States. AIChE J., vol. 21, pp. 510/527, 1975.Google Scholar
  133. Liquide, L.: Gas Encyclopaedia. Elsevier Scientific Publishing Co., Amsterdam, Netherlands, 1976.Google Scholar
  134. Livingston, J., R. Morgan u. F. T. Owen: The Weight of a Falling Drop and the Laws of Tate. J. Am. Chem. Soc., vol. 33, p. 1713, 1911.Google Scholar
  135. Lydersen, A. L.: Estimation of Critical Properties of Organic Compounds. University of Wisconsin College of Engineering, Eng. Exp. Stn. Rep. 3, Madison, 1955.Google Scholar
  136. Lyman, T. J., u. R. P. Danner: Correlation of Liquid Heat Capacities with a Four-Parameter Corresponding States Method. AIChE. J., vol. 22, pp. 759/765, 1976.Google Scholar
  137. Mathews, J. F: Critical Constants of Inorganic Substances. Chem. Rev., vol 72, no. 1, 1972.Google Scholar
  138. Miller, J. W, Jr., R. S. Gordon u. C. L. Yaws: Correlation Constants for Liquids — Heat Capacities. Chem. Eng., vol. 83, no. 25, pp. 129/131, 1976a.Google Scholar
  139. Miller, J. W, Jr., J. J. McGinley u. C. L. Yaws: Correlation Constants for Liquids — Thermal Conductivities. Chem. Eng., vol. 83, no. 25, pp. 133/135, 1976b.Google Scholar
  140. Miller, J. W, Jr., R. S. Gordon u. C. L. Yaws: Correlation Constants for Chemical Compounds — Thermal Conductivity of Gas. Chem. Eng., Nov. 22, pp. 153/155, 1976c.Google Scholar
  141. Miller, J. W, Jr, R. S. Gordon u. C. L. Yaws: Correlation Constants for Chemical Compounds — Gas Viscosity. Chem. Eng., vol. 86, no. 24, pp. 155/157, 1976d.Google Scholar
  142. Miller, J. W, Jr., R. S. Gordon u. C. L. Yaws: Correlation Constants for Chemical Compounds — Liquid Viscosity. Chem. Eng., vol. 86, no. 24, pp. 157/159, 1976e.Google Scholar
  143. Miller, J. W, C. L. Yaws, P. N. Shah, G. R. Schorr u. P. M. Patel: Chem. Eng., vol. 83, No. 25, pp. 153, 1976f.Google Scholar
  144. Miller, J. W, Jr., u. C. L. Yaws: Correlation Constants for Liquids — Surface Tension. Chem. Eng., vol. 83, no. 22, pp. 127/129, 1976.Google Scholar
  145. Misic, D., u. G. Thodos: The Thermal Conductivity of Hydro- carbon Gases at Normal Preesure. AIChE J., vol. 7, pp. 264/267, 1961.Google Scholar
  146. Nabizadeh, H., u. F. Mayinger: Viscosity of Gaseous R123. High Temp. — High Pres., vol. 24, pp. 221/230, 1992.Google Scholar
  147. Needham, D. P., u. H. Ziebland: Ammonia and its Anomalous Behaviour in the Vicinity of the Critical Point. Int. J. Heat Mass Transfer, vol. 8, pp. 1387/1411, 1965.Google Scholar
  148. Nowak, P R., R. Kleinrahm u. W. Wagner: Measurement and Correlation of the (Pressure, Density, Temperature) Relation of Ethene — II. Saturated-Liquid and Saturated-Vapour Densities and Vapour Pressures Along the Entire Coexistence Curve. Zur Veröffentlichung eingereicht bei J. Chem. Thermodyn.,1996.Google Scholar
  149. Okada, M., u. Y Higashi: Surface Tension Correlation of HFC134a and HCFC-123. Progress Report to IEAAnnex 18, Boulder, 1994.Google Scholar
  150. Okada, M., u. Y Higashi: Experimental Surface Tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b, HCFC-142b, and HFC-152a. Int. J. Thermophys., vol. 16, pp. 791/800, 1995.Google Scholar
  151. Okubo, T., u. A. Nagashima: Measurement of the Viscosity of HCFC-123 in the Temperature Range 233/418 K and at Pressures up to 20 MPa. Int. J. Thermophys., vol. 13, pp. 401/410, 1992.Google Scholar
  152. Oliviera, C. M. B. P., u. W. A. Wakeham: The Viscosity of R32 and R125 at Saturation. Int. J. Thermophys., vol. 14, pp. 1131/1143, 1993.Google Scholar
  153. Outcalt, S. L., u. M. O. McLinden: Equations of State for the Thermodynamic Properties of R32 (Difluoromethane) and R125 (Pentafluoroethane), Int. J. Thermophys., vol. 16, pp. 79/89, 1995.Google Scholar
  154. Patel, P M., G. R. Schorr, P N. Shah u. C. L. Yaws: Vapor Pressure. Chem. Eng., pp. 159/161, Nov. 22, 1976.Google Scholar
  155. Pennington, R. E., u. K A. Kobe: The Thermodynamic Properties of Acetone. J. A. Chem. Soc., vol. 79, pp. 300/305, 1957.Google Scholar
  156. Perry, J. H.: Chemical Engineers Handbook, 3th ed., McGraw-Hill, New York, 1950.Google Scholar
  157. Perry, R. H., u. C. H. Chilton: Chemical Engineers Handbook, 5th ed., McGraw-Hill, New York, 1973.Google Scholar
  158. Prydz, R., u. G. C. Straty: The Thermodynamic Properties of Compressed Gaseous and Liquid Fluorine. Natl. Bur. of Standards (U.S.), Tech. Note392, 1973.Google Scholar
  159. Raznjevic, K.: Handbook of Thermodynamic Tables and Charts, 15t ed., Hemisphere Publishing Corp., Washington, D.C., 1976.Google Scholar
  160. Reid, R. C., J. M. Prausnitz u. T K. Sherwood: The Properties of Gases and Liquids. 3th ed., McGraw-Hill, New York, 1977.Google Scholar
  161. De Reuck, K M., u. R. J. B. Craven: International Tables of the Fluid State, Vol. 12 — Methanol. Hemisphere Pub., London, 1993.Google Scholar
  162. Rihani, D. N., u. L. K. Doraiswamy: Estimation of Heat Capacity of Organic Compounds from Group Contributions. Ind. Eng. Chem. Fundam., vol. 4, pp. 17/21, 1965.Google Scholar
  163. Robbins, L. A., u. C. L. Kingrea: Estimate Thermal Conductivity. Hydrocarbon Proc. Pet. Ref., vol. 41, no. 5, pp. 133/136, 1962.Google Scholar
  164. Sakiadis, B. C., u. J. Coates: Studies in Thermal Conductivity of Liquids. AIChE J., vol. 1, pp. 275/288, 1955.Google Scholar
  165. Sellschopp, W: Z. Ver. Dt. Ing., vol. 75, pp. 69, 1935.Google Scholar
  166. Shah, P. N., u. C. L. Yaws: Densities of Liquids. Chem. Eng., vol. 25, pp. 131/133, 1976.Google Scholar
  167. Somayajulu, G. R.: A Generalized Equation for Surface Tension from the Triple Point to the Critical Point. Int. J. Thermo-physics, vol. 9, pp. 559/567, 1988.Google Scholar
  168. Span, R.: Unveröffentlichte Korrelationsgleichungen für Dampfdruck, Siede- und Taudichte polarer und unpolarer Stoffe. Persönliche Mitteilung, Ruhr-Universität Bochum, 1995.Google Scholar
  169. Stewart, R. B., u. R. T. Jacobsen: Thermodynamic Properties of Argon from the Triple Point to 1200 K with Pressures to 1000 MPa. J. Phys. Chem. Ref. Data, vol. 18, pp. 639/798, 1989.Google Scholar
  170. Stiel, L. I., u. G. Thodos: The Viscosities of Nonpolar Gases at Normal Pressures. AIChE J., vol. 7, pp. 611/615, 1961.Google Scholar
  171. Stiel, L. L., u. G. Thodos: The Viscosity of Polar Gases at Normal Pressures. AIChE J., vol. 8, pp. 229/232, 1962.Google Scholar
