Advertisement

VDI-Wärmeatlas pp 1285-1374 | Cite as

Arten der Wärmeübertragung und die für sie üblichen Bauformen der Wärmeübertrager

  • Verein Deutscher Ingenieure
  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC)
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Bei chemischen und verfahrenstechnischen Vorgängen werden vielerlei Aufgaben der Wärmeübertragung gestellt. Sie ergeben sich aus den betrieblichen Erfordernissen und den Eigenschaften der Wärme abgebenden und aufnehmenden Stoffe. Es kommen verschiedene Arten der Wärmeübertragung in Betracht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schrifttum

  1. [1]
    Druckbehälter-Verordnung.Google Scholar
  2. [2]
    Podhorsky, M., u. H. Krips: Wärmetauscher, Aktuelle Probleme der Konstruktion und Berechnung. FDBR-Fachbuchreihe, Band 5, Vulkan-Verlag Essen, 1990.Google Scholar
  3. [3]
    Sterr, G.: Die festigkeitsmäßige Berechnung von Wärmeaustauschern mit geraden Rohren. TÜV 8, 1975.Google Scholar
  4. [4]
    TEMA, Standards of Tubular Exchanger Manufacturers Association.Google Scholar
  5. [5]
    Würmseher, H., A. Swozil, u. J. Künzel: Kohlenstoff und Graphit als Werkstoff für hohe Korrosionsbeanspruchung im Druckbehälter- und Apparatebau. Swiss Chem 5 (1983)Google Scholar
  6. [6]
    A working guide to shell-and-tube heat exchangers. Stanley Yokell, McGraw-Hill. 1. Aufl. 1990.Google Scholar
  7. [1]
    Blevins, R. D.: Flow-Induced Vibration. Van Nostrand Reinhold, New York, 2. Aufl. 1990.Google Scholar
  8. [2]
    Chen, S. S.: Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere Publishing Corporation, Washington, DC, 1987.Google Scholar
  9. [3]
    Gelbe, H., M. Jahr u. K. Schröder: Flow-Induced Vibrations in Heat Exchanger Tube Bundles, Chem. Eng. and Proc. 34 (1995), S. 289/98.Google Scholar
  10. [4]
    Gasch, R., u. K. Knothe: Strukturdynamik Bd. 2: Kontinua und ihre Diskretisierung. Springer-Verl., Berlin 1989.Google Scholar
  11. [5]
    Kissel, J. H.: Flow-Induced Vibrations in Heat Exchangers A Practical Look. Machine Design. 45 (1973), May 3, S. 104/07. (s. a. Standards of Tubular Exchanger Manufactures Association, 7. Ed., TEMA, New York, 1987 ).Google Scholar
  12. [6]
    Jahr, M.: Einflüsse von Strukturparametern und Strömungsverteilung auf das Schwingverhalten mit Luft angeströmter Rohrbündel. Diss. TU Berlin, 1995.Google Scholar
  13. [7]
    Yeh, Y. S., u. S. S. Chen: Vibration of Component Cooling Water Heat Exchangers. ASME PVP Conf., Nashville, Vol. 189 (1990), S. 153/64.Google Scholar
  14. [8]
    AD-Merkblatt S 3/7, Beuth Verlag, Berlin, 1991.Google Scholar
  15. [9]
    Parker, R.: Acoustic Resonances in Passeges containing Banks of Heat Exchanger Tubes. Journal of Sound and Vibration 57 (1978), S. 245/60.Google Scholar
  16. [10]
    Ziada, S., A. Oengören u. E. T. Bühlmann: On Acoustical Resonance in Tube Arrays, Part I: Experiments. Journal of Fluids and Structures 3 (1989), S. 293/314.Google Scholar
  17. [11]
    Blevins, R. D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York 1979.Google Scholar
  18. [12]
    Pettigrew, M. J., H. G. D. Goyder, L. Z. Qiao u. E. Axisa: Damping of Multispan Heat Exchanger Tubes, Part I. I. Gases. ASME PVP Conf., Chicago, Vol. 104 (1986), S. 81/87.Google Scholar
  19. [13]
    Pettigrew, M. J., R. J. Rogers u. F Axisa: Damping of Multispan Heat Exchanger Tubes, Part II: In Liquids. ASME PVPConf., Chicago, Vol. 104 (1986), S. 89/98.Google Scholar
  20. [14]
    Connors, H. J.: An Experimental Investigation of the Flow-Induced Vibration of Tube Arrays in Cross Flow. Ph. D. Thesis, University of Pittsburgh 1970.Google Scholar
  21. [15]
    Andjelie, M.: Stabilitätsverhalten querangeströmter Rohrbündel mit versetzter Dreiecksteilung. Diss. Univ. Hannover 1988.Google Scholar
  22. [16]
    Andjelié, M., u. K. Popp: Stability Effects in a Normal Triangular Cylinder Array. Journal of Fluids and Structures 3 (1989), S. 165/85.Google Scholar
  23. [17]
    Weaver, D. S., u. J. A. Fitzpatrick: A Review of Flow-Induced Vibration in Heat-Exchangers. Proc. Int. Conf. Flow-induced Vibration, Bowness-on-Windermere, Paper Al (1987), S. 1/17.Google Scholar
  24. [18]
    Pettigrew, M. J., u. C. E. Taylor: Fluid-Elastic Instability of Heat Exchanger Tube Bundles: Review and Design Recommendations. Int. Conf. Proc. Inst. Mech. Eng., Flow-Induced Vibration, Brighton, Paper C 416/015 (1991), S. 349/68.Google Scholar
  25. [19]
    Gelbe, H., u. K. Schröder: Bestimmung der fluidelastischen Instabilität in querangeströmten Rohrbündeln. Zur Veröffentlichung in Chem.-Ing.-Techn. 69 (1997) eingereicht.Google Scholar
  26. [20]
    Chen, S. S., u. J. A. Jendrzejczek: Stability of Tube Arrays in Crossflow. Nuclear Engineering and Design 75 (1982) S. 351/73.Google Scholar
  27. [21]
    Connors, H. J.: Fluidelastic Vibration of Tube Arrays Excited by Nonuniform Cross Flow. Flow-Induced VibrationGoogle Scholar
  28. of Power Plant Components, ASME Publication PVPVol. 41 (1980), S. 93/107.Google Scholar
  29. [22]
    Godon, J. L.: Flows and Flow Induced Vibrations in Large Condensers. ASME Winter Annual Meeting, New Orleans, Vibrations in Heat Exchangers, Vol. 3 (1984), S. 1/16.Google Scholar
  30. [23]
    Gog, W. Untersuchungen der Erregermechanismen am Einzelrohr und am querangeströmten Rohrbündel. Diss. TU Berlin 1982.Google Scholar
