Advertisement

Tin pp 145-148 | Cite as

Radiochemical & Mossbauer Methods

  • J. W. Price
Chapter
Part of the Handbuch der Analytischen Chemie / Handbook of Analytical Chemistry book series (HAC, volume 3 / 4 / 4a / 4a g)

Abstract

Irradiation of tin with thermal neutrons produces several radioactive isotopes, and of these 113Sn which is a γ-emitter with a half-life of 119 days, has been used for labelling organotin compounds in studies of animal metabolism and of agricultural residues (see Chapter 19.6). The other important use of radiochemical methods is in the determination of trace amounts of tin by neutron activation analysis and for this the most suitable isotope is 121Sn, which is a pure β-emitter with a half-life of 27 hours. Irradiation is carried out in a flux of about 1012n.cm−2s−1 for periods of 6–24 hours, the sample being allowed to decay for 24 hours before processing. A disadvantage in the use of 121Sn is the need to obtain a radiochemically pure compound for β-counting, the main contaminants being arsenic, antimony, molybdenum and tellurium, and a series of separations, usually involving one or more solvent extractions, must be carried out. The radiochemistry of tin and suggested schemes of chemical separation, particularly from fission products, are given in detail in a monograph by Nervik [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nervik, W.E.: The Radiochemistry of tin NAS-NS 3023 U.S. Atomic Energy Commission 1960Google Scholar
  2. 2.
    Williams, Al: Analyst 84, 433, 1959CrossRefGoogle Scholar
  3. 3.
    Hamaguchi, H., Kawabuchi, N., Oniama, R., Kuroda, R.: Anal.Chim.Acta 30, 335, 1964CrossRefGoogle Scholar
  4. 4.
    Byrne, A.R.: Radiochem. Radioanalyt. Lett. 7, 287, 1971Google Scholar
  5. 5.
    Bowen, H.J.M.: Analyst 97, 1003, 1972CrossRefGoogle Scholar
  6. 6.
    Morris, D.F.C., Denny, JA.: Radiochem. Radioanalyt. Lett. 8, 219, 1971Google Scholar
  7. 7.
    Tejinus, B.M., Haldar, B.S.: Radiochem.Radioanalyt. Lett. 13, 25, 1973Google Scholar
  8. 8.
    Johansen, O., Steines, E.: Analyst 94, 976, 1969CrossRefGoogle Scholar
  9. 9.
    Obrusnik, I.: Talanta 16, 563, 1969CrossRefGoogle Scholar
  10. 10.
    Seiler, H.: Helv.Chim.Acta 54, 533, 1971CrossRefGoogle Scholar
  11. 11.
    Stronski, I.: Radiochem. Radioanalyt. Lett. 5, 113, 1970Google Scholar
  12. 12.
    Kraus, KA., Michelson, C.D., Nelson, F.: J.Amer.Chem.Soc. 81, 3204, 1959CrossRefGoogle Scholar
  13. 13.
    Smith, G.W., Reynolds, S.A.: Anal.Chim.Acta 12, 151, 1955CrossRefGoogle Scholar
  14. 14.
    Dawson, J., Magee, R.J.: Mikrochim.Acta 3, 325, 1958Google Scholar
  15. 15.
    Lanfranco, G.: Metallurg.Ital. 63, 225, 1971Google Scholar
  16. 16.
    Maenhaut, W., Adams, F., Hoste, J.: J.Radioanalyt.Chem. 6, 83, 1970; 9, 27, 1971; 14, 295, 1973Google Scholar
  17. 17.
    Smith, P.J.: Organomet.Chem.Rev.Sect.A. 5, 373, 1970Google Scholar
  18. 18.
    Kalmakov. AA., Salakhutdinov, N.: Izv. Vysshikh Uchebn.Zaved, Tsvetn. Met. 8, 158 (1965). Chem. Abstr. 64, 3107 (1966) Salakhutdinov, N.: Teor. Sredstva Avtomat., 396 (1968) Chem.Abstr. 71, 27232 (1969) Salakhutdinov, N., Kalmakov A.A.: Izv. Vyssh. Ucheb. Zaved.Tsvet.Met. 13, 17 (1970) Chem. Abstr. 73, 105200 (1970) Stuart, R.A., Donohoe, A.J., Boyle, A.J.F.: Proc.AustIal.Inst.Min.Metall., 230, 69 (1969) Chem. Abstr. 71, 56356 (1969)Google Scholar
  19. 19.
    Dolenko et al., A.V.: Vses.Nauk-Tekh.Konf, 467, 1968, Atomizdat USSR 1971 (Chem. Abstr. 77, 12 1696, 1972 )Google Scholar
  20. 20.
    Goldanskii, V.I., et al.: Tr.Vses.Nauk.-Issled.Inst.Yad.Geofiz.Geokhim. 3, 220, 1968 (Chem. Abstr. 72, 139362 ) 1970Google Scholar
  21. 21.
    Pella, P.A., Devoe, J.R., Snediker, D.K.: Anal. Chem. 41, 46, 1969CrossRefGoogle Scholar
  22. 22.
    Pella, PA., DeVoe, J.R.: Anal. Chem. 42, 1833, 1970CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • J. W. Price

There are no affiliations available

Personalised recommendations