  172. Stiel, L. I., u. G. Thodos: The Viscosity of Polar Substances in the Dense Gaseous and Liquid Regions. AIChE J., vol. 10, pp. 275/277, 1964a.Google Scholar
  173. Stiel, L. L., u. G. Thodos: The Thermal Conductivities of Nonpolar Substances in the Dense Gaseous and Liquid Regions. AIChE J., vol. 10, pp. 26/29, 1964b.Google Scholar
  174. Technical Data Book — Petroleum Refining, American Petroleum Institute, Division of Refining, Washington, D.C., 1970Google Scholar
  175. Tillner-Roth, R.: DKV-Tagungsbericht, 20. Jahrgang, Nürnberg, 1993.Google Scholar
  176. Tillner-Roth, R.: A Fundamental Equation of State for 1,1-Di-fluorethane (HFC-152a). Int. J. Thermophys., vol. 16, pp. 91/100, 1995.Google Scholar
  177. Tillner-Roth, R., u. H. D. Baehr: An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2Tetrafluorethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa. J. Phys. Chem. Ref. Data, vol. 23, pp. 657/729, 1994.Google Scholar
  178. Thinh, T. P., J. L. Duran, R. S. Ramalho u. S. Kaliaguine: Equations Improve Cp° Predictions. Hyd. Proc., vol. 50, pp. 98/104, January 1971.Google Scholar
  179. Timmermans, J.: Physico-Chemical Constants of Pure Organic Compounds. Elsevier Publishing Co., pp. 303/325, New York, 1950.Google Scholar
  180. Touloukian, Y. S., u. T. Makitu: Thermophysical Properties of Matter, vol. 6, IFU Plenum, New York, 1970.Google Scholar
  181. Touloukian, Y. S., P. E. Liley u. S. C. Saxena: Thermophysical Properties of Matter, vol. 3, IFI/ Plenum, New York, 1970a.Google Scholar
  182. Touloukian, Y. S., R. W. Powell, C. Y. Ho u. P. G. Klemens: Thermophysical Properties of Matter, vol. 1, IFU Plenum, New York, 1970b.Google Scholar
  183. Touloukian, Y. S., P. E. Liley u. S. C. Saxena: Thermophysical Properties of Matter, vol. 6, IFU Plenum, New York, 1970c.Google Scholar
  184. Touloukian, Y. S., P. E. Liley u. P. Hestermans: Thermophysical Properties of Matter, vol. 11, IFU Plenum, New York, 1975.Google Scholar
  185. Touloukian, Y. S., S. C. Saxena u. P. Hestermans: Thermophysical Properties of Matter, vol. 11, IFI/ Plenum, New York, 1975.Google Scholar
  186. Tsvetkov, O. B., Yu. A. Laptev u. A. G. Asambaev: Thermal Conductivity of Refrigerants RI23, RI34a, and R125 at Low Temperatures. Int. J. Thermophys., vol. 15, pp. 203/214, 1994.Google Scholar
  187. Tufeu, R., u. A. A. Clifford: Thermal Conductivity of Gaseous and Liquid Ammonia. J. Heat Transfer, vol. 110, pp. 992/993, 1988.Google Scholar
  188. Tufeu, R., D. Y. Ivanov, Y. Garrabos u. B. Le Neindre: Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range including the Critical Region. Ber. Bunsenges. Phys. Chem., vol. 88, pp. 422/427, 1984.Google Scholar
  189. Vargaftik, N. B.: Tables on the Thermophysical Properties of Liquids and Gases, 2th ed., Hemisphere Publishing Corp., Washington, D.C., 1975.Google Scholar
  190. Vassermann, A. A., V. A. Rabinovich, V. I. Nedostup u. L. S. Veksler: Thermophysical Properties of Neon, Argon, Krypton and Xenon. National Standard Reference Data Service of the USSR, Hemisphere Publ. Corp., Washington D. C., 1975.Google Scholar
  191. Van Velzen, D., R. L. Cardozo u. H. Langenkamp: A Liquid Vis-cosity-Temperature-Chemical Constitution Relation for Organic Compounds. Ind. Eng. Chem. Fundam., vol. 11, pp. 20/25, 1972.Google Scholar
  192. Vesovic, V, W. A. Wakeham, J. Luettmer-Starthmann, J. V. Sen-gers, J. Millat, E. Vogel u. M. J. Assael: The Transport Properties of Ethane, II. Thermal Conductivity. Int. J. Thermophys., vol. 15, pp. 33/67, 1994.Google Scholar
  193. Vines, R. G., u. L. A. Bennett: The Thermal Conductivity of Organic Vapors. The Relationship Between Thermal Conductivity and Viscosity, and the Significance of the Euken Faktor. J. Chem. Phys., vol. 22, pp. 360/366, 1954.Google Scholar
  194. Wakeham, W. A., u. A. Fenghour: The Viscosity of Ammonia, persönliche Mitteilung, 1995 ( Artikel im Druck bei J. Phys. Chem. Ref. Data).Google Scholar
  195. Watson, K. M.: Thermodynamics of the Liquid State. Ind. Eng. Chem., vol. 35, pp. 398/400, 1943.Google Scholar
  196. Weast, R. C.: Handbook of Chemistry and Physics, 54th ed., Chemical Rubber Co., Cleveland, 1974.Google Scholar
  197. Wilson, L. C., W. V. Wilding, G. M. Wilson, R. L. Rowley, V. M. Felix u. T. Chisolm-Carter: Thermophysical Properties of HFC-125. Fluid Phase Equilibria, vol. 80, pp. 167/177, 1992.Google Scholar
  198. Yamamoto, R., S. Matsuo u. Y. Tanaka: Thermal Conductivity of Halogenated Ethanes HFC-134a, HFC-123 and HCFC- 141b. Int. J. Thermophys., vol. 14, pp. 79/90, 1992.Google Scholar
  199. Yoor, P., u. G. Thodos: Viscosity of Nonpolar Gaseous Mixtures at Normal Pressures. AIChE J., vol. 16, pp. 300/304, 1970.Google Scholar
  200. Younglove, B. A., u. J. F. Ely: Thermophysical Properties of Fluids — II. Methane, Ethane, Propane, Isobutane, and Normal Butane. J. Phys. Chem. Ref. Data, vol. 16, pp. 577/798, 1987.Google Scholar
  201. Younglove, B. A., u. M. O. McLinden: An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123. J. Phys. Chem. Ref. Data, vol. 23, pp. 731/779, 1994.Google Scholar
  202. Yuan, T. F., u. L. I. Stiel: Heat Capacity of Saturated Nonpolar and Polar Liquids. Ind. Eng. Chem. Fundam., vol. 9, pp. 393/400, 1970.Google Scholar
  203. [1]
    Wagner, W: Wärmeträgertechnik mit organischen Medien. 5. Aufl. Grafelfing b. München: Technischer Verl. Resch 1994.Google Scholar
  204. [2]
    KSB-Beschreibungsheft: Wärmeträger-Hochtemperaturanlagen. V/1971 AKo 395.00. Firmenschr. Klein, Schanzlin and Becker, Frankenthal (Pfalz).Google Scholar
  205. [3]
    Geiringer, P. L.: Handbook of Heat Transfer Media. London, New York: Reinhold Publ. Corp. 1962.Google Scholar
  206. [4]
    Checketkin, A. V: High temperature sheat carriers. Oxford, London, New York, Paris: Pergamon Press 1963.Google Scholar
  207. [5]
    Veron, M.: Les fluides caloporteurs organiques. Institut Français des Combustibles et de L’énergie. Paris 1968.Google Scholar
  208. [6]
    VDI-Ber. 274: Wärmeübertragungsanlagen. Düsseldorf: VDI-Verl. 1976.Google Scholar
  209. [7]
    Ryssel, E.: Kt lemidler. Teknisk Information Nr. 19. Maskirnmestrenes Forening. Kopenhagen 1979.Google Scholar
  210. [8]