  31. [24]
    Gorman, D. J., u. S. Mirza: Experimental Development of Design Criterion to Limit Liquid Flow Induced Vibration in Nuclear Reactor Steam Generators. Journal of Nuclear Science and Engineering 61 (1976), S. 324/36.Google Scholar
  32. [25]
    Gross, H.: Untersuchung aeroelastischer Schwingungsmechanismen und deren Berücksichtigung bei der Auslegung von Rohrbündelwärmetauschern. Diss. Univ. Hannover 1975.Google Scholar
  33. [26]
    Halle, H., J. M. Chenoweth u. M. W. Wambsganss: Shellside Flow-Induced Tube Vibration in Typical Heat Exchanger Configurations: Overview of a Research Program. Proceedings of ASME-PVP Conference, Chicago, PVP-Vol. 104 (1986), S. 161/69.Google Scholar
  34. [27]
    Halle, H., J. M. Chenoweth u. M. W. Wambsganss: Shellside Waterflow-Induced Tube Vibration in Heat Exchanger Configurations with Tube Pitch-to-Diameter Ratio of 1.42. ASME Annual Meeting, Chicago, Flow-Induced Vibration in Heat Transfer Equipment Vol. 3 (1988), S. 1/16.Google Scholar
  35. [28]
    Hartlen, R. T: Wind-Tunnel Determination of Fluid-ElasticVibration Thresholds for Typical Heat-Exchanger Tube Patterns. Ontario Hydro Research Division Report 74/309-K, 1974.Google Scholar
  36. [29]
    Heilker, W. J., u. R. Q. Vincent: Vibration in Nuclear Heat Exchangers due to Liquid and Two-Phase Flow. ASME Journal of Engineering for Power 103 (1981), S. 358/65.Google Scholar
  37. [30]
    Kassera, V, u. K. Strohmeier: Experimental Determination of Tube Bundle Vibrations Induced by Cross Flow. ASME PVP Conf., Minneapolis, PVP-Vol. 273 (1994), S. 91/97.Google Scholar
  38. [31]
    Leyh, T: Strömungsinduzierte Rohrbündelschwingungen in einem gasdurchströmten realen Wärmeübertrager. Diss. TU Berlin 1993.Google Scholar
  39. [32]
    Minakami, K., u. K. Ohtomi: Flow Direction and Fluid Density Effects on the Fluidelastic Vibrations of a Triangular Array of Tubes. International Conference on Flow Induced Vibrations, Bowness-on-Windermere, Paper B2 (1987), S. 65/75.Google Scholar
  40. [33]
    Soper, B. M. H.: The Effect of Tube Layout on the Fluid-Elastic Instability of Tube Bundles in Cross Flow, ASME Journal of Heat Transfer 105 (1983), S. 744/50.Google Scholar
  41. [34]
    Stochmeier, D.: Einfluß der Viskosität auf die Schwingungen in Rohrbündelapparaten. Diss. Univ. Hannover 1990.Google Scholar
  42. [35]
    Troidl, H.: Strömungsinduzierte Schwingungen querangeströmter Rohrbündel bei versetzter und fluchtender Rohranordnung. Diss. TU. München 1986.Google Scholar
  43. [36]
    Weaver, D. S., u. H. C. Yeung: The Effect of Tube Mass on the Flow Induced Response of Various Tube Arrays in Water. Journal of Sound and Vibration 93 (1984), S. 409/25.Google Scholar
  44. [37]
    Yeung, H. C., u. D. C. Weaver: The Effect of Approach Flow Direction on the Flow Induced Vibrations of a Triangular Tube Array. ASME Journal of Mechanical Design 105 (1983), S. 76/82.Google Scholar
  45. [38]
    Zukauskas, A., u. V Katinas: Flow-Induced Vibrations in Heat-Exchanger Tube Banks. IUTAM Symp. Karlsruhe 1979, Practical Experiences with Flow-Induced Vibrations, (Ed. Naudascher) Springer-Verl. Berlin 1980.Google Scholar
  46. [39]
    Abd-Rabbo, A., u. D. S. Weaver: A Flow Visualization Study of Flow Development in a Staggered Tube Array. Journal of Sound and Vibration 106 (1986) 2, S. 241/56.Google Scholar
  47. [40]
    Austermann, R.: Zum Schwingungsverhalten querangeströmter Rohrbündel bei Anregung vom Galloping-Typ. Diss. Univ. Hannover 1993 (s. a.: Stability Behaviour of a Single Flexible Cylinder in Rigid Tube Arrays of Different Geometry Subjected to Cross-Flow. Journal of Fluids and Structures 9 (1995), S. 303/22.)Google Scholar
  48. [41]
    Chen, S. S., u. J. A. Jendrzejczyk: Experiments on Fluid Instability in Tube Banks Subjected to Liquid Cross Flow. Journal of Sound and Vibration 78 (1981) 3, S. 355/81.Google Scholar
  49. [42]
    Johnson, D. K., u. W. G. Schneider: Flow-Induced Vibration of a Tube Array with an Open Lane. Proceedings of ASME Symposium on Flow-Induced Vibrations, New Orleans, Vibration in Heat Exchangers Vol. 3 (1984), S. 63/72.Google Scholar
  50. [43]
    Weaver, D. S., u. L. K. Grover: Cross-Flow Induced Vibrations in a Tube Bank — Turbulent Buffeting and Fluid Elastic Instability. Journal of Sound and Vibration 59 (1978), S. 277/94.Google Scholar
  51. [44]
    Weaver, D. S., u. M. El-Kashlan: The Effect of Damping and Mass Ratio on the Stability of a Tube Bank. Journal of Sound and Vibration 76 (1981), S. 283/94.Google Scholar
  52. [45]
    Weaver, D. S., u. D. Koroyannakis: The Cross-Flow Response of a Tube Array in Water — A Comparison with the Same Array in Air. ASME Journal of Pressure Vessel Technology 104 (1982), S. 139/46.Google Scholar
  53. [46]
    Weaver, D. S., u. D. Koroyannakis: Flow-Induced Vibrations of Heat Exchanger U-Tubes: A Simulation to Study the Effects of Asymmetric Stiffness. Journal of Vibration, Acoustics, Stress and Reliability in Design 105 (1983), S. 67/75.Google Scholar
  54. [47]
    Axisa, F., B. Villard, R. J. Gibert, G. Hetsroni u. P. Sundheimer: Vibration of Tube Bundles Subjected to Air-Water and Steam-Water Cross Flow: Preliminary Results on Fluid-elastic Instability. Proceedings of ASME Symposium on Flow-Induced Vibrations, New Orleans, Vol. 2 (1984), S. 269/84.Google Scholar