    Kältemaschinenregeln. Aufl. Karlsruhe: C. F. MüllerVerl. 1981.Google Scholar
  211. [9]
    Frigen-Handbuch. Kältetechn. Inst. TH Karlsruhe. Frankfurt/ Main-Hoechst 1966; s. bes. S. 126.Google Scholar
  212. [10]
    Hofmann, E.: Wärme-und Stoffübergang. In: Handbuch der Kältetechnik. Berlin, Göttingen, Heidelberg: Springer-Verl. 1959; s. bes. S. 454 ff.Google Scholar
  213. [11]
    Kühlsolen-Merkblätter 200, 400 u. a. Firmenschr. AkzoChemie, Düren 1979/80.Google Scholar
  214. [12]
    Dynamische Viskositäten nach Messungen der Fa. Linde, Köln. Firmenschr.Google Scholar
  215. [13]
    Melinder, A.: The Royal Institute of Technology, Stockholm; Document R 18: 1989 „Köldbärare för värmepumptillämpningar“ (published by the Swedish State Council for Building Research).Google Scholar
  216. Melinder, A: Applied Thermodynamics and Refrigeration; The Royal Institute of Technology, Stockholm; Document R 114: 1985 „Secondary refrigerants for heat pump applications“ (published by the Swedish State Council for Building Research, Stockholm).Google Scholar
  217. [14]
    Kilger, H.: Zur Auswahl wirtschaftlicher Wärmeträger. Chem.-Ing.-Tech. 60 (1988) Nr. 2, S. 94/102.Google Scholar
  218. [15]
    Syntrel 350, Sicherheitsdatenblatt 1/4 (1988). Deutsche Exxon Chemical, Köln.Google Scholar
  219. [16]
    DIN-Sicherheitsdatenblätter (DIN 52900) für Mobil-therm 594 und 603 v. 15.12. 1986. Mobil Oil, Homburg.Google Scholar
  220. [17]
    Wagner, W: WTS-Stoffdatenatlas, St. Leon-Rot, 1. Aufl. 1993.Google Scholar
  221. [18]
    Melinder, A.: Thermodynamic Properties for Secondary Refrigerants. Dept. of Energy Technology, The Royal Institute of Technology, Stockholm 1993.Google Scholar
  222. [19]
    Melinder, A., Granryd, E.: Secondary Refrigerants for Heat Pumps and Low Temperature Refrigeration, Trita REFR Report No. 92/6, Stockholm, 1992.Google Scholar
  223. [20]
    Zufall, S.: Persönliche Mitteilung vom 19.11. 1993, Hamburg.Google Scholar
  224. [21]
    Produktbeschreibungen der Fa. TYFOROP-Chemie GmbH, D-22305 Hamburg.Google Scholar
  225. [22]
    Produktübersicht, Druckschrift der Fa. pro KÜHLSOLE GmbH, D-52477 Alsdorf.Google Scholar
  226. [23]
    König, H.: Stoffwerte für Kältemittel. SOLVAY Fluor und Derivate GmbH Hannover, Mitteilung vom 30. 04. 1996.Google Scholar
  227. [24]
    Meurer, C.: Refrigerant-Ausstiegszenarien, Fax-Mitteilungen vom 03.05.1996 und 06.05.1996, sonst wie [23].Google Scholar
  228. [1]
    Touloukian, Y. S., u. a.: Thermophysical properties of matter. Vol 1,4. New York: IFI/Plenum 1970.Google Scholar
  229. [2]
    Stahlschlüssel: Verlag Stahlschlüssel Wegst, 16. Auflage, Marbach, 1992.Google Scholar
  230. [3]
    Deutsches Institut für Normung: Werkstoff-Kurzzeichen und Werkstoffnummern für Nichteisenmetalle, DIN-Normenheft 4, Beuth, 1992.Google Scholar
  231. [4]
    Werkstoffblätter der Fa. Mannesmann Röhrenwerke AG, Düsseldorf.Google Scholar
  232. [5]
    Richter, F: Physikalische Eigenschaften von Stählen und ihre Temperaturabhängigkeit. Stahleisen-Sonderberichte 10, Düsseldorf, 1983.Google Scholar
  233. [6]
    Landolt-Börnstein • Zahlenwerte und Funktionen aus Natur und Technik, Neue Serie, Band III/15, Teilband c, Springer-Verlag, 1991.Google Scholar
  234. [7]
    SEW 310: Physikalische Eigenschaften von Stählen, StahlEisen-Werkstoffblätter des Vereins Deutscher Eisenhüttenleute, Verlag Stahleisen, Düsseldorf, 1992.Google Scholar
  235. [8]
    Beaton, C. F.: Thermal and mechanical properties of heat exchanger construction material, Kap. 5.5.12 in: Heat Exchanger Design Handbook, Hemisphere Publ. Co., New York, 1985.Google Scholar
  236. [9]
    Richter, F: Die physikalischen Eigenschaften von metallischen Werkstoffen, Metall, Bd. 45, Nr. 6, S. 582 /89, 1991.Google Scholar
  237. [10]
    Landolt-Börnstein: Zahlenwerte und Funktionen aus Natur und Technik, Bände IV 4a, IV 2b, IV 2c, Springer-Verlag, 1967.Google Scholar
  238. [1]
    Eschner /GrosskopflJeschke: Erfahrungen mit dem Heiß-drahtverfahren zur Bestimmung der Wärmeleitfähigkeit feuerfester Baustoffe. Tonindustrie Zeitung 98 (1974), Nr. 9, S. 212/19.Google Scholar
  239. [2]
    De BoerlButter/GrosskopflJeschke: Hot wire technique for determining high thermal conductivities. Refractories Journal Heft 9/10 (1980), S. 22/8.Google Scholar
  240. [3]
    Für metallurgische Prozesse werden Magnesiasteine auch pech- oder harzgebunden und mit Zusätzen von Graphit hergestellt. Diese Steine zeigen gute Temperaturwechselbeständigkeit und verbesserte Schlackenbeständigkeit.Google Scholar
  241. [4]
    Hagemann/Peters: Thermal conductivity — comparison of methods: ASTM-Method, hot wire-method and its variations. Interceram Nr. 2, 1982, S. 131/35.Google Scholar
  242. [5]
    Warnke, K., u. G. Woelk: Das HeiBdrahtverfahren zur Messung der Wärme- und Temperaturleitfähigkeit von elektrisch leitenden und nicht leitenden Stoffen. Arch. Eisenhüttenwesen 45 (1974) Nr. 11 November, S. 785/89.Google Scholar
  243. [6]
    Davis, W. R.: The determination of thermal conductivity of refractory insulation material by the hot-wire method. The British Ceramic Research Association. Technical note no. 224, July 1974.Google Scholar
  244. [7]
    Bisson, G. u. L. Lecrivain: Ein Verfahren zur Messung der Temperaturleitfähigkeit mittels Laserblitz. Ber. DKG 63 (1986) Nr. 6, S. 285/91.Google Scholar
  245. [8]
    Bucknam, M. A., L. D. Bentsen, J. Makosey, G. R. Angell u. D. P. H. Hasselmann: The measurement of the thermal conductivity of refractories by the Laser-Flash method. Trans. J. Br. Ceram Soc. 82, 18 /23, 1983.Google Scholar
  246. [9]
    Krönert, W: Vergeichende Beurteilung von Wärmeleitfähigkeitsdaten Keramische Zeitschrift 39. Jahrgang Nr. 11, 1987, S. 773/79.Google Scholar
  247. [1]
    Verordnung über einen energiesparenden Wärmeschutz bei Gebäuden (Wärmeschutz V) v. 16. Aug. 1994.Google Scholar
  248. [2]
    Arbeitsblätter der Arbeitsgemeinschaft Industriebau (AGI). Reihe Q. Hannover: Curt R. Vincentz Verl.Google Scholar
  249. [3]
    Schreiner, R., u. M. Zeitler: Isoliertechnisch bedingte Wärmebrücken und deren Berücksichtigung bei der Berechnung des Wärmeschutzes. Isoliertechn. 2 (1990), S. 62/76.Google Scholar
  250. [4]