  55. [48]
    Connors, H. J.: Fluidelastic Vibration of Heat Exchanger Tube Arrays. ASME Journal of Mechanical Design 100 (1978), S. 347/53.Google Scholar
  56. [49]
    ] Lubin, B. T, R. P. Letendre, J. W. Quinn u. R. A. Kenny: Comparison of the Response of a Scale Model and Prototype Design Tube Bank Structure to Cross-Flow Induced Fluid Excitation. ASME PVP Conf., Chicago, PVP-Vol. 104 (1986), S. 171/77.Google Scholar
  57. [51]
    Tanaka, H., u. S. Takahara: Fluidelastic Vibration of a Tube Array in Cross-Flow. Journal of Sound and Vibration 77 (1981), S. 19/37.Google Scholar
  58. [52]
    Weaver, D. S., u. A. Abd-Rabbo: A Flow Visualization Study of a Square Array of Tubes in Water Cross-Flow. ASME Journal of Fluids Engineering 107 (1985)Google Scholar
  59. S. 354/63.Google Scholar
  60. [53]
    Chen, S. S.: Flow-Induced Vibrations in Two-Phase Flow. Trans. ASME Journal Pressure Vessel Techn. 113 (1991), S. 234/41.Google Scholar
  61. [54]
    Feenstra, P, R. L. Judd u. D. S. Weaver: Fluidelastic Instability in a Tube Array Subjected to Two Phase R-11 Cross Flow. ASME PVP-Conf. on Flow-Induced Vibration, Hawaii, PVP-Vol. 298 (1995), S. 13/27.Google Scholar
  62. [55]
    Mann, W, u. F. Mayinger: Flow Induced Vibration of Tube Bundles Subjected to Single- and Two-Phase Cross-Flow. Proceedings of the 2nd International Conf. on Multiphase Flow, Kyoto, Vol. 4 (1995), S. 9/15 (s. a.: Mann, W: Schwingungsanregungen in Rohrbündeln durch Dichteschwankungen in Dampf-Flüssigkeits-Strömungen. Fortschr.-Ber. VDI R. 6 Nr. 359, VDI-Verlag, Düsseldorf 1997 ).Google Scholar
  63. [56]
    Pettigrew, M. J., J. H. Tromp, C. E. Taylor u. B. S. Kim: Vibration of Tube Bundles in Two-Phase Cross-Flow: Part 1 Hydrodynamic Mass and Damping. Trans. ASME, Journal of Pressure Vessel Techn. 111 (1989), S. 466/77.Google Scholar
  64. [57]
    Pettigrew, M. J., J. H. Tromp, C. E. Taylor, u. B. S. Kim: Vibration of Tube Bundles in Two-Phase Cross-Flow: Part 2 Fluidelastic Instability. Trans. ASME, Journal of Pressure Vessel Techn. 111 (1989), S. 478/87.Google Scholar
  65. [58]
    Pettigrew, M. J., C. E. Taylor, J. H. Jong, u. I. G. Currie: Vibration of Tube Bundles in Two-Phase Freon Cross-Flow. ASME PVP-Conf. on Flow-Induced Vibration, Minneapolis, PVP-Vol. 273 (1994), S. 211/26.Google Scholar
  66. [59]
    Pettigrew, M. J., u. C. E. Taylor: Two-Phase Flow-Induced Vibration: An Overview. Journal of Pressure Vessel Techn. 116 (1994), S. 233/53.Google Scholar
  67. [60]
    Fujita, K., T. Nakamura, N. W. Mureithi u. T. Ichioka: Recent Topics on Cross-Flow Induced Vibration of Tube Arrays. ASME PVP-Conf. on Flow Induced Vibration, Hawaii, 1995, PVP-Vol. 298 (1995), S. 45/54.Google Scholar
  68. [61]
    Ziada, S., u. A. Oengören: Acoustic and Tube Resonances in Tube Bundles. Bericht No. SAK\TB92/63, Sulzer Innotec, Winterthur, Schweiz, 1992.Google Scholar
  69. [61]
    Oengören, A., u. S. Ziada: Unsteady Fluid Forces Acting on a Square Tube Bundle in Air Cross Flow. ASME Int. Symp. Flow-Induced Vibration and Noise, Vol. 1 (1992), S. 55/74.Google Scholar
  70. [62]
    Oengören, A., u. S. Ziada: Vortex Shedding, Acoustic Resonance and Turbulent Buffeting in Normal Triangular Tube Arrays. 6th International Conference on Flow-Induced Vibration, London (Ed. P. Bearman ), Balkema, Rotterdam (1995), S. 295/313.Google Scholar
  71. [63]
    Pettigrew, M. J., u. D. J. Gorman: Vibration of Heat Exchanger Tube Bundles in Liquid and Two-Phase Cross Flow. Flow-Induced Vibration Design Guidelines (Ed. P. Y. Chen), ASME PVP-Vol. 52 (1981), S. 89/110.Google Scholar
  72. [64]
    Blevins, R. D.: Buffeting of Heat Exchanger Tube Arrays in Cross Flow. Proceedings BNES International Conference on Vibration in Nuclear Plant, Keswick, U. K., Paper 3.4, 1978. (s. a.: Turbulence-Induced Vibration of Heat Ex- changer Tubes in Cross-Flow. ASME PVP-Conf. Flow- Induced Vibration, PVP-Vol. 273 (1994), S. 199/210.)Google Scholar
  73. [65]
    Blevins, R. D., R. J. Gibert u. B. Villard: Experiments on Vibration of Heat Exchanger Tube Arrays in Cross Flow. Transact. of 6th Int. Conf. on Structural Mechanics in Reactor Technology (SMiRT), Paper B6/9, 1981.Google Scholar
  74. [66]
    Axisa, F., J. Antunes, B. Villard u. M. Wullschleger: Random Excitation of Heat Exchanger Tubes by Cross-Flow.Google Scholar
  75. Flow-Induced Vibration of Cylinder Arrays in Cross-Flow, ASME Publication, Book no. G442 (1988), S. 23/46 (s. a. Axisa, F.: Random Excitation of Heat Exchanger Tubes by Two-Phase Cross-Flow. Proc. Int. S.mp. on Flow-Induced Vibration, Anaheim, Vol. 1 (1992), S. 119/40.)Google Scholar
  76. [67]
    Taylor, C. E., 1. G. Currie, M. J. Pettigrew u. B. S. Kim: Vibration of Tube Bundles in Two-Phase Cross-Flow, Part 3: Turbulence-Induced Excitation. Flow-Induced Vibration of Cylinder Arrays in Cross-Flow, ASME Publication, Book no. G 00442 (1988), S. 105/29.Google Scholar
  77. [68]
    Weaver, D. S.: Vortex Shedding and Acoustic Resonance in Heat Exchanger Tube Arrays. Technology For The 90s, Chapt. 6, ASME Publication: New York (1993), S. 776/810.Google Scholar
  78. [69] Ziada, S., U. Bolleter u. Y. N. Chen: Vortex Shedding and Acoustic Resonance in a Staggered-Yawed Array of Tubes. ASME Symposium on Flow-Induced Vibrations (Ed. M. P. Païdoussis et al.)