    Verordnung über energiesparende Anforderungen an heizungstechnische Anlagen und Brauchwasseranlagen (Heiz Anl. V) v. 22. März 1994.Google Scholar
  251. [5]
    Zehendner, H.: Einfluß von Feuchtigkeit auf die Wärmeleitfähigkeit von Schaumkunststoffen im Bereich von — 30°C bis +30 °C. Kunststoff im Bau 1 (1979), S. 18/22.Google Scholar
  252. [6]
    Achtziger, J.: Einfluß des Wassergehalts und der Feuchtigkeitsverteilung auf die Wärmeleitfähigkeit der Dämmschicht. Bauphysik 7 (1985) Nr. 4, S. 121/24.Google Scholar
  253. [7]
    Cammerer, W. F: Der Feuchtigkeitseinfluß auf die Wärmeleitfähigkeit von Bau- und Wärmedämmstoffen. Bauphysik 9 (1987) Nr. 6, S. 259/66.Google Scholar
  254. [8]
    Schreiner, R., u. M. Zeitler: Einfluß der Konvektion auf die Wärmeübertragung in Dämmkonstruktionen. BWK 41 (1989) Nr. 12, S. 525/31.Google Scholar
  255. [9]
    Cammerer, W. F: Wärme- und Kälteschutz im Bauwesen und in der Industrie. 5. Aufl. 1995, Springer-Verl.Google Scholar
  256. [1]
    Krischer, O.: Der Einfluß der Feuchtigkeit, Körnung und Temperatur auf die Wärmeleitfähigkeit körniger Stoffe. (Die Leitfähigkeit des Erdbodens) München: Beihefte z. Ges. Ing. Reihe I (1934) H. 33.Google Scholar
  257. [2]
    Watzinger, A., B. Kindern, u. B. Michelsen: Untersökelser av Meddelser fra Veidirektoren Nr. 6 (1938).Google Scholar
  258. [3]
    Krischer, O., u. H. Rohnalter: Wärmeleitung und Dampfdiffusion in feuchten Gütern. VDI-Forschungsheft 402 (1940).Google Scholar
  259. [4]
    Cammerer, J. S.: Der Einfluß der Feuchtigkeit auf die Wärmeleitzahl von Baustoffen nach dem derzeitigen internationalen Schrifttum. In: Cammerer, J. S. u. H. Schäcke: Feuchtigkeitsregelung, Durchfeuchtung und Wärmeleitfähigkeit bei Baustoffen und Bauteilen. Untersuchungen und Versuche im Auftrage des Bundesministers für Wohnungsbau. Berlin: Wilhelm Ernst and Sohn 1957.Google Scholar
  260. [5]
    ]Cammerer, J. S.: Der Wärme-und Kälteschutz in der Industrie. 4. Aufl. Berlin, Göttingen, Heidelberg: Springer 1962.Google Scholar
  261. [6]
    Cammerer, W F: 10 Jahre Forschung im Wärmeschutz. Neue Erkenntnisse aus der Bauforschung. Berlin, Bielefeld, München: Erich Schmidt 1966.Google Scholar
  262. [7]
    Koch, B.: Grundlagen des Wärmeaustausches (Stoffwerte). Dissen T. W.: Beucke 1950.Google Scholar
  263. [8]
    Achtziger, J. u. J. Cammerer: Einfluß des Feuchtegehaltes auf die Wärmeleitfähigkeit von Bau/und Dämmstoffen. Forschungsvorhaben Nr. BI5/800183/4. Forschungsinstitut für Wärmeschutz e.V. München 1984.Google Scholar
  264. [1]
    Tsotsas, E., u. H. Martin: Thermal conductivity of packed beds: A review. Chem. Eng. Process. 22 (1987), S. 19/37.Google Scholar
  265. [2]
    Wakao, N., u. K. Kato: Effective thermal conductivity of packed beds. J. Chem. Eng. Jpn. 2 (1969), S. 24/33.Google Scholar
  266. [3]
    Krischer, O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik. 1. Aufl. Berlin: Springer-Verl. 1956.Google Scholar
  267. [4]
    Zehner, P., u. E.-U. Schlünder: Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen. Chem.-Ing.-Tech. 42 (1970), S. 933/41.Google Scholar
  268. [5]
    Currie, J. A.: Gaseous diffusion in porous media. Br. J. Appl. Phys. 11 (1960), S. 314/24.Google Scholar
  269. [6]
    Turner, J. C. R.: Two-phase conductivity: the electrical conductance of liquid-fluidized beds of spheres. Chem. Engng. Sci. 31 (1976), S. 487/92.Google Scholar
  270. [7]
    Meredith, R. E., u. C. W. Tobias: Conductivities of emulsions. J. Electrochem. Soc. 108 (1961), S. 286/90.Google Scholar
  271. [8]
    Zehner, P., u. E.-U. Schlünder: Einfluß der Wärmestrahlung und des Druckes auf den Wärmetransport in nicht durchströmten Schüttungen. Chem.-Ing.-Tech. 44 (1972), S. 1303/08.Google Scholar
  272. [9]
    Bauer, R., u. E.-U. Schlünder: Effective radial thermal conductivity of packings in gas flow. Part II: Thermal conductivity of the packing fraction without gas flow. Int. Chem. Eng. 18 (1978), S. 189/204.Google Scholar
  273. [10]
    Bauer, R.: Effektive radiale Wärmeleitfähigkeit gasdurchströmter Schüttungen mit Partikeln unterschiedlicher Form und Größenverteilung. VDI-Forschungsh. 582. Düsseldorf: VDI-Verl. 1977.Google Scholar
  274. [11]
    Tsotsas, E., u. E.-U. Schlünder: The impact of particle size dispersity on the thermal conductivity of packed beds: Measurements, numerical simulations, prediction. Chem. Eng. Technol. 14 (1991), S. 421/27.Google Scholar
  275. [12]
    Yagi, S., u. D. Kunii: Studies of effective thermal conductivity in packed beds. AIChEJ. 3 (1957), S. 373/81.Google Scholar
  276. [13]
    Imura, S., u. E. Takegoshi: Effect of gas pressure on effective thermal conductivity. Nippon Kikai Gakkai Rombunshu 40 (1974), S. 489/97.Google Scholar
  277. [14]
    Tsotsas, E., u. E.-U. Schlünder: Numerical calculation of the thermal conductivity of two regular bidispersed beds of spherical particles. Computers chem. Engng. 14 (1990), S. 1031/38.Google Scholar
  278. [15]
    Okazaki, M., T. Yamasaki, S. Gotoh, u. R. Toei: Effective thermal conductivity of granular beds of various binary mixtures. J. Chem. Eng. Jpn. 14 (1981), S. 183/89.Google Scholar
  279. [16]
    Sordon, G.: Über den Wärmetransport in Kugelschüttungen. Diss. Univ. Karlsruhe 1988.Google Scholar
  280. [17]
    Gurgel, J. M.: Contribution à l’étude expérimentale de la conductivité thermique de milieux granulaires (mono ou bidisperses avec ou sans adsorption). Thèse de Docteur Univ. Pierre et Marie Curie Paris V I 1989.Google Scholar
  281. [18]
    Botterill, J. S. M., A. G. Salway u. Y. Teoman: The effective thermal conductivity of high temperature particulate beds. Part II: Model predictions and the implication of the experimental values. Int. J. Heat Mass Transfer 32 (1989), 5. 595 /609.Google Scholar
  282. [19]
    Vortmeyer, D.: Radiation in packed solids. Ger. Chem. Eng. 3 (1980), S. 124/38.Google Scholar
  283. [20]
    Tien, C. L.: Thermal radiation in packed and fluidized beds. Trans. ASME, J. Heat Transfer, 110 (1988), S. 1230/42.Google Scholar
  284. [1]
    DIN ISO 1629: Kautschuke und Latices; Einteilung; Kurzzeichen. Deutsches Institut für Normung e. V. 1992.Google Scholar
  285. [2]
    DIN 7728: Kunststoffe; Kennbuchstaben und Kurzzeichen für Polymere und ihre besonderen Eigenschaften. Deutsches Institut für Normung e. V. 1988.Google Scholar
  286. [3]
    DIN 7724: Polymere Werkstoffe; Gruppierung polymerer Werkstoffe aufgrund ihres mechanischen Verhaltens. Deutsches Institut für Normung e. V. 1993.Google Scholar
  287. [4]
    Carlowitz, B.: Kunststofftabellen. 3. Aufl., Hanser Verl., München 1986.Google Scholar
  288. [4]
    ]van Krevelen, D. W: Properties of Polymers. Elsevier, Amsterdam 1990.Google Scholar
  289. [6]
    Blanke, W. (Hrsg.): Thermophysikalische Stoffgrößen. Springer-Verl., Berlin 1989.Google Scholar
  290. [7]
    Kaye/Laby: Tables of physical and chemical constants. 15. Aufl., Longman, London 1986.Google Scholar
  291. [8]
    VDMA Fachgemeinschaft Gummi- und Kunststoffmaschinen (Hrsg.): Kenndaten für die Verarbeitung thermoplastischer Kunststoffe. Teil 1 Thermodynamik, Carl Hanser Verl., München 1979.Google Scholar
  292. [9]
    Oberbach, K.: Kunststoffkennwerte für Konstrukteure. 2. Aufl., Hanser Verl., München 1980.Google Scholar
  293. [10]
    Landolt-Börnstein: Zahlenwerte und Funktionen aus Natur und Technik. Band IV 4b, Springer-Verl., Berlin 1967.Google Scholar
  294. [11]
    Touloukian, Y. S., et al.: Thermophysical properties of mat-ter. Bd. 1,4, IFI/Plenum 1970, New York.Google Scholar
  295. [12]
    Brandrup, J., u. E. H. Immergut (Hrsg.): Polymer Handbook. 3. Aufl., John Wiley, New York 1989.Google Scholar
  296. [1]
    Stephan, K., u. E. Mayinger: Thermodynamik. Band 2: Mehrstoffsysteme und chemische Reaktionen. Berlin: Springer-Verl. 1988.Google Scholar
  297. [2]
    Schuberth, H.: Thermodynamische Grundlagen der Destillation und Extraktion. Berlin: VEB Deutscher Verlag der Wissenschaften 1972.Google Scholar
  298. [3]
    Leffler, H.-J.: Thermodynamik. Band 2: Gemische und chemische Reaktionen. Berlin: Springer-Verl. 1969.Google Scholar
  299. [4]
    Prausnitz, J. M., R. N. Lichtenthaler u. E. G. de Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria. Englewood Cliffs: Prentice-Hall, Inc. 1986.Google Scholar
  300. [5]
    Chao, K. C., u. R. A. Greenkorn: Thermodynamics of Fluids. New York: Marcel Dekker, Inc. 1975.Google Scholar
  301. [6]
    Rowlinson, J. S.: Liquids and Liquid Mixtures. 2. Aufl. London: Butterworth 1969.Google Scholar
  302. [7]
    King, M. B.: Phase Equilibrium in Mixtures. Oxford: Perga-mon Press 1969.Google Scholar
  303. [8]
    Sandler, S. I.: Chemical and Engineering Thermodynamics New York: J. Wiley and Sons 1977.Google Scholar
  304. [9]
    Bender, E.: The Calculation of Phase Equilibria from a thermal Equation of State Applied to the Pure Fluids Argon, Nitrogen, Oxygen and their Mixtures. Karlsruhe: Verl. C. F. Müller 1973.Google Scholar
  305. [10]
    Dack, M. R. J.: Solutions and Solubilities ( 2 Bände). New York: J. Wiley and Sons 1976.Google Scholar
  306. [11]
    Edmister, W. C.: Applied Hydrocarbon Thermodynamics. Houston: Gulf Publ. Comp. 1961.Google Scholar
  307. [12]
    Fredenslund, A., J. Gmehling u. P Rasmussen: Vapor-Liquid Equilibria Using UNIFAC. Amsterdam: Elsevier Sci. Publ. Comp. 1977.Google Scholar
  308. [13]
    Hildebrand, J. H., J. M. Prausnitz u. R. L. Scott: Regular and Related Solutions. New York: Van Nostrand Reinhold 1970.Google Scholar
  309. [14]
    Hougen, O. A., K. M. Watson u. R. A. Ragati: Chemical Process Principles. Part 11: Thermodynamies 2. Aufl. New York: J. Wiley and Sons 1959.Google Scholar
  310. [15]
    Köpsel, R.: Ausgewählte rechnerische Methoden der Verfahrenstechnik. Berlin: Akademie-Verl. 1974.Google Scholar
  311. [16]
    Kojima, K., u. K. Tochigi: Prediction of Wapor-Liquid Equilibria by the ASOG Method. Amsterdam: Elrevier Sci. Publ. Comp. 1979.Google Scholar
  312. [17]
    Natural Gasoline Assoc.: Engineering Data Book. 7. Aufl. Tulsa 1957.Google Scholar
  313. [18]
    Null, H. R.: Phase Equilibrium in Process Design. New York: Wiley-Interscience 1970.Google Scholar
  314. [19]
    Prausnitz, J. M., T Anderson, E. Grens, G. Eckert, R. Hsieh u. J. O’Connell: Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria. Englewood Cliffs: Prentice-Hall, Inc. 1980.Google Scholar
  315. [20]
    Prausnitz, J. M., u. J. Gmehling: Thermodynamik der Phasengleichgewichte. Mainz: Krausskopf-Verl. 1981.Google Scholar
  316. [21]
    Reid, R. C., J. M. Prausnitz u. T. K. Sherwood: The Properties of Gases and Liquids. 3. Aufl., Kap. 4 und 8. New York: Mc Graw-Hill Book Comp. 1977.Google Scholar
  317. [22]
    Renon, H., u. a.: Calcul sur Odinateur des Equilibres Liquide Vapeur et Liquide-Liquide. Paris: Technip 1971.Google Scholar
  318. [23]
    Starling, K. E.: Fluid Thermodynamic Properties for Light Petroleum Systems. Houston: Gulf Publ. Comp. 1973.Google Scholar
  319. [24]
    Treybal, R. E.: Liquid Extraction. 2. Aufl. Kap. 2 und 3. New York: Mc Graw-Hill Book Comp. 1963.Google Scholar
  320. [25]
    Boublik, T, V. Fried u. E. Hala: The Vapour Pressures of pure Substances. Amsterdam: Elsevier Publ. Comp. 1973.Google Scholar
  321. [26]
    Ohe, S.: Computer Aided Data Book of Vapour Pressure. Tokio: Data Publ. Comp. 1976.Google Scholar
  322. [27]
    Wichterle, J., u. a.: Antoine Vapor Pressure Constants of Pure Compounds. Prag: Academia 1973.Google Scholar
  323. [28]
    Zwolinski, B. J., u. R. C. Wilhoit: Vapor Pressures and Heat of Vaporization of Hydrocarbons and Related Compounds. Thermodynamics Research Center, Texas 1971.Google Scholar
  324. [29]
    Dymond, J. H., u. E. B. Smith: The Virial Coefficients of Pure Gases and Mixtures - A Critical Compilation. Oxford: Clarendon Press 1980.Google Scholar
  325. [30]
    Landolt-Bernstein: Zahlenwerte und Funktionen, Bd. II. Teil 1, 6. Aufl. Berlin: Springer-Verl. 1971.Google Scholar
  326. [31]
    Angus, S., u. a.: International Thermodynamic Tables of the Fluid State. Oxford: Pergamon Press; Argon (1971), Ethylene (1972), Carbon Dioxide (1976), Helium (1977), Methane (1978), Nitrogen (1979), Propylene (1980).Google Scholar
  327. [32]
    McGlashan, M. L.: Specialist Periodical Reports. Chemical Thermodynamics, Vol. 2. London: The Chemical Society 1978 (9000 Referenzen für e,t1E VE und Hochdruckgleich-gewichte).Google Scholar
  328. [33]
    Wisniak, J., u. A. Tamir: Mixing and Excess Thermodynamic Properties. A Literature Source Book. Amsterdam: Elsevier Publ. Comp. 1978.Google Scholar