    Vol. 2 (1984), S. 227/42.Google Scholar
  79. [70]
    Ziada, S., u. A. Oengören: Vorticity Shedding and Acoustic Resonance in an In-Line Tube Bundle, Part I: Vorticity Shedding. Journal of Fluids and Structures 6 (1992) 3, S. 271/92.Google Scholar
  80. [71]
    Ziada, S., u. A. Oengören: Vortex Shedding in an In-Line Tube Bundle with Large Tube Spacings. Journal of Fluids and Structures 7 (1993), S. 661/87.Google Scholar
  81. [72]
    Oengören, A., u. S. Ziada: Flow Periodicity, Turbulence and Acoustic Resonance in Parallel Triangular Tube Bundles. ASME 4th Intern. Symp. on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise, Dallas, Texas, USA, 16/21 Nov. 1997.Google Scholar
  82. [73]
    Pettigrew, M. J., u. D. J. Gorman: Vibration of Heat Exchange Components in Liquid and Two-Phase Cross-Flow. Proc. BNES Int. Conf. on Vibration of Nuclear Plants, Keswick, U. K., Paper 2. 3, 1978.Google Scholar
  83. [74]
    Polak, D. R., u. D. S. Weaver: Vortex Shedding in Normal Triangular Tube Arrays. ASME PVP-Conf. Flow-Induced Vibration, PVP-Vol. 273 (1994), S. 145/56.Google Scholar
  84. [75]
    Weaver, D. S., H. Y. Lian u. X. Y. Huang: Vortex Shedding in Rotated Square Tube Arrays. Journal of Fluid and Structures 7 (1993), S. 107/21.Google Scholar
  85. [76]
    Baylac, G., D. Bai u. J. P. Gregoire: Study of Flow and Acoustic Phenomena in a Tube Bank. Proc. UKAEA-NPL Int. Symp. on Vibration Problems in Industry, Keswick, U. K., Paper 219, 1973, S. 1/36.Google Scholar
  86. [77]
    Rae, G. J., u. J. S. Wharmby: Strouhal Numbers for In-Line Tube Arrays. Proc. BHRA Int. Conf. on Flow Induced Vibrations, Bowness-on-Windermere, U. K., Paper E4, 1987, S. 233/42.Google Scholar
  87. [78]
    ] Clasen, P, u. R. Gregorig: Ein Schwingungskriterium eines querangeströmten Rohres, Teil 4: Schwingversuche in einem fluchtenden Rohrbündel. Chem.-Ing.-Techn. 43 (1971), S. 982/85.Google Scholar
  88. [80]
    Grotz, B. J., u. F. R. Arnold.: Flow-Induced Vibrations in Heat Exchangers. Report No. 31, AD 104568, Dept. of Mech. Eng., Stanford University, Ca., 1956.Google Scholar
  89. [81]
    Pettigrew, M. J.: Flow-Induced Vibration Phenomena in Nuclear Power Station Components. Power Industry Research 1 (1981), S. 97/133.Google Scholar
  90. [82]
    Ziada, S., A. Oengören u. E. T. Bühlmann: On Acoustical Resonance in Tube Arrays, Part I: Experiments. Journal of Fluids and Structures 3 (1989) 3, S. 293/314.Google Scholar
  91. [83]
    Oengören, A., u. S. Ziada: Vorticity Shedding and Acoustic Resonance in an In-Line Tube Bundle, Part II: Acoustic Resonance. Journal of Fluids and Structures 6 (1992) 3, S. 293/309.Google Scholar
  92. [84]
    Chen, Y. N.: Flow-Induced Vibration and Noise in Tube Bank Heat Exchangers due to von Karman Streets. ASME Journal Engineering for Industry 90 (1968), S. 134/46.Google Scholar
  93. [85]
    Chen, Y. N., u. W. C. Young: Damping Capability of the Tube Banks. Int. Symposium on Flow-Induced Vibration and Noise, Vol. 4 (1974) S. 81/95.Google Scholar
  94. [86]
    Fitzpatrick, J. A.: A Design Guide Proposal for Avoidance of Acoustic Resonances in In-Line Heat Exchangers. ASME Journal Vibration, Acoustics Stress and Reliability in Design 108 (1986), S. 296/300.Google Scholar
  95. [87]
    Ziada, S., A. Oengären, u. E. T. Bühlmann: On Acoustical Resonance in Tube Arrays, Part II: Damping Criteria. Journal Fluids and Structures 3 (1989) 3, S. 315/24.Google Scholar
  96. [88]
    Eisinger, F. L., R. E. Sullivan u. J. T. Francis: A Review of Acoustic Vibration Criteria Compared to Inservice Experience with Steamgenerator Inline Tube Banks. ASME Int. Symp. on Flow-Induced Vibration, Vol. 4 (1992), S. 81/95.Google Scholar
  97. [89]
    Eisinger, F. L., J. T. Francis u. R. E. Sullivan: Prediction of Acoustic Vibration in Steam Generator and Heat Exchanger Tube Banks, ASME PVP-Conf. Flow-Induced Vibration, PVP-Vol. 273 (1994), S. 67/83.Google Scholar
  98. [91]
    Urbas, L., T. Leyh, M. Jahr u. H. Gelbe: Berechnung der dreidimensionalen Geschwindigkeitsverteilung in Rohrbündel-Wärmeübertragern und Simulation der Schwingungsanregung. Chem.-Ing.-Techn. 66 (1994), S. 938/40.Google Scholar
  99. [90]
    Goyder, H. G. D.: A Practical Method for Assessing Tube Vibration in Heat Exchangers. ASME Symp. on Flow-Induced Vibration and Noise Vol. 1, Anaheim, HTDVol. 230-NE-Vol. 9 (1992), S. 237/60.Google Scholar
  100. [1]
    Steinhagen, R., H. Muller-Steinhagen u. K. Maani: Prob lems and Costs Due to Heat Exchanger Fouling in New Zealand Industries. Heat Transfer Engineering 1 (1993).Google Scholar
  101. [2]
    Thackery, P. A.: The Cost of Fouling in Heat Exchanger Plant. Effluent and Water Treatment Journal (1980), S. 111/15.Google Scholar
  102. [3]