  329. [34]
    Hiza, M. J., A. J. Kidney u. R. C. Miller: Equilibrium Properties of Fluid Mixtures. A Bibliography of Data on Fluids of Cryogenic Interest. Plenum Publ. Comp. 1975.Google Scholar
  330. [35]
    Wichterle, I., J. Linek u. E. Hala: Vapor-Liquid Equilibrium Data Bibliography. Amsterdam: Elsevier Publ. Comp. 1973. Supplement 11976, Supplement II 1979, Supplement III im Druck (etwa 6800 Referenzen).Google Scholar
  331. [36]
    Hicks, C. P, u. a.: Bibliography of Thermodynamic Studies. London: Chemical Society 1975.Google Scholar
  332. [37]
    Gmehling, J., U. Onken, W Arlt, P. Grenzheuser u. a.: DECHEMA Chemistry Data Series, Vol. 1: Vapor-Liquid Equilibrium Data Collection. Frankturt 1/1 a. Aqueous Organic Systems 1980/81, 2 a/d. Organic Hydroxy Compounds 1977/82, 3/4. Aldehydes, Ketones, Ethers 1979. 5. Carboxylic Acids, Anhydrides, Esters 1982, 6 a/c. Aliphatic Hydrocarbons 1980/84, 7. Aromatic Hydrocarbons 1980. 8. Halogen, Nitrogen, Sulfur and other Compounds 1984.Google Scholar
  333. [38]
    Landolt-Börnstein: Zahlenwerte and Funktionen. Band II Teil 2 a, Band IV Teil 4, 6. Aufl., „Neue Serie“ Gruppe IV Band 3. Berlin: Springer-Verl. 1971/1977.Google Scholar
  334. [39]
    Hirata, M., S. Ohe u. K. Nagahama: Computer-Aided Data Book of Vapour-Liquid Equilibria. Amsterdam: Elsevier Publ. Comp. 1975.Google Scholar
  335. [40]
    Horsley, L. H.: Azeotropic Data, 3. Vol.; Advances in Chemistry Series 116. Washington: American Chemical Society 1952, 1962, 1973.Google Scholar
  336. [41]
    Knapp, H., R. Döring, L R. Oellrich, U. J. Plöckner, J. M. Prausnitz u. a.: Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances; DECHEMA Chemistry Data Series, Vol. 6, Part 1 bis 3, Frankfurt 1982.Google Scholar
  337. [42]
    Arlt, W, M. E. A. Macedo, P. Rasmussen u. J. M. Sorensen: Liquid-Liquid Equilibrium Data Collection; DECHEMA Chemistry Data Series, Vol. 5, Parts 1/4. Frankfurt 1979/80.Google Scholar
  338. [43]
    Francis, A. W: Liquid-Liquid Equilibrium. New York: Wiley Interscience 1963.Google Scholar
  339. [44]
    Stephen, H., T. Stephen u. U. Silcock: Solubilities of Inorganic and Organic Compounds. 3 Bände in 7 Teilen. Oxford: Pergamon Press 1979.Google Scholar
  340. [45]
    Kerter, A. S.: Solubility Data Series. Oxford: Pergamon Press ab 1979 ( Gas- und Feststofflöslichkeiten).Google Scholar
  341. [46]
    Gmehling, J., D. Tiegs, A. Medina, M. Soarer u. a.: DECHEMA Chemistry Data Series, Vol. 9: Activity Coefficients at Infinite Dilution. Frankfurt 1986.Google Scholar
  342. [47]
    Landolt-Börnstein: Zahlenwerte und Funktionen. „Neue Serie“ Gruppe IV Band 1 a: Densities of Liquid Systems. Nonaqueous and Ternary Aqueous Systems; Gruppe IV Band 1 b: Densities of Binary Aqueous Systems and Heat Capacities of Liquid Systems; Gruppe IV Band 2: Heats of Mixing and Solution. Berlin: Springer-Verl. 1974/1977.Google Scholar
  343. [48]
    Handa, Y P, u. G. C. Benron: Volume Change on Mixing two Liquids: A Review of the Experimental Techniques and the Literature Data. Fluid Phase Equilibria 3 (1979), S. 185/249.Google Scholar
  344. [49]
    Kehiaian, H. V: Selected Data on Mixtures; International Data Series A, Thermodynamic Properties of Non-reacting Binary Systems of Organic Substances. College Station, Texas: Thermodynamics Research Center, Chemistry Department, Texas A und M University ab 1973.Google Scholar
  345. [50]
    Christensen, J. J., R. W. Hanks u. R. M. Izatt: Handbook of Heats of Mixing. New York: J. Wiley and Sons 1982.Google Scholar
  346. [51]
    Christensen, C., J. Gmehling, P. Rasmussen u. U. Weidlich: DECHEMA Chemistry Data Series, Vol. 3: Heats of Mixing Data Collection. Frankfurt 1984.Google Scholar
  347. [52]
    Hayden, J. G., u. J. P. O’Connell: Ind. Eng. Chem. Proc. Des. Dev. 14 (1975) 209; Stein, F. P u. E. J. Miller: Ind. Eng. Chem. Proc. Des. Dev. 19 (1980), S. 123/28.Google Scholar
  348. [53]
    Lee, B. I., u. M. G. Kesler: AIChE J. 21 (1975) 510.Google Scholar
  349. [54]
    Tronopoulos, C.: AIChE J. 20 (1979) 2, S. 263/72.Google Scholar
  350. [55]
    Pitzer, K. S., u. R. F. Curl: J. Am. Chem. Soc. 79 (1957) 2369.Google Scholar
  351. [56]
    Wilson, G. M.: J. Am. Chem. Soc. 86 (1964) 127.Google Scholar
  352. [57]
    Abramr, D. S., u. J. M. Prausnitz: AIChE J. 21 (1975) 116.Google Scholar
  353. [59]
    Nagata, I.: J. Chem. Eng. Japan 6 (1973) 18.Google Scholar
  354. [60]
    Schreiber, L. B., u. C. A. Eckert: Ind. Eng. Chem. Proc. Des. Dev. 10 (1971) 572.Google Scholar
  355. [61]
    Fredenslund, A., R. L. Joner u. J. M. Prausnitz: AIChE. J. 21 (1975) 1086.Google Scholar
  356. [62]
    Sorensen, J. M., u. a.: Fluid Phase Equilibria 4 (1980), S. 151/163.Google Scholar
  357. [63]
    Gmehling, J., P Rasmussen u. A. Fredenslund: Vapour-Liquid Equilibria by UNIFAC Group- Contribution, Revision and Extension 2. Ind. Eng. Chem. Proc. Des. Dev. 21 (1982) 1, S. 118/27.Google Scholar
  358. [64]
    Macedo, E. A., U. Weidlich, J. Gmehling u. a.: Vapor-Liquid Equilibria by Unifac Group Contribution. Revision and Extension 3. Ind. Eng. Chem. Proc. Des. Dev. 22 (1983), S. 676/78.Google Scholar
  359. [65]
    Tiegs, D., P. Rasmussen, J. Gmehling u. a.: Vapor-Liquid Equilibria by Unifac Croup Contribution. 4. Revision and Extension. Ind. Eng. Chem. Res. 16 (1987), S. 159/61.Google Scholar
  360. [66]
    Magnussen, T, P. Rasmussen u. A. Fredenslund: A UNIFAC Parameter Table for Prediction of Liquid- Liquid Equilibria. Ind. Eng. Chem. Proc. Des. Dev. 20 (1981) 2, S. 331/39.Google Scholar
  361. [67]
    Fredenslund, A., u. a.: Ind. Eng. Chem. Proc. Des. Dev. 16 (1977), S. 450.Google Scholar
  362. [68]
    Skold-Jörgensen, S., u. a.: Ind. Eng. Chem. Proc. Des. Dev. 18 (1979), S. 714.Google Scholar
  363. [69]
    Gmehling, J., P. Rasmussen u. A. Fredenslund: Chem.-Ing. Techn. 52 (1980) 9, S. 724/34.Google Scholar
  364. [70]
    Kortüm, G., u. V. Valent: Ber. Bunsenges. phys. Chem. 81 (1977) 8, S. 752/61.Google Scholar
  365. [71]
    Nelder, J. A., u. R. Mead: Computer J. 7 (1965), S. 308/13.Google Scholar
  366. [72]
    Bender, E., u. U. Block: Chem.-Ing.-Techn 49 (1977) 6, S. 479/87.Google Scholar
  367. [73]
    Benedict, M., G. B. Webb u. L. C. Rubin: J. Chem. Phys. 8 (1940) 334/45; Chem. Eng. Progr. 47 (1951) 8, S. 419/22.Google Scholar
  368. [74]
    Bender, E.: Kältetechnik-Klimat. 23 (1971)S. 258/64; VDI-Forschungsheft 609 (1982), S. 15/20.Google Scholar
  369. [75]
    Bender, E.: Proc. Fifth Symp. Thermophys. Prop., Am. Soc. Mech. Engrs., New York (1970), S. 227/35.Google Scholar
  370. [76]
    Bender, E.: 5th Chisa-Congress Prag (1975) F. 2.25, S. 1/15.Google Scholar
  371. [77]
    Bühner, K., G. Maurer u. E. Bender: Cryogenics 21 (1981), S. 157/64.Google Scholar
  372. [78]
    Sievers, U., u. S. Schulz: Fluid Phase Equilibria 5 (1980), S. 35/54.Google Scholar
  373. [79]
    Sievers, U.: Dissertation Universität Dortmund 1980.Google Scholar
  374. [80]
    Redlich, O., u. J. N. S. Kwong: Chem. Rev. 44 (1949), S. 233.Google Scholar
  375. [81]
    Wilson, G. M.: Adv. Cryog. Eng. 9 (1964), S. 168.Google Scholar
  376. [82]
    Peter, S., u. H. Wenzel: Chem.-Ing. Techn. 43 (1971), S. 623/25.Google Scholar
  377. [83]
    Chueh, P L., u. J. M. Prausnitz: Ind. Eng. Chem. Fundam. 6 (1967), S. 492.Google Scholar
  378. [84]
    Zudkevitch, D., u. J. Joffe: AIChE J. 16 (1970), S. 112.Google Scholar
  379. [85]
    Soave, G.: Chem. Eng. Sci. 27 (1972), S. 1197.Google Scholar
  380. [86]
    Peng, D. Y, u. D. B. Robinson: Ind. Eng. Chem. Fundam. 15 (1976), S. 59.Google Scholar
  381. [87]
    Plöcker, U., H. Knapp u. J. M. Prausnitz: Ind. Eng Chem. Proc. Des. Dev. 17 (1978), S. 324.Google Scholar
  382. [88]
    Sage, B. H., B. L. Hicks u. W. N. Lacey: Ind. Eng. Chem. 32 (1940), S. 1086/92.Google Scholar
  383. [89]
    Prausnitz, J. M., u. F. H. Shair: AIChE J. 7 (1961).Google Scholar
  384. [90]
    Hadden, S. T: Chem. Eng. Progr., Symp. Ser. 49 (1953) 7, S. 53.Google Scholar
  385. [91]
    Stephan, K.: Chem.-Ing.-Techn. 52 (1980) 3, S. 209/18.Google Scholar
  386. [91]
    White, R. R., u. G. G. Brown: Ind. Eng. Chem. 34 (1942), S. 1162.Google Scholar
  387. [92]
    De Priester, C. L.: Chem. Eng. Progr., Symp. Ser. 49 (1953) 7, S. 1/43.Google Scholar
  388. [93]
    Wilson, G. M., P M. Silverberg u. M. G. Zellner: Techn. Docum. Report No. APL TDR 64/64, Office of Techn. Services, U. S. Departm. of Commerce, Washington 1964.Google Scholar
  389. [94]
    Platzer, B.: Eine Generalisierung der Zustandsgleichung von Bender zur Berechnung von Stoffeigenschaften unpolarer und polarer Fluide und deren Gemische. Diss. Univ. Kaiserslautern 1990.Google Scholar
  390. [1]
    Beret, S., u. J. M. Prausnitz: Perturbed Hard-Chain Theory: An Equation of State for Fluids Containing Small or Large Molecules. AIChE J. 21 (1975), S. 1123/32.Google Scholar
  391. [2]
    Flory, P. J.: Thermodynamics of High Polymer Solutions, J. Chemical Physics 10 (1942), S. 51/61.Google Scholar
  392. [3]
    Flory, P. J.: Thermodynamics of Polymer Solutions. Discuss. Faraday Soc. 49 (1970), S. 7/29.Google Scholar
  393. [4]
    Goydan, R., R. C. Reid u. H.-S. Tseng: Estimation of the Solubilities of Organic Compounds in Polymers by Group-Contribution Methods. Ind. Eng. Chem. Res. Vol. 28 (1989), S. 445/54.Google Scholar
  394. [5]
    Holten-Andersen, J., P. Rasmussen u. A. Fredenslund: Phase Equilibria of Polymer Solutions by Group Contribution. Ind. Eng. Chem. Res. Vol. 26 (1987), S. 1382/90.Google Scholar
  395. [6]
    Huggins, M. L.: Thermodynamic Properties of Solutions of Long-Chain Compounds. Ann. New York Acad. Sci. 43 (1942), S. 1/32.Google Scholar
  396. [7]
    Ilyas, S.: Group Contributions for Fluid Phase Equilibria. Ph.D. Thesis, University of Massachusetts, Amherst 1982.Google Scholar
  397. [8]
    Oishi, T, u. J. M. Prausnitz: Estimation of Solvent Activities in Polymer Solutions Using a Group Contribution Method. Ind. Eng. Chem. Process Des. Dev. 17 (1978), S. 333/39.Google Scholar
  398. [9]
    Patterson, D.: Free Volume and Polymer Solubility. Macromolecules 2 (1969), S. 672/77.Google Scholar
  399. [10]
    Saure, R., u. E.-U. Schlünder: Sorption Isotherms for Methanol, Benzene and Ethanol on Poly(vinyl acetate) PVAcl. Chem. Eng. Process. 34 (1995), S. 305/16.Google Scholar
  400. [11]
    Tapavicza, S. v., u. J. M. Prausnitz: Thermodynamik von Polymerlösungen: Eine Einführung. Chem. Ing. Techn. 47 (1975), S. 552/62.Google Scholar
  401. [12]
    Wen Hao, H. S. Elbro u. P. Alessi: Polymer Solution Data Collection. Chemistry Data Series Vol. XIV, Pt. 1: Vapor-Liquid Equilibrium. DECHEMA Deutsche Gesellschaft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie e. V., Frankfurt 1992.Google Scholar
  402. [13]
    Wen Hao, H. S. Elbro u. P Alessi: Polymer Solution Data Collection. Chemistry Data Series Vol. XIV, Pt. 2: Solvent Activity Coefficients at Infinite Dilution, Pt. 3: LiquidLiquid-Equilibrium. DECHEMA Deutsche Gesellschaft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie e. V., Frankfurt 1992.Google Scholar
  403. [1]
    Acheson, D. T: Humidity Moisture 3 (1965), S. 521/30.Google Scholar
  404. [2]
    Adams, R. J. u. A. R. Merz: Ind. Eng. Chem. 21 (1929) Khim. 37 Nr. 4, S. 305/06.Google Scholar
  405. [3]
    Apelblat, A.: Chem. Thermodyn. 25 (1993), S. 63/71.Google Scholar
  406. [4]
    Apelblat, A.: Chem. Thermodyn. 25 (1993), S. 1513/20.Google Scholar
  407. [5]
    Apelblat, A.: Chem. Thermodyn. 24 (1992), S. 619/26.Google Scholar
  408. [6]
    Applebey, M. P., F H. Crawford u. K. Gordon: J. Chem. Soc. 11 (1934), S. 1665/71.Google Scholar
  409. [7]
    Badger, W L. u. E. M. Baker: Chem. Metall. Eng. 23 (1920) Nr. 12, S. 569/74.Google Scholar
  410. [8]
    Barry, J. C., J. Richter u. E. Stich: Ber. Bunsen-Ges. Phys. Chem. 92 (1988), S. 1118/22.Google Scholar
  411. [9]
    Baxter, G. P. u. E. L. Lansing: J. Am. Chem. Soc. 42 (1920), S. 419.Google Scholar
  412. [10]
    Baxter, G. P. u. W. C. Cooper, Jr.: J. Am. Chem. Soc. 46 (1924), S. 923.Google Scholar
  413. [11]
    Bechtold, M. F. u. R. F. Newton: J. Am. Chem. Soc. 62 (1040), S. 1390.Google Scholar
  414. [12]
    Bencowitz, I. u. H. T. Hotchkiss, Jr: J. Phys. Chem. 30 (1926), S. 643/57.Google Scholar
  415. [13]
    Boryta, D. A., A. J. Maas u. C. B. Grant: J. Chem. Eng. Data 20 (1975) Nr. 3, S. 316/19.Google Scholar
  416. [14]