    Garrett-Price, B. A. et al.: Fouling of Heat Exchangers Characteristics, Costs, Prevention, Control and Removal. Noyes Publications (1985), Park Ridge, New Jersey.Google Scholar
  103. [4]
    Steinhagen, R., H. M. Muller-Steinhagen u. K. Maani: Heat Exchanger Applications, Fouling Problems and Fouling Costs in New Zealand Industries. Ministry of Commerce Report RD8829 (1990), S. 1/116.Google Scholar
  104. [5] Taborek, J.: private communications (1987).
    ] Epstein, N.: Thinking about Heat Transfer Fouling A 5x5 Matrix. heat transfer engineering (1983), Vol. 4, No. 1, S. 43/56.Google Scholar
  105. [7]
    Taborek, J., T. Aoki et al.: Fouling — The Major Unresolved Problem in Heat Transfer. Chem. Eng. Prog. (1972), Vol. 68, No. 2, S. 59/67, No. 7, S. 69/78.Google Scholar
  106. [8]
    Morse, R. W, u. J. G. Knudsen: Effect of Alkalinity on the Scaling of Simulated Cooling Tower Water. Can. J. Chem. Eng. (1977), Vol. 55, S. 272/78.Google Scholar
  107. [9]
    Branch, C. A., u. H. Müller-Steinhagen: Fouling During Heat Transfer to Kraft Pulp Black Liquor. Part I: Experi mental Results. Part II: Analysis of Deposits and Modelling. Submit. for publ. in APPITA Journal, 1993Google Scholar
  108. [10]
    Bott, T. R., u. J. S. Gudmundsson: Rippled Silica Deposits in Heat Exchanger Tubes. Proc. 6th Int. Heat Transfer. Conf. (1978), Vol. 4, S. 373/78.Google Scholar
  109. [11]
    Kern, D. Q., u. R. A. Seaton: A Theoretical Analysis of Thermal Surface Fouling. Brit. Chem. Eng. (1959), Vol. 4, No. 5, S. 258/62.Google Scholar
  110. [12]
    Cleaver, J. B., u. B. Yates: The Effect of Re-Entrainment on Particle Deposition. Chem. Eng. Sci. (1976), Vol. 31Google Scholar
  111. S. 147/51.Google Scholar
  112. [13]
    Hasson, D.: Precipitation Fouling. Publ. in Fouling of Heat Transfer Equipment (1981) Herausgeber E. F. C. Somerscales and J. G. Knudsen, Hemisphere Publ. Corp., Was hington.Google Scholar
  113. [14]
    Bowen, B. D., u. N. Epstein: Fine Particle Deposition in Smooth Parallel-Plate Channels. J. Colloid Interface Sci.Google Scholar
  114. [15]
    Müller-Steinhagen, H. M., u. F Reif. Thermische und hydrodynamische Einflüsse auf die Ablagerung suspendier ter Partikeln an beheizten Flächen. VDI Progress Report, 19, S. 1/194 (1990).Google Scholar
  115. [16]
    Taborek, J., T Aoki et al.: Predictive Methods for Fouling Behaviour. Chem Eng. Progr. (1972), Vol. 68, No. 7, S. 69/72.Google Scholar
  116. [17]
    Watkinson, A. P., u. N. Epstein: Gas Oil Fouling in a Sen sible Heat Exchanger. Chem. Eng. Prog. Series (1969), Vol. 65, No. 92, S. 84/90.Google Scholar
  117. [18]
    Knudsen, J. G.: Fouling in Heat Exchangers. Kap. 3.17, Heat Exchanger Design Handbook (1983), Hemisphere Publ. Corp., Washington.Google Scholar
  118. [19]
    Bohnet, M.: Fouling von Wärmeübertragungsflächen. Chem. Ing. Tech. (1985), Vol. 57, No. 1, S. 24/36.Google Scholar
  119. [20]
    Epstein, N.: General Thermal Fouling Models. in Fouling von Wärmeübertragungsflächen, GVC DiskussionstagungGoogle Scholar
  120. München, (1990).Google Scholar
  121. [21]
    Watkinson, A. P., u. N. Epstein: Particulate Fouling of Sen sible Heat Exchangers. Proc. 4th Int. Heat Transf. Conf., Toronto (1970) HE 1. 6.Google Scholar
  122. [22]
    Jamialahmadi, M., H. M. Müller-Steinhagen u. B. Robson: Effect Of Process Parameters On Scale Formation From Spent Bayer Process Liquor. Part I: Experimental Observa tions. Accept. for publication in Aluminium Verlag, (1992). Verlag (1993)Google Scholar
  123. [23]
    Epstein, N.: Fouling in Heat Transfer Equipment. HTFS Seminar on Fouling, New Orleans (1986), S. 2/1/2/34.Google Scholar
  124. [24]
    Bohnet, M.: Investigation of Fouling Layer Growth by Crystallization. 41th Can. Chem. Eng. Conf. Vancouver, Canada (1991).Google Scholar
  125. [25]
    Krause, S.: Fouling an Wärmeübertragerflächen durch Kri stallisation und Sedimentation. VDI-Forschungsheft No. 637 (1986).Google Scholar
  126. [26]
    Lalande, M., u. E Rene: Fouling By Milk And Dairy Prod uct and Cleaning Of Heat Exchange Surfaces. Proc. NATO ASI on Advances in Fouling Science and Technology, Por tugal. Martinus Nijhoff Publ. (1988).Google Scholar
  127. [27]
    Hussain, C. I., I. H. Newson u. T. R. Bott: Diffusion Con trolled Deposition of Particulate Matter from Flowing Slur ries. Proc. 8th Int. heat Transfer Conf. (San FranciscoGoogle Scholar
  128. [28]
    Thomas, D., u. U. Grigull: Experimentelle Untersuchung über die Ablagerung von suspendiertem Magnetit bei Rohrströmungen in Dampferzeugern. Brennst.-Wärme-Kraft (1974), Vol. 26, No. 3, S. 109/15.Google Scholar
  129. [29]
    Hopkins, R. M., u. N. Epstein: Fouling of Heated Stainless Steel Tubes With Ferric Oxide From Flowing Water Suspensions. Proc. 5th Int. Heat Transfer Conf. (Tokyo, 1974 ), Vol. 5, S. 180/84.Google Scholar