    Carr, D. S. u. B. I. Harris: Ind. Eng. Chem. 41 (1949), S. 2014.Google Scholar
  417. [15]
    Chia-tsun Liu u. W. T Lindsay, Jr: J. Solution Chem. 1 (1972) Nr. 1, S. 45/69.Google Scholar
  418. [16]
    Dean, J. A.: Lange’s Handbook of Chemistry, 12. Auflage. New York: McGraw Hill.Google Scholar
  419. [17]
    Derby, I. H. u. V. Yngve: J. Am. Chem. Soc. 38 (1916) Nr. 8, S. 1439.Google Scholar
  420. [18]
    Diesnis, M.: Ann. Chem. 7 (1937), S. 5.Google Scholar
  421. [19]
    Dingemans, P. u. L. L. Dijkgraaf.• Red. Tray. Chim. 65 (1946), S. 477/84.Google Scholar
  422. [20]
    Dingemans, P. u. L. L. Dijkgraaf.• Red. Tray. Chim. 66 (1947), S. 239/46.Google Scholar
  423. [21]
    Dingemans, P u. L. L. Dijkgraaf.• Recl. Tray. Chim. 67 (1948), S. 225/30.Google Scholar
  424. [22]
    Dingemans, P u. L. L. Dijkgraaf: Recl. Tray. Chim. 67 (1948), S. 231/34.Google Scholar
  425. [23]
    Dingemans, P: Red. Tray. Chim. 64 (1945), S. 199/204.Google Scholar
  426. [24]
    Dingemans, P: Red. Tray. Chim. 62 (1943), S. 85/95. [25] Dingemans, P. u. K. van den Berg: Recl. Tray. him. 61 (1942), S. 605/15.Google Scholar
  427. [26]
    Dingemans, P: Recl. Tray. Chim. 60 (1941), S. 319/28.Google Scholar
  428. [27]
    Dingemans, P: Red. Tray. Chim. 58 (1939), S. 574/81.Google Scholar
  429. [28]
    Dingemans, P: Recl. Tray. Chim. 64 (1945), S. 194/98.Google Scholar
  430. [29]
    Edgar, G. u. W O. Swan: J. Am. Chem. Soc. 44 (1922), S. 570.Google Scholar
  431. [30]
    Ewing, W W, E. Klinger u. J. D. Brandner: J. Am. Chem. Soc. 56 (1934), S. 1053/57.Google Scholar
  432. [31]
    Gokcen, N. A.: J. Am. Chem. Soc. 73 (1951), S. 3789.Google Scholar
  433. [32]
    Goldberg, R. N. u. R. L. Nuttall: J. Phys. Chem. Ref. Data 7Google Scholar
  434. [33]
    Greenspan, L.: J. Res. Nat. Bur. Stand. Sect. A 81 A (1977) Nr. 1, S. 89/96.Google Scholar
  435. [34]
    Hartung, E. J.: Trans. Faraday Soc. 15 (1920), S. 150.Google Scholar
  436. [35]
    Hayward, A. M. u. E. P. Perman: Trans. Farad. Soc. 27 (1931), S. 59/69.Google Scholar
  437. [36]
    Hedlin, C. P. u. F N. Trofimenkoff• Humidity Moisture 3 (1965), S. 519/20.Google Scholar
  438. [37]
    Hepburn, J. R. I.: J. Chem. Soc. (1932), S. 1284/92.Google Scholar
  439. [38]
    Hüttig, G. F. u. F. Reuscher: Z. Anorg. Chem. 137 (1924), S. 155.Google Scholar
  440. [39]
    Iyoki, S., S. Iwasaki u. T. Uemura: J. Chem. Eng. Data 35 (1990), S. 429/33.Google Scholar
  441. [40]
    Jänecke, E. u. E. Rahifs: Z. Anorg. Chem. 192 (1930), S. 237/44.Google Scholar
  442. [41]
    Jänecke, E.: Z. Anorg. Chem. 188 (1930), S. 72/89.Google Scholar
  443. [42]
    Kangro, W u. A. Groeneveld: Z. Phys. Chem. 32 (1962), S. 110/26.Google Scholar
  444. [43]
    Keevil, M. B.: J. Am. Chem. Soc. 64 (1936), S. 959/61.Google Scholar
  445. [66]
    Pearce, J. N., M. D. Taylor u. R. M. Bartlett: J. Am. Chem. Soc. 50 (1928), S. 2951/58.Google Scholar
  446. [67]
    Petit, M. C.: J. Chim. Phys., Phys.-Chim. Biol. 62 (1965), S. 1119.Google Scholar
  447. [68]
    Ravich, M. I., F. E. Borovaya u. E. G. Smirnova: Russ. J. Inorg. Chem. 13 (1968) Nr. 7, S. 1000/04.Google Scholar
  448. [69]
    Ravich, M. I. u. Yastrebova: Russ. J. Inorg. Chem. 8 (1963) Nr. 1, S. 102/05.Google Scholar
  449. [70]
    Robinson, R. A. u. V. E. Bower: J. Res. Nat. Bur. Stand. Sect. A 69A (1965) Nr. 4, S. 365/67.Google Scholar
  450. [71]
    Robinson, R. A. u. R. S. Jones: J. Am. Chem. Soc. 58 (1978) Nr. 1, S. 263/310.Google Scholar
  451. [72]
    Robinson, R. A. u. R. H. Stokes: Trans. Faraday Soc. 36 (1940), S. 733.Google Scholar
  452. [73]
    Robinson, R. A.: J. Am. Chem. Soc. 59 (1937), S. 84/90.Google Scholar
  453. [74]
    Saad, D., J. Padova u. Y. Marcus: J. Solution Chem. 4 (1975), S. 983.Google Scholar
  454. [75]
    Sacchetto, G. A. u. Z. Kodejs: J. Chem. Soc. Faraday 82 (1986), S. 1853/64.Google Scholar
  455. [76]
    Sakai, W: I. J. Soc. Chem. Ind. Jpn. 43 (1939) Nr. 4, S. 104B/106B.Google Scholar
  456. [77]
    Sako, T, T. Hakuta u. H. Yoshitome: J. Chem. Eng. Data 30 (1985), S. 224/28.Google Scholar
  457. [78]
    Serowy, F u. G. Soika: Wiss. Z. Tech. Hochsch. Chem. Leuna-Merseburg 6 (1964), S. 343.Google Scholar
  458. [79]
    Simonson, J. M. u. K. S. Pitzer: J. Phys. Chem. 90 (1986), S. 3009/13.Google Scholar
  459. [80]
    Sourirajan, S., u. G. C. Kennedy: Am. J. Sci. 260 (1962), S. 115/41.Google Scholar
  460. [81]
    Speranski, A.: Z. Phys. Chem. 70 (1910), S. 519.Google Scholar
  461. [82]
    Speranski, A.: Z. Phys. Chem. 78 (1912), S. 86.Google Scholar
  462. [83]
    Stokes, R. H., u. R. A. Robinson: Ind. Eng. Chem. 41 (1949), S. 2013.Google Scholar
  463. [84]
    Stokes, R. H.: Trans. Faraday Soc. 41 (1945), S. 642.Google Scholar
  464. [85]
    Thakker, M. T, C. W. Chi, R. E. Peck u. D. T. Wasan: J. Chem. Eng. Data 13 (1968) Nr. 4, S. 553.Google Scholar
  465. [86]
    Urusova, M. A., u. M. I. Ravich: Russ. J. Inorg. Chem. 11 (1966) Nr. 3, S. 353/57.Google Scholar
  466. [87]
    Urusova, M. A., u. V. M. Valyashko: Russ. J. Inorg. Chem. 32 (1987) Nr. 1, S. 23/26.Google Scholar
  467. [88]
    Urusova, M. A., u. V. M. Valyashko: Russ. J. Inorg. Chem. 28 (1983) Nr. 7, S. 1045/48.Google Scholar
  468. [89]
    Urusova, M. A., u. V. M. Valyashko: Russ. J. Inorg. Chem. 29 (1984) Nr. 9, S. 1395/96.Google Scholar
  469. [90]
    Urusova, M. A.: Russ. J. Inorg. Chem. 19 (1974) Nr. 3, S. 450/53.Google Scholar
  470. [91]
    Urusova, M. A.: Russ. J. Inorg. Chem. 31 (1986) Nr. 7, S. 1104/05.Google Scholar
  471. [92]
    Valyashko, V. M., M. A. Urusova, V. A. Ketsko u. K. G. Kravchuk: Russ. J. Inorg. Chem. 32 (1987) Nr. 11, S. 1634/39.Google Scholar
  472. [93]
    Washburn, E. W.: International critical tables of numerical data, physics, chemistry and technology Bd. I (1926), S. 67/68.Google Scholar
  473. [94]
    Washburn, E. W: International critical tables of numerical data, physics, chemistry and technology Bd. III (1928), S. 292/300 u. 351/85.Google Scholar
  474. [95]
    Wexler, A., u. S. Hasegawa: J. Res. Nat. Bur. Stand. 53 (1954) Nr. 1, S. 19/26.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Verein Deutscher Ingenieure
  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC)

There are no affiliations available

Personalised recommendations