  130. [30]
    Melo, L., u. J. D. Pinheiro: Fouling by Kaolin-Water Suspensions — Effect of the Flow Velocity and the Presence of Magnetite Particles. Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).Google Scholar
  131. [31]
    Müller-Steinhagen, H. M.: Partikelablagerung in Wärmeübertragern. In Fouling von Wärmeübertragungsflächen, GVC Diskussionstagung München (1990).Google Scholar
  132. [32]
    Süleyman, A., u. D. Rosner: Prediction And Rational Correlation Of Thermophoretically Reduced Particle Mass Transfer To Hot Surfaces Across Laminar or Turbulent Forced-Convection Gas Boundary Layers. Chem. Eng. Commun. (1986), Vol. 44, S. 107/19.Google Scholar
  133. [33]
    Kent, C. A.: Biological Fouling — Basic Science and Models. Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).Google Scholar
  134. [34]
    Somerscales, E. F. C.: Corrosion Fouling — Liquid Side. Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).Google Scholar
  135. [35]
    Charlesworth, D. H.: The Deposition of Corrosion Products In Boiling Water Systems. Chem. Eng. Progr. Symp. Series (1970), Vol. 66, No. 104, S. 21.Google Scholar
  136. [36]
    König, T, T. Bartlett, M. Jamialahmadi u. H. Müller-Steinhagen: Bundle Effect on Boiling Heat Transfer. Zur Veröffentl. in Heat Transfer Engineering eingereicht (1993).Google Scholar
  137. [37]
    Kot, A. A.: Water Treatment in Nuclear Power Plants. Atomizdat, Moscow (1964), (AEC-tr-6629, 1966 ).Google Scholar
  138. [38]
    Margittai, T: T. B. M. Technologies, 788 Cornwall Drive, State College, PA 16801, USA. Siehe auch: Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).Google Scholar
  139. [39]
    Standards of the Tubular Exchanger Manufacturers Association (1978), 6th ed., TEMA, New York.Google Scholar
  140. [40]
    Chenoweth, J.: Final Report of the HTRUTEMA Joint Committee to Review the Fouling Section of the TEMA Standards. Heat Transfer Engineering, Vol. 11, No. 1 (1990), S. 73/107.Google Scholar
  141. [41]
    Moore, J. A.: Fintubes foil fouling for scaling services. Chemical Processing (August 1980).Google Scholar
  142. [42]
    Watkinson, A. P.: Fouling of Augmented Heat Transfer Tubes. Heat Transfer Engineering, Vol. 11, No. 3 (1990) S. 57/65.Google Scholar
  143. [43]
    Freeman, W, J. Middis u. H. M. Müller-Steinhagen: Influence of Augmented Surfaces and of Surface Finish on Particulate Fouling in Double Pipe Heat Exchangers. Chem. Eng. Process. Vol. 27 (1990), S. 1/11.Google Scholar
  144. [44]
    Weierman, R. C.: Design of Heat Transfer Equipment for Gas-Side Fouling Service. In Workshop on an Assesment of Gas-Side Fouling in Fossil Fuel Exhaust Environments. Herausgeber W. J. Marner und R. L. Webb. Publikation 8267, Jet Propulsion Laboratory,California Institue of Technology, Pasadena, California (1982).Google Scholar
  145. [45]
    Kollbach, J., W. Dahm u. R. Rautenbach: Continuous cleaning of heat exchangers with recirculating fluidized bed. Heat Transfer Engineering, vol. 8, no. 4, pp. 26/32, 1987.Google Scholar
  146. [46]
    Klaren, D. G.: The fluid bed heat exchanger: Principles and modes of operation and heat transfer results under severe fouling conditions. Fouling Prey. Res. Dig., vol. 5, No. 1, March 1983.Google Scholar
  147. [47]
    Jamialahmadi, M., B. Stellingwerf, H. Müller-Steinhagen u. B. Robson: Heat Transfer to Solid-Liquid Fluidized Beds in Annuli. Chem. Eng. Process. (1992).Google Scholar
  148. [48]
    Wirbelschicht-Wärmeaustauscher. SGL Carbon, Meitingen, Deutschland (1992).Google Scholar
  149. [49]
    ] Novak, L.: Comparison of the Rhine River and the Öresund Sea Water Fouling and Its Removal by Chlorination. Journal of Heat Transfer (1982), Vol. 104, S. 663/70.Google Scholar
  150. [51]
    Cross, P. H.: Preventing Fouling in Plate Heat Exchangers. Chemical Engineering (1979), S. 87/90.Google Scholar
  151. [52]
    Cooper, A., J. W. Suitor u. J. D. Usher: Cooling Water Fouling in Plate Heat Exchangers. heat transfer engineering (1980), Vol. 1, No. 1, S. 50/55.Google Scholar
  152. [53]
    Branch, C. A., H. Müller-Steinhagen u. E. Seyfried: Heat Transfer to Kraft Black Liquor in Plate Heat Exchangers. APPITA J. Vol. 44, No. 4 (1991), S. 270/72.Google Scholar
  153. [54]
    Gilmour, C. H.: No Fooling — No Fouling. Chemical Engineering Progress (1965), Vol. 61, No. 7, S. 49/54.Google Scholar
  154. [55]
    Somerscales, E. F. C., u. M. Kassemi: Fouling Due To In-Situ Corrosion Products. ASME 22nd National Heat Transfer Conf. (1984), HTD-Vol. 35, S. 1.Google Scholar
  155. [56]
    Goodstine, S. L., u. J. J. Kurpen: Corrosion and Corrosion Product Control in the Utility Boiler Turbine Cycle. Mater. Perf. (1974), Vol. 13, No. 1, S. 31.Google Scholar
  156. [57]
    Simon, D. E.: Feedwater Quality in Modern Industrial Boilers — A Consensus of Proper Current Operating Practices. 36th Annual Water Conference (1975), Pittsburgh, Pa.Google Scholar
  157. [58]
    Wasservorschriften für Wasserrohrkessel. Mitteilungen VGB 49, H. 3 (1969) S. 215/17.Google Scholar
  158. [59]
    Macbeth, R. V, R. Trenberth, u. R. W. Wood: An Investigation into the Effect of „Crud“ Deposits on Surface Temperature, Dry-Out and Pressure Drop, With Forced Convection Boiling of Water at 69 Bar in an Annular Test Section. AEEW — R 705, 1971.Google Scholar
  159. [60]
    Macbeth, R. V: The Effect of „Crud“ Deposits on Frictional Pressure Drop in a Boiling Channel. AEEW — R 767, 1972.Google Scholar
  160. [61]
    Macbeth, R. V: Boiling on Surfaces Overlayed With a Porous Deposit — Heat Transfer Rates Obtainable by Capillary Action. AEEW — R 711, 1971.Google Scholar
  161. [62]
    Palen, J. W: Shell and Tube Re-Boilers. Sect. 3.7. 8, Heat Exchanger Design Handbook. Hemisphere Publ. Corp. (1983).Google Scholar
  162. [63]
    Ahlström Corp., Process Equipment Works, Varkaus 20, FinnlandGoogle Scholar
  163. [64]
    Müller-Steinhagen, H.: Wärmeübergang and Fouling beim Strömungssieden von Argon and Stickstoff in horizontalen Rohren. Fortschr.-Ber. VDI-Z (1984), Reihe 6, No. 143.Google Scholar
  164. [65]
    Müller-Steinhagen, H. M.: Fouling Phenomena During Boiling of Cryogenic Liquids. Cryogenics, Vol. 28 (1988), S. 406/08.Google Scholar
  165. [66]
    Palm, B.: Enhancement of Boiling Heat Transfer by Aid of Perforated Metal Foils. Dissertation, Department of Applied Thermodynamics and Refrigeration, The Royal Institute of Technology, Stockholm, (1991)Google Scholar
  166. [67]
    Somerscales, E. F. C., u. L. A. Curcio: Effect of calcium sulphate on pool boiling of enhanced surfaces. ASME WAM, Dallas, Texas (1990).Google Scholar
  167. [68]
    Jamialahmadi, M., u. H. M. Müller-Steinhagen: Scale Formation During Nucleate Boiling — A Review. Corrosion Reviews (1993).Google Scholar
  168. [69]
    Gottzman, C. F, P S. O’Neill u. P. E. Minton: Field experience with high efficiency heat exchangers. 74th AIChE meeting, New Orleans (1973).Google Scholar
  169. [70]
    O’Neill, P. S.: User Manual — High Flux Horizontal Heat Exchanger Design Program. non-confidential version. Union Carbide Corporation (1977).Google Scholar
  170. [71]
    Martin, H.: Wärmeübertrager. Georg Thieme Verlag (1988).Google Scholar
  171. [72]
    Chenoweth, J.: General Design Of Heat Exchangers For Fouling Conditions. In Fouling Science and Technology, NATO ASI Series 145 (1988), S. 477/94.Google Scholar
  172. [73]
    Coulson, J. M., J. F. Richardson u. R. K. Sinnott: Chemical Engineering, Volume 6. Pergamon Press (1985).Google Scholar
  173. [74]
    Epstein, N.: Fouling in Heat Exchangers. Publ. in Heat Exchanger Theory and Practice (1983). Herausgeber J. Taborek and G. Hewitt, McGraw-Hill.Google Scholar
  174. [75]
    Paikert, P: Verschmutzung von Kondensatoren and Kühltürmen. GVC Weihnachtstagung (1983), S. 371/90.Google Scholar
  175. [75]
    Betz Laboratories, Inc.: Handbook of Industrial Water Conditioning. 7. Auflage (1976), Trevose, Pa., S. 24/29.Google Scholar
  176. [76]
    Drew Chemical Corporation: Principles of Industrial Water Treatment. 1. Auflage (1977), Boonton N.J., S. 99/103.Google Scholar
  177. [77]
    Nalco Chemical Comp.: Nalco Water Handbook. McGraw-Hill (1979), 1. Auflage.Google Scholar
  178. [78]
    Dubbel, Taschenbuch für den Maschinenbau. 13. Auflage (1974), zweiter Band, S. 87/94.Google Scholar
  179. [79]
    Harris, A., u. A. Marshall: The Evaluation of Scale Control Additives. Conf. on Progress in the Prevention of Fouling in Industrial Plant. Univ. Nottingham (1981).Google Scholar
  180. [80]
    Krisher, A. S.: Raw Water Treatment in the CPI. Chemical Engineering (1978), August 28, S. 79/98.Google Scholar
  181. [81]
    Dubkin, L., u. K. E. Fulks: The Effect of Water Chemistry on Iron Dispersant Performance. Presented at Corrosion-84, New Orleans, Louisiana (1984).Google Scholar
  182. [82]
    Miller, P C., u. T R. Bott: The Removal of Biological Films Using Sodium Hypochloride. Int. Chem. Eng. Conf. on Fouling Science or Art? (1979), Surrey University, Guildford, England.Google Scholar
  183. [83]
    Birchall, G. A.: Achieving Microbiolocal Controll in Open Recirculating Cooling Systems. Conference on Progress in the Prevention of Fouling in Industrial Plant (1981). Universität Nottingham.Google Scholar
  184. [84]
    Grier, J. C., u. R. J. Christensen: Microbiological Control in Alkaline Cooling Water Systems. Presented at the National Association of Corrosion Engineers Annual Meeting (1975), Toronto, Canada.Google Scholar
  185. [85]
    Waite, T. D., u. J. R. Fagan: Summary of Biofouling Control Alternatives. In Condenser Biofouling Control, Herausgeber J. Garey, Ann Arbor Science (1980).Google Scholar
  186. [86]
    Grade, R., u. B. M. Thomas: The Influence and Control of Algae in Industrial Cooling Systems. Int. Chem. Eng. Conf. on Fouling Science or Art? (1979), Surrey University, Guildford, England.Google Scholar
  187. [87]
    Roe, E. L., N. Zelver u. W G. Characklis: Monitoring of Fouling Deposits — A Key to Heat Exchanger Management. InTech (1985), S. 91.Google Scholar
  188. [88]
    Knudsen, J. G., H-Y Jou u. K. W. Herman: Heat Transfer Characteristics of an Electrically Heated Annular Test Section for Determining Fouling Resistances. Drew Ind. Div. (1985), Report CWT-TP-18.Google Scholar
  189. [89]
    Tubec Tubes. AST, Avesta Sandvik Tube AB, Helmond, HollandGoogle Scholar
  190. [90]
    Ellis, S. R. M., M. J. Gough u. J. V. Rogers: A Novel Insert for Improving Heat Exchanger Performance, University of New South Wales, Sydney (1985).Google Scholar
  191. [91]
    Someah, K.: On-Line Tube Cleaning — The Basics. Chem. Eng. Progress, S. 39/45 (Juli 1992 )Google Scholar
  192. [92]
    KALVO Vogler GmbH: Automatisches Reinigungssystem für Kondensatoren and Röhrenwärmeaustauscher.Google Scholar
  193. [93]
    Eimer, K.: Recommendations for the Optimum Cleaning Frequency of the Taprogge Tube Cleaning System. Taprogge Technical Report 85/26 (1985).Google Scholar
  194. [94]
    Kinson, G., u. W. Price: Getting the Most Out of Cooling Water. Chem. Eng. 91, No. 1, pp. 22/25 (1984).Google Scholar
  195. [95]
    Donaldson, J., u. S. Grimes: Lifting the Scale from Our Pipes. New Scientist, Vol. 18, pp. 43/46 (1988).Google Scholar
  196. [96]
    Hasson, D., u. D. Bramson: Effectiveness of Magnetic water Treatment in Suppressing CaCO3 Scale Deposition. Ind. Eng. Chem. Process Des. Dev., Vol. 24, pp. 588/92 (1985).Google Scholar
  197. [97]
    Söhnel, O., u. J. Mullin: Some Comments on the Influence of a Magnetic Field on Crystalline Scale Formation. Chemistry and Industry, Vol. 6, pp. 356/58 (1988).Google Scholar
  198. [98]
    Limpert, G. J. C., u. J. L. Raber: Test of Non-Chemical Scale Control Devices in a Once Through System. Corrosion 85, Paper 250 (1985).Google Scholar
  199. [99]
    Karabelas, A. J.: personal communications (1988).Google Scholar
  200. [100]
    Magnets attract positive results. Australian Dairy Foods, Vol. 13, No. 1, 1991Google Scholar
  201. [101]
    Ashley, M. J.: Preventing deposition on heat exchange surfaces with ultrasound. Ultrasonics, S. 215/21 (1974).Google Scholar
  202. [102]
    Taylor, R. E., u. J. W. Collins: Chemical Processing 29, No. 8 (1967).Google Scholar
  203. [103]
    Taprogge Report 84/15: Test of Taprogge Condenser Tube Cleaning System to Prevent Silica and Calcium Carbonate Scaling. Taprogge GmbH (1984).Google Scholar
  204. [104]
    French, M. A.: Chemical Cleaning in Practice. Conference on Progress in the Prevention of Fouling in Industrial Plant (1981). Universität Nottingham.Google Scholar
  205. [105]
    Roebuck, A. H., u. C. A. Bennett: Heat Transfer Payback Is A Key To Chemical Cleaning Choice. The Oil and Gas Journal, No. 9, S. 93/96 (1977).Google Scholar
  206. [106]
    Hollands, H. E: In-Service Cleaning of Boilers Using Chelants. Conference on Progress in the Prevention of Fouling in Industrial Plant (1981). Universität Nottingham.Google Scholar
  207. [107]
    Axsom, J. E: Heat Exchanger Clean Method Cuts Cost. The Oil and Gas Journal No. 6, (1977), S. 71/72.Google Scholar
  208. [108]
    Roebuck, A. H.: New Materials Make Chemical Heat Exchanger Cleaning Safer. The Oil and Gas Journal No. 12 (1978), S. 70/74.Google Scholar
  209. [109]
    CONCO Systems Inc., Verona, PA, U.S.A.Google Scholar
  210. [110]
    Hovland, A. W: Effective Condenser Cleaning Improves System Heat Rate. Power Engineering (1978), S. 49/50.Google Scholar
  211. [111]
    Cleaning Condenser Tubes Cuts Coal Costs in Energy Focus, Department of Minerals and Energy, NSW, Australia (1989).Google Scholar
  212. [112]
    Regan, T. J.: Oil Refinery Saves $5000-week Cleaning Own Heat Exchanger Bundles. Chem. Process. No. 10 (1983).Google Scholar
  213. [113]
    Knudsen, J. G.: Apparatus and Techniques for Measurement of Fouling of Heat Transfer Surfaces. In Fouling of Heat Transfer Equipment (1981), Herausgeber E. F. C. Somerscales and J. G. Knudsen, Hemisphere Publ. Corp., Washington.Google Scholar
  214. [114]
    Polt, A.: BASF AG, Ludwigshafen, persönliche Mitteilungen (1993).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Verein Deutscher Ingenieure
  • VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC)

There are no affiliations available

Personalised recommendations